1
|
Kuraoka T, Goto S, Kanno M, Díaz-Tendero S, Reino-González J, Trinter F, Pier A, Sommerlad L, Melzer N, McGinnis OD, Kruse J, Wenzel T, Jahnke T, Xue H, Kishimoto N, Yoshikawa K, Tamura Y, Ota F, Hatada K, Ueda K, Martín F. Tracing Photoinduced Hydrogen Migration in Alcohol Dications from Time-Resolved Molecular-Frame Photoelectron Angular Distributions. J Phys Chem A 2024; 128:1241-1249. [PMID: 38324399 PMCID: PMC10895665 DOI: 10.1021/acs.jpca.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.
Collapse
Affiliation(s)
- T. Kuraoka
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - S. Goto
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - M. Kanno
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - S. Díaz-Tendero
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - J. Reino-González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| | - F. Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - A. Pier
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - L. Sommerlad
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - N. Melzer
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - O. D. McGinnis
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - J. Kruse
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Wenzel
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Jahnke
- Max-Planck-Institut
für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- European
XFEL, Holzkoppel
4, Schenefeld 22869, Germany
| | - H. Xue
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - N. Kishimoto
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - K. Yoshikawa
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Y. Tamura
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Ota
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Hatada
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Ueda
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - F. Martín
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
2
|
Krekic S, Mero M, Kuhl M, Balasubramanian K, Dér A, Heiner Z. Photoactive Yellow Protein Adsorption at Hydrated Polyethyleneimine and Poly-l-Glutamic Acid Interfaces. Molecules 2023; 28:molecules28104077. [PMID: 37241818 DOI: 10.3390/molecules28104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chiral and achiral vibrational sum-frequency generation (VSFG) spectroscopy was performed in the 1400-1700 and 2800-3800 cm-1 range to study the interfacial structure of photoactive yellow protein (PYP) adsorbed on polyethyleneimine (PEI) and poly-l-glutamic acid (PGA) surfaces. Nanometer-thick polyelectrolyte layers served as the substrate for PYP adsorption, with 6.5-pair layers providing the most homogeneous surfaces. When the topmost material was PGA, it acquired a random coil structure with a small number of β2-fibrils. Upon adsorption on oppositely charged surfaces, PYP yielded similar achiral spectra. However, the VSFG signal intensity increased for PGA surfaces with a concomitant redshift of the chiral Cα-H and N-H stretching bands, suggesting increased adsorption for PGA compared to PEI. At low wavenumbers, both the backbone and the side chains of PYP induced drastic changes to all measured chiral and achiral VSFG spectra. Decreasing ambient humidity led to the loss of tertiary structure with a re-orientation of α-helixes, evidenced by a strongly blue-shifted chiral amide I band of the β-sheet structure with a shoulder at 1654 cm-1. Our observations indicate that chiral VSFG spectroscopy is not only capable of determining the main type of secondary structure of PYP, i.e., β-scaffold, but is also sensitive to tertiary protein structure.
Collapse
Affiliation(s)
- Szilvia Krekic
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Mark Mero
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Michel Kuhl
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Kannan Balasubramanian
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - András Dér
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
| | - Zsuzsanna Heiner
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
3
|
Chen X, Xing L, Li X, Chen N, Liu L, Wang J, Zhou X, Liu S. Manganese Ion-Induced Amyloid Fibrillation Kinetics of Hen Egg White-Lysozyme in Thermal and Acidic Conditions. ACS OMEGA 2023; 8:16439-16449. [PMID: 37179629 PMCID: PMC10173442 DOI: 10.1021/acsomega.3c01531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
As manganese ions (Mn2+) are identified as an environmental risk factor for neurodegenerative diseases, uncovering their action mechanism on protein amyloid fibril formation is crucial for related disease treatments. Herein, we performed a combined study of Raman spectroscopy, atomic force microscopy (AFM), thioflavin T (ThT) fluorescence, and UV-vis absorption spectroscopy assays, in which the distinctive effect of Mn2+ on the amyloid fibrillation kinetics of hen egg white-lysozyme (HEWL) was clarified at the molecular level. With thermal and acid treatments, the unfolding of protein tertiary structures is efficiently accelerated by Mn2+ to form oligomers, as indicated by two Raman markers for the Trp residues on protein side chains: the FWHM at 759 cm-1 and the I1340/I1360 ratio. Meanwhile, the inconsistent evolutionary kinetics of the two indicators, as well as AFM images and UV-vis absorption spectroscopy assays, validate the tendency of Mn2+ toward the formation of amorphous aggregates instead of amyloid fibrils. Moreover, Mn2+ plays an accelerator role in the secondary structure transition from α-helix to organized β-sheet structures, as indicated by the N-Cα-C intensity at 933 cm-1 and the amide I position of Raman spectroscopy and ThT fluorescence assays. Notably, the more significant promotion effect of Mn2+ on the formation of amorphous aggregates provides credible clues to understand the fact that excess exposure to manganese is associated with neurological diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Lei Xing
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Xinfei Li
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Liming Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Jionghan Wang
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Shilin Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Wang Z, Dan G, Zhang R, Ma L, Lin K. Coupling and decoupling CH stretching vibration of methylene and methine in serine conformers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121829. [PMID: 36116413 DOI: 10.1016/j.saa.2022.121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In the molecules of the early Earth, as a building block of proteins, serine has enormous chemical and biological significance. The vibrational spectroscopy of CH bonds plays an important role in probing biomolecules. Whether the CH stretching vibration bands can be accurately assigned will affect the accuracy of the detection results. In this study, we employed the MP2/cc-pVTZ method to calculate the Raman spectra of 85 serine conformers and the corresponding species with deuterium in the CH stretching region from 2800 cm-1 to 3050 cm-1 and then recorded the movement of each atom and the dihedral angles, CH bond lengths, and Raman shifts before and after deuterium for each conformer. We directly observed that the stretching vibration of two CH bonds in the methylene group decoupled to vibrate independently in some conformers, and the stretching vibrations of methylene and methine could be strongly coupled in some conformers. Those results are inconsistent with the traditional understanding, which is generally believed that the CH stretching vibrations are mutually coupled in a single methyl or methylene group to generate symmetric and antisymmetric stretching vibrations, while for different methyl, methylene or methine groups, the CH stretching vibrations cannot be mutually coupled. Through the statistical analysis between several factors, we found that the level of local coupling in serine methylene was correlated with the bond length difference between two CH bonds. Our work provides a new understanding of the vibrational modes of hydrocarbon bonds and the coupling between different hydrocarbon groups.
Collapse
Affiliation(s)
- Zhiqiang Wang
- School of Physics, Xidian University, Xi'an 710071, PR China
| | - Guangyu Dan
- School of Physics, Xidian University, Xi'an 710071, PR China
| | - Ruiting Zhang
- School of Physics, Xidian University, Xi'an 710071, PR China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an 710071, PR China
| | - Ke Lin
- School of Physics, Xidian University, Xi'an 710071, PR China; Interdisciplinary Research Center of Smart Sensor, Xidian University, Xi'an 710071, PR China.
| |
Collapse
|
5
|
Conte R, Nandi A, Qu C, Yu Q, Houston PL, Bowman JM. Semiclassical and VSCF/VCI Calculations of the Vibrational Energies of trans- and gauche-Ethanol Using a CCSD(T) Potential Energy Surface. J Phys Chem A 2022; 126:7709-7718. [PMID: 36240438 DOI: 10.1021/acs.jpca.2c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recent full-dimensional Δ-Machine learning potential energy surface (PES) for ethanol is employed in semiclassical and vibrational self-consistent field (VSCF) and virtual-state configuration interaction (VCI) calculations, using MULTIMODE, to determine the anharmonic vibrational frequencies of vibration for both the trans and gauche conformers of ethanol. Both semiclassical and VSCF/VCI energies agree well with the experimental data. We find significant mixing between the VSCF basis states due to Fermi resonances between bending and stretching modes. The same effects are also accurately described by the full-dimensional semiclassical calculations. These are the first high-level anharmonic calculations using a PES, in particular a "gold-standard" CCSD(T) one.
Collapse
Affiliation(s)
- Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chen Qu
- Independent Researcher, Toronto, Ontario M9B0E3, Canada
| | - Qi Yu
- Department of Chemistry Yale University, New Haven, Connecticut 06520, United States
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Nandi A, Conte R, Qu C, Houston PL, Yu Q, Bowman JM. Quantum Calculations on a New CCSD(T) Machine-Learned Potential Energy Surface Reveal the Leaky Nature of Gas-Phase Trans and Gauche Ethanol Conformers. J Chem Theory Comput 2022; 18:5527-5538. [PMID: 35951990 PMCID: PMC9476654 DOI: 10.1021/acs.jctc.2c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Ethanol is a molecule of fundamental interest in combustion,
astrochemistry,
and condensed phase as a solvent. It is characterized by two methyl
rotors and trans (anti) and gauche conformers, which are known to be very close in energy.
Here we show that based on rigorous quantum calculations of the vibrational
zero-point state, using a new ab initio potential
energy surface (PES), the ground state resembles the trans conformer, but substantial delocalization to the gauche conformer is present. This explains experimental issues about identification
and isolation of the two conformers. This “leak” effect
is partially quenched when deuterating the OH group, which further
demonstrates the need for a quantum mechanical approach. Diffusion
Monte Carlo and full-dimensional semiclassical dynamics calculations
are employed. The new PES is obtained by means of a Δ-machine
learning approach starting from a pre-existing low level density functional
theory surface. This surface is brought to the CCSD(T) level of theory
using a relatively small number of ab initio CCSD(T)
energies. Agreement between the corrected PES and direct ab
initio results for standard tests is excellent. One- and
two-dimensional discrete variable representation calculations focusing
on the trans–gauche torsional
motion are also reported, in reasonable agreement with experiment.
Collapse
Affiliation(s)
- Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Chen Qu
- Independent Researcher, Toronto 66777, Canada
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Unique Evolution of the Local Structure of 1-Butyl-3-methylimidazolium Iodide and Alcohol Mixtures: Formation of Triiodide Without the External Addition of Iodine. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-021-01135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Katsyuba SA, Gerasimova TP, Spicher S, Bohle F, Grimme S. Computer-aided simulation of infrared spectra of ethanol conformations in gas, liquid and in CCl 4 solution. J Comput Chem 2022; 43:279-288. [PMID: 34846764 DOI: 10.1002/jcc.26788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
The recently developed efficient protocol combining implicit and explicit, accurate quantum-mechanical modeling of the condensed state (Katsyuba et al., J. Chem. Phys. 155, 024507 [2021]) is used to describe the IR spectra of liquid ethanol and its solutions in CCl4 . The relative abundance of the anti and gauche conformers of ethanol is shown to increase from ~40:60 in the gas phase to ~55:45 in the liquid phase. In spite of a moderate impact of media effects on the conformational composition of the liquid, the solvent strongly influences vibrational frequencies, IR intensities, and normal modes of each conformer, producing qualitatively different spectra compared to the gas phase and CCl4 solution. Further, these solvent effects affecting IR frequencies and intensities depend not only on the conformation of the solvated molecule but also on the solvating species. Nevertheless, vibrational frequencies of anti and gauche conformers of liquid ethanol and its several isotopomers practically coincide with each other. Convenient liquid-state conformational markers in the fingerprint region of IR spectra are revealed for the hydroxyl-deuterated species: CH3 CH2 OD, CH3 CHDOD, CH3 CD2 OD, and CD3 CD2 OD.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Kazan, Russia
| | - Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Kazan, Russia
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| |
Collapse
|
9
|
Može M, Vajc V, Zupančič M, Golobič I. Hydrophilic and Hydrophobic Nanostructured Copper Surfaces for Efficient Pool Boiling Heat Transfer with Water, Water/Butanol Mixtures and Novec 649. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3216. [PMID: 34947565 PMCID: PMC8707367 DOI: 10.3390/nano11123216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Increasing heat dissipation requirements of small and miniature devices demands advanced cooling methods, such as application of immersion cooling via boiling heat transfer. In this study, functionalized copper surfaces for enhanced heat transfer are developed and evaluated. Samples are functionalized using a chemical oxidation treatment with subsequent hydrophobization of selected surfaces with a fluorinated silane. Pool boiling tests with water, water/1-butanol mixture with self-rewetting properties and a novel dielectric fluid with low GWP (Novec™ 649) are conducted to evaluate the boiling performance of individual surfaces. The results show that hydrophobized functionalized surfaces covered by microcavities with diameters between 40 nm and 2 µm exhibit increased heat transfer coefficient (HTC; enhancements up to 120%) and critical heat flux (CHF; enhancements up to 64%) values in comparison with the untreated reference surface, complemented by favorable fabrication repeatability. Positive surface stability is observed in contact with water, while both the self-rewetting fluids and Novec™ 649 gradually degrade the boiling performance and in some cases also the surface itself. The use of water/1-butanol mixtures in particular results in surface chemistry and morphology changes, as observed using SEM imaging and Raman spectroscopy. This seems to be neglected in the available literature and should be focused on in further studies.
Collapse
Affiliation(s)
- Matic Može
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia;
| | - Viktor Vajc
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00 Prague 6, Czech Republic;
| | - Matevž Zupančič
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia;
| | - Iztok Golobič
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Fan W, Chen XD, Liu LM, Chen N, Zhou XG, Zhang ZH, Liu SL. Concentration-dependent influence of silver nanoparticles on amyloid fibrillation kinetics of hen egg-white lysozyme. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-dong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Li-ming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-guo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-hong Zhang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Shi-lin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Yadav S, Banik S, Prasad MD. Understanding of the C-H stretch region of infra-red spectroscopy: an analysis of the final state wavefunctions. Phys Chem Chem Phys 2021; 23:9176-9188. [PMID: 33885051 DOI: 10.1039/d0cp01157f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of the wavefunctions associated with the final states in the CH stretching region of several medium sized molecules is analysed. The number of optically bright transitions is much larger than the number of CH oscillators present in the molecule, and they are spread over a range of about 300 cm-1. Several of them are clustered together within about 5 cm-1 with near equal intensities. The final states of all these transitions are superpositions of multiple zeroth order states. In almost all of such superpositions, no single zeroth order state has more than 50% weight. Several multiquantum states, with three to four quanta of excitation dominate the final states, with the CH chromophore contributing only a small weightage. Thus the band structure of the CH stretch region is due to several optically bright transitions whose final states are superpositions of low frequency multiquantum states with the CH chromophore contributing only a small weight to make them spectroscopically active.
Collapse
Affiliation(s)
- Swati Yadav
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| | | | | |
Collapse
|
12
|
Comparing vibrational sum frequency generation responses at fused silica and fluorite/liquid ethanol interfaces. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Beć KB, Grabska J, Huck CW, Czarnecki MA. Effect of conformational isomerism on NIR spectra of ethanol isotopologues. Spectroscopic and anharmonic DFT study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
An insight into the filling of the nanoheterogeneous structures of1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide by primary alcohols. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Ferro-Costas D, Fernández-Ramos A. A Combined Systematic-Stochastic Algorithm for the Conformational Search in Flexible Acyclic Molecules. Front Chem 2020; 8:16. [PMID: 32047738 PMCID: PMC6997476 DOI: 10.3389/fchem.2020.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
We propose an algorithm that is a combination of systematic variation of the torsions and Monte Carlo (or stochastic) search. It starts with a trial geometry in internal coordinates and with a set of preconditioned torsional angles, i.e., torsional angles at which minima are expected according to the chemical knowledge. Firstly, the optimization of those preconditioned geometries is carried out at a low electronic structure level, generating an initial set of conformers. Secondly, random points in the torsional space are generated outside the “area of influence” of the previously optimized minima (i.e., outside a hypercube about each minima). These random points are used to build the trial structure, which is optimized by an electronic structure software. The optimized structure may correspond to a new conformer (which would be stored) or to an already existing one. Initial torsional angles (and also final ones if a new conformer is found) are stored to prevent visiting the same region of the torsional space twice. The stochastic search can be repeated as many times as desired. Finally, the low-level geometries are recovered and used as the starting point for the high-level optimizations. The algorithm has been employed in the calculation of multi-structural quasi harmonic and multi-structural torsional anharmonic partition functions for a series of alcohols ranging from n-propanol to n-heptanol. It was also tested for the amino acid L-serine.
Collapse
Affiliation(s)
- David Ferro-Costas
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Fernández-Ramos
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Yoshimura Y, Mori T, Kaneko K, Hattori S, Takekiyo T, Masuda Y, Shimizu A. Raman investigation on the local structure of alcohols in 1-butyl-3-methylimidazolium tetrafluoroborate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Wu W, Klein T, Kerscher M, Rausch MH, Koller TM, Giraudet C, Fröba AP. Diffusivities in 1-Alcohols Containing Dissolved H 2, He, N 2, CO, or CO 2 Close to Infinite Dilution. J Phys Chem B 2019; 123:8777-8790. [PMID: 31536354 DOI: 10.1021/acs.jpcb.9b06211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of the strength of intermolecular interactions on mass diffusive processes remains poorly understood for mixtures of associative liquids with dissolved gases. For contributing to a fundamental understanding of the interplay between liquid structures and mass diffusivities in such systems, dynamic light scattering, Raman spectroscopy, and molecular dynamics simulations were used in this work. As model systems, binary mixtures consisting of the gases hydrogen, helium, nitrogen, carbon monoxide, or carbon dioxide dissolved in ethanol, 1-hexanol, or 1-decanol were selected. Experiments and simulations were performed at macroscopic thermodynamic equilibrium close to infinite dilution of solute for temperatures between 303 and 423 K. The Fick diffusion coefficients and self-diffusivities of the gas solutes increase with increasing temperature, decreasing alkyl chain length of the 1-alcohols, and decreasing molar mass of the solutes except for helium and hydrogen showing the opposite behavior. The analysis of the liquid structure of the mixtures showed that the fraction of hydrogen-bonded alcohol molecules decreases with increasing alkyl chain length and temperature. From the obtained structure-property relationships, a new correlation was developed to predict mass diffusivities in binary mixtures consisting of n-alkanes or 1-alcohols with dissolved gases close to infinite dilution within 10% on average.
Collapse
Affiliation(s)
- Wenchang Wu
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Tobias Klein
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Manuel Kerscher
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Michael H Rausch
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Thomas M Koller
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Cédric Giraudet
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Andreas P Fröba
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| |
Collapse
|
18
|
Fan W, Xing L, Chen N, Zhou X, Yu Y, Liu S. Promotion Effect of Succinimide on Amyloid Fibrillation of Hen Egg-White Lysozyme. J Phys Chem B 2019; 123:8057-8064. [DOI: 10.1021/acs.jpcb.9b06958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xing
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanqin Yu
- Department of Physics, Anhui University, Hefei, Anhui 230601, China
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Li J, Zhang S, Shao D, Yang Z, Zhang W. Effect of auxiliary group for p-type organic dyes in NiO-based dye-sensitized solar cells: The first principal study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:192-196. [PMID: 29241054 DOI: 10.1016/j.saa.2017.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Auxiliary acceptor groups play a crucial role in D-A-π-A structured organic dyes. In this paper, we designed three D-A-π-A structured organic molecules based on the prototype dye QT-1, named ME18-ME20, and further investigated their electronic and optical properties with density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated results indicate that the scope and intensity of dyes' absorption spectra have some outstanding changes by inserting auxiliary groups. ME20 has not only 152nm redshifts to long wave orientation, but also 78% increased oscillator strength compared to QT-1, and its absorption spectrum broadens region even up to 1400nm. Then, we studied the reason that the effect of the introduced different auxiliary acceptor groups in these dyes through their ground states geometries and energy levels, electron transfer and recombination rate.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Shijie Zhang
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, PR China
| | - Di Shao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China
| | - Zhenqing Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China; Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
| | - Wansong Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
| |
Collapse
|
21
|
Deng GH, Shen Y, He Z, Zhang Q, Jiang B, Yuan K, Wu G, Yang X. The molecular rotational motion of liquid ethanol studied by ultrafast time resolved infrared spectroscopy. Phys Chem Chem Phys 2018; 19:4345-4351. [PMID: 28119958 DOI: 10.1039/c6cp07380h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, ultrafast time-resolved infrared spectroscopy is used to study the rotational motion of the liquid ethanol molecule. The results showed that the methyl, methylene, and CO groups have close rotational relaxation times, 1-2 ps, and the rotational relaxation time of the hydroxyl group (-OH) is 8.1 ps. The fast motion of the methyl, methylene and CO groups, and the slow motion of the hydroxyl group suggested that the ethanol molecules experience anisotropic motion in the liquid phase. The slow motion of the hydroxyl group also shows that the hydrogen bonded network could be considered as an effective molecule. The experimental data provided in this report are helpful for theorists to build models to understand the molecular rotational motion of liquid ethanol. Furthermore, our experimental method, which can provide more data concerning the rotational motion of sub groups of liquid molecules, will be useful for understanding the complicated molecular motion in the liquid phase.
Collapse
Affiliation(s)
- Gang-Hua Deng
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yuneng Shen
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and Tongji Zhejiang College, Jiaxing 314000, Zhejiang, China
| | - Zhigang He
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Qiang Zhang
- Institute of Chemistry & Chemical Engineering, Bohai University, Jinzhou 121000, China
| | - Bo Jiang
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Kaijun Yuan
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guorong Wu
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xueming Yang
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
22
|
Wang L, Ishiyama T, Morita A. Theoretical Investigation of C–H Vibrational Spectroscopy. 1. Modeling of Methyl and Methylene Groups of Ethanol with Different Conformers. J Phys Chem A 2017; 121:6687-6700. [DOI: 10.1021/acs.jpca.7b05320] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lin Wang
- Department
of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Tatsuya Ishiyama
- Department
of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Akihiro Morita
- Department
of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
23
|
Wang YX, Lin K, Chen L, Zhou XG, Liu SL. Intermolecular Interactions in Self-Assembly Process of Sodium Dodecyl Sulfate by Vertically Polarized Raman Spectra. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1704081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Wang L, Ishiyama T, Morita A. Theoretical Investigation of C-H Vibrational Spectroscopy. 2. Unified Assignment Method of IR, Raman, and Sum Frequency Generation Spectra of Ethanol. J Phys Chem A 2017; 121:6701-6712. [PMID: 28799753 DOI: 10.1021/acs.jpca.7b05378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the flexible and polarizable model in the preceding paper, we performed comprehensive analysis of C-H stretching vibrations of ethanol and partially deuterated ones by molecular dynamics (MD) simulation. The overlapping band structures of the C-H stretching region including (i) methyl and methylene, (ii) the number of modes with Fermi resonances, and (iii) different trans/gauche conformers are disentangled by various analysis methods, such as isotope exchange, empirical potential parameter shift analysis, and separate calculations of conformers. The present analysis with MD simulation revealed unified assignment of infrared, Raman, and sum frequency generation (SFG) spectra. The analysis confirmed that the different conformers have significant influence on the assignment of CH2 vibrations. Band components and their signs in the imaginary χ(2) spectra of SFG under various polarizations are also understood from the common assignment with the infrared and Raman spectra.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University , Kyoto 615-8520, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University , Kyoto 615-8520, Japan
| |
Collapse
|
25
|
Frustration of crystallisation by a liquid-crystal phase. Sci Rep 2017; 7:42439. [PMID: 28209972 PMCID: PMC5314399 DOI: 10.1038/srep42439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Frustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being “in between” the liquid and the crystalline state. In contrast, the liquid-crystal phase in supercooled n-butanol is found to inhibit transformation to the crystal. The observed frustrated phase is a template for similar ordering in other liquids and likely to play an important role in supercooling and liquid-liquid transitions in many other molecular liquids.
Collapse
|
26
|
Zhou Q, Zhou M, Wei Y, Zhou X, Liu S, Zhang S, Zhang B. Solvent effects on the triplet–triplet annihilation upconversion of diiodo-Bodipy and perylene. Phys Chem Chem Phys 2017; 19:1516-1525. [DOI: 10.1039/c6cp06897a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvent effect plays a very important role in triplet–triplet annihilation (TTA) upconversion system and the upconversion efficiency is controlled by different solvent viscosity and polarity.
Collapse
Affiliation(s)
- Qiaohui Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Miaomiao Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Yaxiong Wei
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
- Synergetic Innovation Center of Quantum Information & Quantum Physics
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
- Synergetic Innovation Center of Quantum Information & Quantum Physics
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| |
Collapse
|
27
|
Xing L, Lin K, Zhou X, Liu S, Luo Y. Multistate Mechanism of Lysozyme Denaturation through Synchronous Analysis of Raman Spectra. J Phys Chem B 2016; 120:10660-10667. [DOI: 10.1021/acs.jpcb.6b07900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Ke Lin
- School
of Physics and Optoelectronic Engineering, Xidian University, Xi’an, Shanxi 710071, China
| | | | | | | |
Collapse
|
28
|
Tang CQ, Lin K, Zhou XG, Liu SL. In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1511240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Yu Y, Wang Y, Hu N, Lin K, Zhou X, Liu S. Cβ–H stretching vibration as a new probe for conformation of n-propanol in gaseous and liquid states. Phys Chem Chem Phys 2016; 18:10563-72. [DOI: 10.1039/c6cp00244g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The CH2 symmetric stretching mode at the β-carbon position can be used as a new probe for the five conformations of n-propanol.
Collapse
Affiliation(s)
- Yuanqin Yu
- School of Physics and Material Science
- Anhui University
- Hefei
- China
| | - Yuxi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Naiyin Hu
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Ke Lin
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|