1
|
Zhao J, Wang J. Vibrational Energy Transfer in Energetic Ionic Liquid 4-Amino-1H-1,2,4-triazolium Nitrate: Ab Initio Molecular Dynamics Simulations. J Phys Chem A 2024; 128:7524-7535. [PMID: 39213588 DOI: 10.1021/acs.jpca.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Energetic ionic liquids (EILs) represent a distinctive class of energetic materials with substantial research significance and promising energetic applications. In this work, we delved into the vibrational energy transfer mechanism within the EILs, specifically focusing on 4-amino-1H-1,2,4-triazolium nitrate (ATN), utilizing ab initio molecular dynamics simulations. Our work illustrates distinct energy transfer patterns for different vibrational modes. Upon exciting the stretching vibration of the NH group in the cationic group, vibrational energy preferentially migrates to the neighboring CH bond within the aromatic ring on the femtosecond to picosecond time scales and notably in an in-phase coherent energy transfer fashion. In contrast, exciting the stretching vibration of the N9H11 bond triggers the transfer of vibrational energy to its neighboring N9H10 bond in an out-of-phase coherent fashion. Conversely, exciting the stretching vibration of the N9H10 bond leads to energy transfer predominantly through intermolecular pathways due to the hydrogen-bonding interaction between this bond and the anion. The vibrational energy of the excited N9H10 stretch is shown to dissipate very rapidly, displaying a fast component (with a time constant as short as ca. 7 fs) and a slow component (ca. 230 fs).
Collapse
Affiliation(s)
- Juan Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Fan J, Lan H, Ning W, Zhong R, Chen F, Yan G, Cai K. Modeling amide-I vibrations of alanine dipeptide in solution by using neural network protocol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120675. [PMID: 34890871 DOI: 10.1016/j.saa.2021.120675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Infrared spectroscopy is a powerful tool for the understanding of molecular structure and function of polypeptides. Theoretical interpretation of IR spectra relies on ab initio calculations may be very costly in computational resources. Herein, we developed a neural network (NN) modeling protocol to evaluate a model dipeptide's backbone amide-I spectra. DFT calculations were performed for the amide-I vibrational motions and structural parameters of alanine dipeptide (ALAD) conformers in different micro-environments ranging from polar to non-polar ones. The obtained backbone dihedrals, C = O bond lengths and amide-I frequencies of ALAD were gather together for NN architecture. The applications of built NN protocols for the prediction of amide-I frequencies of ALAD in other solvation conditions are quite satisfactory with much less computational cost comparing with electronic structure calculations. The results show that this cost-effective way enables us to decipher the polypeptide's dynamic secondary structures and biological functions with their backbone vibrational probes.
Collapse
Affiliation(s)
- Jianping Fan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Huaying Lan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Wenfeng Ning
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Rongzhen Zhong
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Feng Chen
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| |
Collapse
|
3
|
Dai Y, Wu Y, Lan H, Ning W, Chen F, Yan G, Cai K. Structural dynamics and vibrational feature of N-Acetyl-d-glucosamine in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119918. [PMID: 33991814 DOI: 10.1016/j.saa.2021.119918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Molecular dynamics simulations and DFT calculations were performed for the demonstration of the structural dynamics and vibrational feature of N-Acetyl-d-glucosamine (NAG) in solution phase. The interactions between NAG and solvent molecules were evaluated through spatial distribution function and radial distribution function, and the preferred conformations of NAG in aqueous solution were revealed by cluster analysis. Results from normal mode analysis show that the solvent induced structural fluctuation of NAG could be reflected in the vibrational feature of specific chromophores, thus we can evaluate the molecular structure with the help of its vibrational signature based on the built correlation between molecular structure and vibrational frequencies of specific groups.
Collapse
Affiliation(s)
- Ya'nan Dai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Yulan Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Huaying Lan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Wenfeng Ning
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Feng Chen
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China.
| |
Collapse
|
4
|
Cai K, Zheng X, Hou Y, Chen F, Yan G, Zhuang D. Deciphering the structural preference encoded in amide-I vibrations of lysine dipeptide in gas phase and in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119066. [PMID: 33091736 DOI: 10.1016/j.saa.2020.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Protein's biological function is critically associated with its structural feature, which is encoded in its amino acid sequence. For evaluation of conformational fluctuation and folding mechanism, DFT calculations were performed on the model compound - lysine dipeptide (LYSD) in gas phase to demonstrate the correlation between amide-I vibrations and secondary structure. Molecular dynamics simulations were carried out for the structural dynamics of LYSD in aqueous solution. The results show that LYSD tends form C7eq, C5, β, PPII and α conformations in the gas phase and primarily presented PPII and α conformations in aqueous solution. The obtained amide-I vibrational frequencies of LYSD conformers were assigned, thus build the correlations between amide-I probes and secondary structure of LYSD. These results provide theoretical insights into the structural feature of LYSD through amide-I vibrations, and would shed light on site specific structural prediction of polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China.
| | - Xuan Zheng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Yanjun Hou
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Feng Chen
- Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China
| | - Guiyang Yan
- Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China
| | - Danling Zhuang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
5
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
6
|
Cai K, Liu J, Liu Y, Chen F, Yan G, Lin H. Application of a transparent window vibrational probe (azido probe) to the structural dynamics of model dipeptides and amyloid β-peptide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117681. [PMID: 31685425 DOI: 10.1016/j.saa.2019.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The azido asymmetric stretching motion is widely used for the elucidation of the intrinsic conformational preference and folding mechanism of protein since it has strong vibrational absorbance in the spectral transparent windows. However, the possible secondary structural disturbance induced by the insertion of azido group in the side chain of polypeptides should be carefully evaluated. Here, DFT calculation and enhanced sampling method were employed for model dipeptides with or without azido substitution, and the outcome results show that the lower potential energy basins of isolated model dipeptides are consistent with the preferred structural distributions of model dipeptides in aqueous solution. The azido asymmetric stretching frequency shows its sensitivity to the backbone configurations just like amide-I vibration does, and the azido vibration exhibits great potential as a structural reporter in the transparent window. For the evaluation of the application of azido group in biologically related system, the structural dynamics of Aβ37-42 and N3-Aβ37-42 fragments and the self-assemble process of their protofiliments in aqueous solution were demonstrated. The outcome results show that the structural fluctuations of Aβ37-42 and its protofilament in aqueous solution are quite similar with or without azido substitution, and the dewetting transitions of Aβ37-42 and N3-Aβ37-42 β-sheet layers are both complete within 30 ns and assemble into stable protofilaments. Therefore, the azido asymmetric vibrational motion is a minimally invasive structural probe and would not introduce much disturbance to the structural dynamics of polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China.
| | - Jia Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Ya'nan Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Feng Chen
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Guiyang Yan
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Huiqiu Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China
| |
Collapse
|
7
|
Cai K, Zheng X, Liu J, Du F, Yan G, Zhuang D, Yan S. Mapping the amide-I vibrations of model dipeptides with secondary structure sensitivity and amino acid residue specificity, and its application to amyloid β-peptide in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:391-400. [PMID: 31059891 DOI: 10.1016/j.saa.2019.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Vibrational spectroscopy has been known as particularly well-suited for deciphering the polypeptide's structure. To decode structural information encoded in IR spectra, we developed amide-I frequency maps on the basis of model dipeptides to correlate the amide-I frequency of interest to the combination of the calculated secondary structure dependent amide-I frequency by using DFT method and the electrostatic potentials that projected onto the amide unit from the micro-environment within molecular mechanics force field. The constructed maps were applied to model dipeptides and amyloid β-peptide fragment (Aβ25-35). The dipeptide specified map (DS map) and the hybrid map (HYB map) predicted amide-I bands of Aβ25-35 in solution satisfactorily reproduce experimental observation, and indicate the preference of forming β-sheet and random coil structure for Aβ25-35 in D2O just as the results of cluster analysis suggested. These maps with secondary structural sensitivity and amino acid residue specificity open up a way for the interpretation of amide-I vibrations and show their potentials in the understanding of molecular structure of polypeptides in solution.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China; Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, PR China.
| | - Xuan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Jia Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, PR China
| | - Danling Zhuang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Siyi Yan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
8
|
Yang F, Dong X, Feng M, Zhao J, Wang J. Central-metal effect on intramolecular vibrational energy transfer of M(CO) 5Br (M = Mn, Re) probed by two-dimensional infrared spectroscopy. Phys Chem Chem Phys 2018; 20:3637-3647. [PMID: 29340363 DOI: 10.1039/c7cp05117d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational energy transfer in transition metal complexes with flexible structures in condensed phases is of central importance to catalytical chemistry processes. In this work, two molecules with different metal atoms, M(CO)5Br (where M = Mn, Re), were used as model systems, and their axial and radial carbonyl stretching modes as infrared probes. The central-metal effect on intramolecular vibrational energy redistribution (IVR) in M(CO)5Br was investigated in polar and nonpolar solvents. The linear infrared (IR) peak splitting between carbonyl vibrations increases as the metal atom changes from Mn to Re. The waiting-time dependent two-dimensional infrared diagonal- and off-diagonal peak amplitudes reveal a faster IVR process in Re(CO)5Br than in Mn(CO)5Br. With the aid of density functional theory (DFT) calculations, the central-metal effect on IVR time linearly correlates with the vibrational coupling strength between the two involved modes. In addition, the polar solvent is found to accelerate the IVR process by affecting the anharmonic vibrational potentials of a solute vibration mode.
Collapse
Affiliation(s)
- Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | |
Collapse
|
9
|
Dong X, Yang F, Zhao J, Wang J. Efficient Intramolecular Vibrational Excitonic Energy Transfer in Ru3(CO)12 Cluster Revealed by Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2018; 122:1296-1305. [DOI: 10.1021/acs.jpcb.7b10067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqian Dong
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fan Yang
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Cai K, Zheng X, Du F. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:150-157. [PMID: 28448953 DOI: 10.1016/j.saa.2017.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China.
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
11
|
Highly enantioselective recognition of alaninol via the chiral BINAM-based fluorescence polymer sensor. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Cai K, Du F, Zheng X, Liu J, Zheng R, Zhao J, Wang J. General Applicable Frequency Map for the Amide-I Mode in β-Peptides. J Phys Chem B 2016; 120:1069-79. [PMID: 26824578 DOI: 10.1021/acs.jpcb.5b11643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, a general applicable amide-I vibrational frequency map (GA map) for β-peptides in a number of common solvents was constructed, based on a peptide derivative, N-ethylpropionamide (NEPA). The map utilizes force fields at the ab initio computational level to accurately describe molecular structure and solute-solvent interactions, and also force fields at the molecular mechanics level to take into account long-range solute-solvent interactions. The results indicate that the GA map works reasonably for mapping the vibrational frequencies of the amide-I local-modes for β-peptides, holding promises for understanding the complicated infrared spectra of the amide-I mode in β-polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Jia Liu
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Renhui Zheng
- Beijing National Laboratory for Molecular Sciences, Structural Chemistry of Unstable and Stable Species Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
13
|
Affiliation(s)
- Juan Zhao
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory
for Molecular Sciences; Laboratory of Molecular Reaction Dynamics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Liu Z, Jenkinson SF, Vermaas T, Adachi I, Wormald MR, Hata Y, Kurashima Y, Kaji A, Yu CY, Kato A, Fleet GWJ. 3-Fluoroazetidinecarboxylic Acids and trans,trans-3,4-Difluoroproline as Peptide Scaffolds: Inhibition of Pancreatic Cancer Cell Growth by a Fluoroazetidine Iminosugar. J Org Chem 2015; 80:4244-58. [DOI: 10.1021/acs.joc.5b00463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Tom Vermaas
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Mark R. Wormald
- Glycobiology
Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Yukako Hata
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Yukiko Kurashima
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Kaji
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Chu-Yi Yu
- CAS
Key Laboratory of Molecular Recognition and Function, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|