1
|
Lawler JT, Harrilal CP, DeBlase AF, Sibert EL, McLuckey SA, Zwier TS. Single-conformation spectroscopy of cold, protonated DPG-containing peptides: switching β-turn types and formation of a sequential type II/II' double β-turn. Phys Chem Chem Phys 2022; 24:2095-2109. [PMID: 35019911 DOI: 10.1039/d1cp04852j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-Proline (DPro, DP) is widely utilized to form β-hairpin loops in engineered peptides that would otherwise be unstructured, most often as part of a DPG sub-unit that forms a β-turn. To observe whether DPG facilitated this effect in short protonated peptides, conformation specific IR-UV double resonance photofragment spectra of the cold (∼10 K) protonated DP and LP diastereomers of the pentapeptide YAPGA was carried out in the hydride stretch (2800-3700 cm-1) and amide I/II (1400-1800 cm-1) regions. A model localized Hamiltonian was developed to better describe the 1600-1800 cm-1 region commonly associated with the amide I vibrations. The CO stretch fundamentals experience extensive mixing with the N-H bending fundamentals of the NH3+ group in these protonated peptides. The model Hamiltonian accounts for experiment in quantitative detail. In the DP diastereomer, all the population is funneled into a single conformer which presented as a type II β-turn with A and DP in the i + 1 and i + 2 positions, respectively. This structure was not the anticipated type II' β-turn across DPG that we had hypothesized based on solution-phase propensities. Analysis of the conformational energy landscape shows that both steric and charge-induced effects play a role in the preferred formation of the type II β-turn. In contrast, the LP isomer forms three conformations with very different structures, none of which were type II/II' β-turns, confirming that LPG is not a β-turn former. Finally, single-conformation spectroscopy was also carried out on the extended peptide [YAADPGAAA + H]+ to determine whether moving the protonated N-terminus further from DPG would lead to β-hairpin formation. Despite funneling its entire population into a single peptide backbone structure, the assigned structure is not a β-hairpin, but a concatenated type II/type II' double β-turn that displaces the peptide backbone laterally by about 7.5 Å, but leaves the backbone oriented in its original direction.
Collapse
Affiliation(s)
- John T Lawler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | | | - Andrew F DeBlase
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Edwin L Sibert
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA. .,Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
2
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
3
|
Ishiuchi SI, Wako H, Xantheas SS, Fujii M. Probing the selectivity of Li + and Na + cations on noradrenaline at the molecular level. Faraday Discuss 2019; 217:396-413. [PMID: 31115392 DOI: 10.1039/c8fd00186c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although several mechanisms concerning the biological function of lithium salts, drugs having tranquilizing abilities, have been proposed so far, the key mechanism for its selectivity and subsequent interaction with neurotransmitters has not been established yet. We report ultraviolet (UV) and infrared (IR) spectra under ultra-cold conditions of Li+ and Na+ complexes of noradrenaline (NAd, norepinephrine), a neurotransmitter responsible for the body's response to stress or danger, in an effort to provide a molecular level understanding of the conformational changes of NAd due to its interactions with these two cations. A detailed analysis of the IR spectra, aided by quantum chemical calculations, reveals that the Li+-noradrenaline (NAd-Li+) complex forms only an extended structure, while the NAd-Na+ and protonated (NAd-H+) complexes form both folded and extended structures. This conformational preference of the NAd-Li+ complex is further explained by considering specific conformational distributions in solution. Our results clearly discern the unique structural motifs that NAd adopts when interacting with Li+ compared with other abundant cations in the human body (Na+) and can form the basis of a molecular level understanding of the selectivity of Li+ in biological systems.
Collapse
Affiliation(s)
- Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Hiromichi Wako
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352, USA. and Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
4
|
Asare SO, Lynn BC. A comparative study of the electrospray ionization response of β-O-4' lignin model compounds. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:540-548. [PMID: 31009548 DOI: 10.1002/jms.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Electrospray ionization mass spectrometry has recently become the technique of choice for rapid characterization of lignin degradation products. However, the fundamental question of the relationship between lignin structure and ionization efficiency has not been explored. In this work, we studied the electrospray ionization response of five structurally similar β-O-4' model lignin compounds using lithium cationization in the positive electrospray ionization mode. The studied compounds have the same β-O-4' backbone structure but differ at the α-position by increasing nonpolar side chains. Our results show a correlation between the ionization response and the length of the nonpolar side chain, with analytes having the longest side chain recording the highest ESI response in the full scan mode. Factors affecting the formation of analyte ions and analyte cluster ions were also studied. We have shown for the first time in this work that the introduction of a nonpolar group onto a β-O-4' lignin compound can increase the lithium cationization ESI response in the positive ion mode.
Collapse
Affiliation(s)
- Shardrack O Asare
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Roenitz KM, Hays BM, Powers CR, McCabe MN, Smith H, Widicus Weaver SL, Shipman ST. AC Stark Effect Observed in a Microwave-Millimeter/Submillimeter Wave Double-Resonance Experiment. J Phys Chem A 2018; 122:6321-6327. [PMID: 29993251 DOI: 10.1021/acs.jpca.8b02116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microwave-millimeter/submillimeter wave double-resonance spectroscopy has been developed with the use of technology typically employed in chirped pulse Fourier transform microwave spectroscopy and fast-sweep direct absorption (sub)millimeter-wave spectroscopy. This technique offers the high sensitivity provided by millimeter/submillimeter fast-sweep techniques with the rapid data acquisition offered by chirped pulse Fourier transform microwave spectrometers. Rather than detecting the movement of population as is observed in a traditional double-resonance experiment, instead we detected the splitting of spectral lines arising from the AC Stark effect. This new technique will prove invaluable when assigning complicated rotational spectra of complex molecules. The experimental design is presented along with the results from the double-resonance spectra of methanol as a proof-of-concept for this technique.
Collapse
Affiliation(s)
- Kevin M Roenitz
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Brian M Hays
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Carson R Powers
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Morgan N McCabe
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Houston Smith
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | | | - Steven T Shipman
- Division of Natural Sciences , New College of Florida , Sarasota , Florida 34243 , United States
| |
Collapse
|
6
|
Min A, Ahn A, Moon CJ, Lee JH, Seong YG, Kim SK, Choi MY. Conformational structures of jet-cooled acetaminophen-water clusters: a gas phase spectroscopic and computational study. Phys Chem Chem Phys 2017; 19:4840-4848. [PMID: 28134364 DOI: 10.1039/c6cp06863d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Jet-cooled acetaminophen (AAP)-water clusters, AAP-(H2O)1, were investigated by mass-selected resonant two-photon ionization (R2PI), ultraviolet-ultraviolet hole-burning (UV-UV HB), infrared-dip (IR-dip), and infrared-ultraviolet hole-burning (IR-UV HB) spectroscopy. Each syn- and anti-AAP rotamer has three distinctive binding sites (-OH, >CO, and >NH) for a water molecule, thus 6 different AAP-(H2O)1 conformers are expected to exist in the molecular beam. The origin bands of the AAP(OH)-(H2O)1 and AAP(CO)-(H2O)1 conformers (including their syn- and anti-conformers) in the R2PI spectrum are shifted to red and blue compared to those of the AAP monomer, respectively. These frequency shifts upon complexation between a water molecule and a specific binding site of AAP are also predicted by theoretical calculations. The spectral assignments of the origin bands in the R2PI spectra and the IR vibrational bands in the IR-dip spectra of the four lowest-energy conformers of AAP-(H2O)1, [syn- and anti-AAP(OH)-(H2O)1 and syn- and anti-AAP(CO)-(H2O)1], are aided by ab initio and time-dependent density functional theory (TDDFT) calculations. Further investigation of the IR-dip spectra has revealed a hydrogen-bonded NH stretching mode, supporting the presence of the syn-AAP(NH)-(H2O)1 conformer. Moreover, by employing IR-UV HB spectroscopy, we have reconfirmed the existence of the syn-AAP(NH)-(H2O)1 conformer, which happened to be buried underneath the broad background contributed by the AAP(OH)-(H2O)1 conformers. These observations have led us to conclude that all of the possible conformers of AAP-(H2O)1 have been found in this study.
Collapse
Affiliation(s)
- Ahreum Min
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Ahreum Ahn
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Cheol Joo Moon
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Ji Hoon Lee
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Yeon Guk Seong
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Myong Yong Choi
- Department of Chemistry (BK21+) and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
7
|
Xu S, Smith JET, Weber JM. Hydration of a Binding Site with Restricted Solvent Access: Solvatochromic Shift of the Electronic Spectrum of a Ruthenium Polypyridine Complex, One Molecule at a Time. J Phys Chem A 2016; 120:7650-7658. [PMID: 27627894 DOI: 10.1021/acs.jpca.6b07668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the electronic spectra of mass selected [(bpy)(tpy)Ru-OH2]2+·(H2O)n clusters (bpy = 2,2'-bipyridine, tpy =2,2':6'2″-terpyridine, n = 0-4) in the spectral region of their metal-to-ligand charge transfer bands. The spectra of the mono- and dihydrate clusters exhibit partially resolved individual electronic transitions. The water network forming at the aqua ligand leads to a rapid solvatochromic shift of the peak of the band envelope: addition of only four solvent water molecules can recover 78% of the solvatochromic shift in bulk solution. The sequential shift of the band shows a clear change in behavior with the closing of the first hydration shell. We compare our experimental data to density function theory (DFT) calculations for the ground and excited states.
Collapse
Affiliation(s)
- Shuang Xu
- JILA and Department of Physics, University of Colorado , 440 UCB, Boulder, Colorado 80309-0440, United States
| | - James E T Smith
- JILA and Department of Chemistry and Biochemistry, University of Colorado , 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J Mathias Weber
- JILA and Department of Chemistry and Biochemistry, University of Colorado , 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
8
|
DeBlase AF, Dziekonski ET, Hopkins JR, Burke NL, Sheng H, Kenttämaa HI, McLuckey SA, Zwier TS. Alkali Cation Chelation in Cold β-O-4 Tetralignol Complexes. J Phys Chem A 2016; 120:7152-66. [PMID: 27539533 DOI: 10.1021/acs.jpca.6b06942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ cold ion spectroscopy (UV action and IR-UV double resonance) in the gas phase to unravel the qualitative structural elements of G-type alkali metal cationized (X = Li(+), Na(+), K(+)) tetralignol complexes connected by β-O-4 linkages. The conformation-specific spectroscopy reveals a variety of conformers, each containing distinct infrared spectra in the OH stretching region, building on recent studies of the neutral and alkali metal cationized β-O-4 dimers. The alkali metal ion is discovered to bind in penta-coordinate pockets to ether and OH groups involving at least two of the three β-O-4 linkages. Different binding sites are distinguished from one another by the number of M(+)···OH···O interactions present in the binding pocket, leading to characteristic IR transitions appearing below 3550 cm(-1). This interaction is mitigated in the major conformer of the K(+) adduct, demonstrating a clear impact of the size of the charge center on the three-dimensional structure of the tetramer.
Collapse
Affiliation(s)
- Andrew F DeBlase
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| | - Eric T Dziekonski
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| | - John R Hopkins
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| | - Nicole L Burke
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| | - Huaming Sheng
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| | - Timothy S Zwier
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
9
|
Xu S, Weber JM. Absorption Spectrum of a Ru(II)-Aquo Complex in Vacuo: Resolving Individual Charge-Transfer Transitions. J Phys Chem A 2015; 119:11509-13. [DOI: 10.1021/acs.jpca.5b10488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shuang Xu
- JILA, University of Colorado, 440 UCB, Boulder, Colorado 80309, United States
- Department
of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - J. Mathias Weber
- JILA, University of Colorado, 440 UCB, Boulder, Colorado 80309, United States
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|