1
|
Alvarado YJ, Olivarez Y, Lossada C, Vera-Villalobos J, Paz JL, Vera E, Loroño M, Vivas A, Torres FJ, Jeffreys LN, Hurtado-León ML, González-Paz L. Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT. Comput Biol Chem 2022; 99:107692. [PMID: 35640480 PMCID: PMC9107165 DOI: 10.1016/j.compbiolchem.2022.107692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.
Collapse
Affiliation(s)
- Ysaias José Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| | - Yosmari Olivarez
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eddy Vera
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Vivas
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Fernando Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela
| | - Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botanicos y Agroforestales, (CEBA), Laboratorio de Proteccion Vegetal, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| |
Collapse
|
2
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
3
|
Chalikian TV, Macgregor RB. On empirical decomposition of volumetric data. Biophys Chem 2018; 246:8-15. [PMID: 30597448 DOI: 10.1016/j.bpc.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
Volumetric characterization of proteins and their recognition events has been instrumental in providing information on the role of intra- and intermolecular interactions, including hydration, in stabilizing biomolecules. The credibility of molecular models and interpretation schemes used to rationalize experimental data are essential for the validity of microscopic insights derived from volumetric results. Current empirical schemes used to interpret volumetric data suffer from a lack of theoretical and computational substantiation. In this contribution, we take advantage age of recent MD simulations of proteins in solution coupled with Voronoi-Delaunay tessellation of simulated structures that have provided an exceptional level of structural detail on the nature of protein-water interfaces. We use these structural insights to re-evaluate empirical frameworks used for interpretation of volumetric data. An important issue in this respect is the actual dividing surface between water and protein atoms that is used in volumetric studies when the solute and solvent are treated as hard spheres enclosed within their respective van der Waals surfaces. In one development, using Voronoi tessellation of MD simulated protein-water systems the dividing surface has been defined as the points equidistant from the water and protein atoms. The interstitial void volume between the solute and the dividing surface corresponds to thermal volume envisaged by Scaled Particle Theory. In this communication, we explicitly account for the contributions of thermal volume to the partial molar volume, compressibility, and expansibility of proteins and re-examine and redefine the intrinsic and hydration volumetric contributions. We discuss the implications of our results for protein transitions and association events.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
4
|
Abstract
Based on molecular dynamics simulations of four globular proteins in dilute aqueous solution, with three different water models, we examine several, essentially geometrical, aspects of the protein-water interface that remain controversial or incompletely understood. First, we compare different hydration shell definitions, based on spatial or topological proximity criteria. We find that the best method for constructing monolayer shells with nearly complete coverage is to use a 5 Å water-carbon cutoff and a 4 Å water-water cutoff. Using this method, we determine a mean interfacial water area of 11.1 Å2 which appears to be a universal property of the protein-water interface. We then analyze the local coordination and packing density of water molecules in the hydration shells and in subsets of the first shell. The mean polar water coordination number in the first shell remains within 1% of the bulk-water value, and it is 5% lower in the nonpolar part of the first shell. The local packing density is obtained from additively weighted Voronoi tessellation, arguably the most physically realistic method for allocating space between protein and water. We find that water in all parts of the first hydration shell, including the nonpolar part, is more densely packed than in the bulk, with a shell-averaged density excess of 6% for all four proteins. We suggest reasons why this value differs from previous experimental and computational results, emphasizing the importance of a realistic placement of the protein-water dividing surface and the distinction between spatial correlation and packing density. The protein-induced perturbation of water coordination and packing density is found to be short-ranged, with an exponential decay "length" of 0.6 shells. We also compute the protein partial volume, analyze its decomposition, and argue against the relevance of electrostriction.
Collapse
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
5
|
Identifying trends in hydration behavior for modifications to the hydrophobicity of poly(n-isopropylacrylamide). J Mol Graph Model 2017; 78:168-175. [DOI: 10.1016/j.jmgm.2017.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/23/2022]
|
6
|
Cantero-López P, Yañez-Osses O, Páez-Meza MS, López JE, Páez-Hernández D, Arratia-Pérez R. Theoretical and experimental approach on the molecular interactions of the DL-Alanine with an electrolytic environment. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
8
|
Smolin N, Voloshin VP, Anikeenko AV, Geiger A, Winter R, Medvedev NN. TMAO and urea in the hydration shell of the protein SNase. Phys Chem Chem Phys 2017; 19:6345-6357. [DOI: 10.1039/c6cp07903b] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed all-atom MD simulations of the protein SNase in aqueous solution and in the presence of two major osmolytes, trimethylamine-N-oxide (TMAO) and urea, as cosolvents at various concentrations and compositions and at different pressures and temperatures.
Collapse
Affiliation(s)
- Nikolai Smolin
- Department of Cell and Molecular Physiology
- Loyola University Chicago
- Maywood
- USA
| | | | - Alexey V. Anikeenko
- Institute of Chemical Kinetics and Combustion
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Alfons Geiger
- Physikalische Chemie
- Fakultät für Chemie und Chemische Biologie
- Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - Roland Winter
- Physikalische Chemie
- Fakultät für Chemie und Chemische Biologie
- Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - Nikolai N. Medvedev
- Institute of Chemical Kinetics and Combustion
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
9
|
Krobath H, Chen T, Chan HS. Volumetric Physics of Polypeptide Coil–Helix Transitions. Biochemistry 2016; 55:6269-6281. [DOI: 10.1021/acs.biochem.6b00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich Krobath
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Chen
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
10
|
Toleikis Z, Sirotkin VA, Skvarnavičius G, Smirnovienė J, Roumestand C, Matulis D, Petrauskas V. Volume of Hsp90 Protein–Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry, and NMR. J Phys Chem B 2016; 120:9903-12. [DOI: 10.1021/acs.jpcb.6b06863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zigmantas Toleikis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vladimir A. Sirotkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Gediminas Skvarnavičius
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Joana Smirnovienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
11
|
Luong TQ, Kapoor S, Winter R. Pressure-A Gateway to Fundamental Insights into Protein Solvation, Dynamics, and Function. Chemphyschem 2015; 16:3555-71. [DOI: 10.1002/cphc.201500669] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Trung Quan Luong
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Shobhna Kapoor
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| |
Collapse
|
12
|
Erlkamp M, Marion J, Martinez N, Czeslik C, Peters J, Winter R. Influence of Pressure and Crowding on the Sub-Nanosecond Dynamics of Globular Proteins. J Phys Chem B 2015; 119:4842-8. [DOI: 10.1021/acs.jpcb.5b01017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- M. Erlkamp
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - J. Marion
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - N. Martinez
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - C. Czeslik
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - J. Peters
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - R. Winter
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Voloshin VP, Medvedev NN, Smolin N, Geiger A, Winter R. Exploring volume, compressibility and hydration changes of folded proteins upon compression. Phys Chem Chem Phys 2015; 17:8499-508. [PMID: 25685984 DOI: 10.1039/c5cp00251f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the physical basis of the structure, stability and function of proteins in solution, including extreme environmental conditions, requires knowledge of their temperature and pressure dependent volumetric properties. One physical-chemical property of proteins that is still little understood is their partial molar volume and its dependence on temperature and pressure. We used molecular dynamics simulations of aqueous solutions of a typical monomeric folded protein, staphylococcal nuclease (SNase), to study and analyze the pressure dependence of the apparent volume, Vapp, and its components by the Voronoi-Delaunay method. We show that the strong decrease of Vapp with pressure (βT = 0.95 × 10(-5) bar(-1), in very good agreement with the experimental value) is essentially due to the compression of the molecular volume, VM, ultimately, of its internal voids, V. Changes of the intrinsic volume (defined as the Voronoi volume of the molecule), the contribution of the solvent to the apparent volume, and of the contribution of the boundary voids between the protein and the solvent have also been studied and quantified in detail. The pressure dependences of the volumetric characteristics obtained are compared with the temperature dependent behavior of these quantities and with corresponding results for a natively unfolded polypeptide.
Collapse
Affiliation(s)
- Vladimir P Voloshin
- Institute of Chemical Kinetics and Combustion, SB RAS, 630090 Novosibirsk, Russia
| | | | | | | | | |
Collapse
|