1
|
Simon M, Matthews L, Talmon Y. Lipid/polyelectrolyte complexes - effects of the polyelectrolyte architecture on the self-assembled structures. SOFT MATTER 2024; 20:6390-6398. [PMID: 39082099 DOI: 10.1039/d4sm00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Self-assembly is a key process in forming biological materials. Especially the interaction between amphiphiles and polyelectrolytes has been widely investigated in recent years due to their potential application in industry and medicine, with a special focus on gene therapy. Accordingly, we investigated the formation of lipoplexes by mixing the cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammonium-propane (chloride salt)) with different anionic polyelectrolytes (PE), such as NaPA (sodium polyacrylate), CMC (sodium carboxymethyl cellulose) with different degrees of substitution (DS, namely, different charge density), PSS (sodium polystyrenesulfonate) and DNA (deoxyribonucleic acid sodium salt). The goal of this project was to explore the influence of different system parameters, such as the charge ratio, CR = [+]/[-] = [DOTAP]/[PE], the charge density of the PE, or the type of PE on the morphology of the formed complexes. The investigation of these systems was performed by cryo-transmission electron microscopy (cryo-TEM), and with small-angle X-ray scattering (SAXS), to support our findings. In our experiments, we obtained a comprehensive picture of the formed lipoplexes, and how their structure depends on the different properties of the employed polyelectrolyte. Although the basic nanostructure of all complexes is lamellar, their detailed morphology depends strongly on parameters of the PE, e.g., the persistence length, charge density, or the polymer backbone. Understanding these specific interactions will allow the formation of more stable and optimized complexes as they are needed for drug or genetic material delivery.
Collapse
Affiliation(s)
- Miriam Simon
- Dept. of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Yeshayahu Talmon
- Dept. of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
2
|
Sane M, Dighe V, Patil R, Hassan PA, Gawali S, Patravale V. Bivalirudin and sirolimus co-eluting coronary stent: Potential strategy for the prevention of stent thrombosis and restenosis. Int J Pharm 2021; 600:120403. [PMID: 33711467 DOI: 10.1016/j.ijpharm.2021.120403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022]
Abstract
Localized drug delivery with sustained elution characteristics from nanocarrier coated stents represents a viable therapeutic approach to circumvent concerns related to coronary stent therapy. We fabricated a Sirolimus (SRL) and Bivalirudin (BIV) releasing nanoparticles (NPs) coated stent for concurrent mitigation of vascular restenosis and acute stent thrombosis. SRL NPs were prepared by nanoprecipitation method whereas the BIV vesicles were generated using hydrophobic ion pair approach followed by micellization phenomenon. MTT assay and confocal microscopic analysis indicated superior anti-proliferative activity and higher cellular uptake of SRL NPs into human coronary artery smooth muscle cells, respectively. DSC and ATR-FTIR techniques confirmed the formation of complex between BIV and phosphatidylglycerol via some weak physical interactions. More than 2 fold rise in log P value was obtained for DSPG-BIV at 3:1 M ratio compared with native BIV solution. The SAXS analysis indicated formation of oligolamellar vesicles of DSPG-BIV complex which was preferentially entrapped into lipophilic lamellae of vesicles. APTT, PT, and TT tests revealed that the BIV vesicles caused significant prolongation of clotting time compared to native BIV solution. The SEM analysis showed uniform and defect free stent coating. In vitro release study demonstrated that SRL and BIV were eluted in a sustained manner from coated stents.
Collapse
Affiliation(s)
- Mangesh Sane
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400 019, Maharashtra, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai 400 012, Maharashtra, India
| | - Rucha Patil
- Department of Haemostasis & Thrombosis, National Institute of Immunohaematology, Indian Council of Medical Research, 13th Floor, New Multi-storeyed Building, KEM Hospital Campus, Parel, Mumbai 400 012, India
| | | | - Santosh Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
3
|
Naz M, Ali J, Fatima S, Tabassum S, Nawaz S, Badshah A, Dou H. Cationic surfactants based on ferrocene containing thiourea: Synthesis, self-aggregation, and antioxidant properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Redox-controlled reversible micelles transition and lyotropic liquid-crystalline behavior of novel polymerizable ferrocenyl surfactants. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Alkan A, Wald S, Louage B, De Geest BG, Landfester K, Wurm FR. Amphiphilic Ferrocene-Containing PEG Block Copolymers as Micellar Nanocarriers and Smart Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:272-279. [PMID: 27958755 DOI: 10.1021/acs.langmuir.6b03917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (Mn) between 3600 and 8600 g mol-1 and narrow molecular weight distributions (Mw/Mn = 1.04-1.10) were investigated via 1H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of coatings and the recovery of surfactants.
Collapse
Affiliation(s)
- Arda Alkan
- Max-Planck-Institut für Polymerforschung (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| | - Sarah Wald
- Max-Planck-Institut für Polymerforschung (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| | - Benoit Louage
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max-Planck-Institut für Polymerforschung (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
6
|
Rane LB, Kate AN, Ramteke SN, Shravage BV, Kulkarni PP, Kumbhar AA. Fluorescent zinc(ii) complexes for gene delivery and simultaneous monitoring of protein expression. Dalton Trans 2016; 45:16984-16996. [PMID: 27711702 DOI: 10.1039/c6dt02871c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two new zinc(ii) complexes, [Zn(l-His)(NIP)]+(1) and [Zn(acac)2(NIP)](2) (where NIP is 2-(naphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, acac = acetyl acetone), have been synthesized and characterized by elemental analysis, UV-vis, fluorescence, IR, 1H NMR and electron spray ionization mass spectroscopies. Gel retardation assay, atomic force microscopy and dynamic light scattering studies show that 1 and 2 can induce the condensation of circular plasmid pBR322 DNA into nanometer size particles under ambient conditions. Treatment of 2 with 5 mM EDTA restored 30% of the supercoiled form of DNA, revealing partial reversibility of DNA condensation. The in vitro transfection experiment demonstrates that the complexes can be used to deliver pCMV-tdTomato-N1 plasmid which expresses red fluorescent protein. The confocal studies show that the fluorescent nature of complexes is advantageous for visualizing the intracellular delivery of metal complexes as well as transfection efficiency using two distinct emission windows.
Collapse
Affiliation(s)
- Lalita B Rane
- Department of Chemistry, Savitribai Phule Pune University, Pune - 411007, India.
| | | | | | | | | | | |
Collapse
|
7
|
Ram-On M, Cohen Y, Talmon Y. Effect of Polyelectrolyte Stiffness and Solution pH on the Nanostructure of Complexes Formed by Cationic Amphiphiles and Negatively Charged Polyelectrolytes. J Phys Chem B 2016; 120:5907-15. [DOI: 10.1021/acs.jpcb.6b01138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maor Ram-On
- Department of Chemical Engineering
and The Russell Berrie Nanotechnology Institute (RBNI), Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Yachin Cohen
- Department of Chemical Engineering
and The Russell Berrie Nanotechnology Institute (RBNI), Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering
and The Russell Berrie Nanotechnology Institute (RBNI), Technion − Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Kumar K, Barrán-Berdón AL, Datta S, Muñoz-Úbeda M, Aicart-Ramos C, Kondaiah P, Junquera E, Bhattacharya S, Aicart E. A delocalizable cationic headgroup together with an oligo-oxyethylene spacer in gemini cationic lipids improves their biological activity as vectors of plasmid DNA. J Mater Chem B 2015; 3:1495-1506. [DOI: 10.1039/c4tb01948b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipoplexes of plasmid DNA and mixed liposomes, with a gemini cationic lipid of the 1,2-bis(hexadecyl imidazolium) oxyethylene series, improves their biological activity.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Organic Chemistry
- Indian Institute of Science
- 560012 Bangalore
- India
| | - Ana L. Barrán-Berdón
- Departments of Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Sougata Datta
- Department of Organic Chemistry
- Indian Institute of Science
- 560012 Bangalore
- India
| | - Mónica Muñoz-Úbeda
- Departments of Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Paturu Kondaiah
- Molecular Reproduction Development and Genetics
- Indian Institute of Science
- 560012 Bangalore
- India
| | - Elena Junquera
- Departments of Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | | | - Emilio Aicart
- Departments of Grupo de Química Coloidal y Supramolecular
- Departamento de Química Física I
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| |
Collapse
|
9
|
Vulugundam G, Kumar K, Kondaiah P, Bhattacharya S. Efficacious redox-responsive gene delivery in serum by ferrocenylated monomeric and dimeric cationic cholesterols. Org Biomol Chem 2015; 13:4310-20. [DOI: 10.1039/c4ob02513j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New redox-active monomeric and dimeric ferrocenylated cationic cholesterols for gene transfection.
Collapse
Affiliation(s)
| | - Krishan Kumar
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | - Paturu Kondaiah
- Department of Molecular Reproduction Development and Genetics
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
10
|
|
11
|
Vesicle formation between single-chained cationic surfactant and plasmid DNA and its application in cell transfection. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3352-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Muller JPE, Aytar BS, Kondo Y, Lynn DM, Abbott NL. Influence of the Phase State of Self-Assembling Redox Mediators on their Electrochemical Activity. AIChE J 2014; 60:1381-1392. [PMID: 24882870 DOI: 10.1002/aic.14402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Self-assembling redox mediators have the potential to be broadly useful in a range of interfacial electrochemical contexts because the oxidation state and state of assembly of the mediator are closely coupled. In this paper, we report an investigation of the self-assembly of single- and double-tailed ferrocenyl amphiphiles (FTMA and BFDMA, respectively) at the surfaces of Pt electrodes and the impact of the dynamic assembled state of the amphiphiles on their rate of oxidation. We conclude that frozen aggregates of BFDMA adsorb to the surfaces of the Pt electrodes, and that slow dynamics of reorganization BFDMA within these aggregates limits the rate of electrooxidation of BFDMA. In contrast, FTMA, while forming assemblies on the surfaces of Pt electrodes, is characterized by fast reorganization dynamics and a corresponding rate of oxidation that is an order of magnitude greater than BFDMA.
Collapse
Affiliation(s)
- John P. E. Muller
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| | - Burcu S. Aytar
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| | - Yukishige Kondo
- Dept. of Industrial Chemistry; Tokyo University of Science; Tokyo Japan
| | - David M. Lynn
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| | - Nicholas L. Abbott
- Dept. of Chemical and Biological Engineering; University of Wisconsin-Madison; Madison WI 53706
| |
Collapse
|
13
|
Issman L, Brenner B, Talmon Y, Aharon A. Cryogenic transmission electron microscopy nanostructural study of shed microparticles. PLoS One 2013; 8:e83680. [PMID: 24386253 PMCID: PMC3873325 DOI: 10.1371/journal.pone.0083680] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/06/2013] [Indexed: 11/21/2022] Open
Abstract
Microparticles (MPs) are sub-micron membrane vesicles (100–1000 nm) shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM) the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to –80°C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools.
Collapse
Affiliation(s)
- Liron Issman
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail: (LI); (YT)
| | - Benjamin Brenner
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail: (LI); (YT)
| | - Anat Aharon
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
14
|
Aytar BS, Muller JPE, Kondo Y, Abbott NL, Lynn DM. Spatial control of cell transfection using soluble or solid-phase redox agents and a redox-active ferrocenyl lipid. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8283-8288. [PMID: 23965341 PMCID: PMC3789068 DOI: 10.1021/am402594z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes.
Collapse
Affiliation(s)
- Burcu S Aytar
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, and §Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | | | | | | | |
Collapse
|
15
|
Aytar BS, Muller JPE, Kondo Y, Talmon Y, Abbott NL, Lynn DM. Redox-based control of the transformation and activation of siRNA complexes in extracellular environments using ferrocenyl lipids. J Am Chem Soc 2013; 135:9111-20. [PMID: 23701636 DOI: 10.1021/ja403546b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report physical characterization and biological evaluation of complexes of small interfering RNA (siRNA) formed using a cationic lipid [bis(11-ferrocenylundecyl)dimethylammonium bromide (BFDMA)] containing redox-active ferrocenyl groups at the end of each hydrophobic tail. We demonstrate that control over the redox state of BFDMA can be used to influence key physical properties and control the activities of lipoplexes formed using siRNA-based constructs. Specifically, lipoplexes of siRNA and reduced BFDMA lead to high levels of sequence-specific gene silencing in cells, but lipoplexes formed using oxidized BFDMA do not. Lipoplexes of oxidized BFDMA can be activated in situ to induce high levels of silencing by addition of a chemical reducing agent, demonstrating a basis for external control over the activation/delivery of siRNA in cellular environments. Differences in activity arise from the inability of oxidized BFDMA to promote efficient internalization of siRNA; these differences also correlated to significant differences in the nanostructures of these lipoplexes (determined by cryo-TEM) and their ζ potentials as a function of oxidation state. These results are considered in view of recent studies characterizing the nanostructures, properties, and behaviors of lipoplexes formed using BFDMA and macromolecular plasmid DNA. We find that several key structural features and aspects of redox control observed for lipoplexes of plasmid DNA are maintained in complexes formed using smaller and more rigid siRNA. The ability to transform BFDMA in complex media presents opportunities to exert control over the nanostructures and behaviors of siRNA lipoplexes in ways not possible using conventional lipids. The approaches reported here could thus prove useful in both fundamental and applied contexts.
Collapse
Affiliation(s)
- Burcu S Aytar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
16
|
Vesicle formation between single-chained cationic surfactants and ribo-oligonucleotides. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2012.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
|
18
|
Aytar BS, Muller JPE, Golan S, Kondo Y, Talmon Y, Abbott NL, Lynn DM. Chemical oxidation of a redox-active, ferrocene-containing cationic lipid: influence on interactions with DNA and characterization in the context of cell transfection. J Colloid Interface Sci 2012; 387:56-64. [PMID: 22980739 DOI: 10.1016/j.jcis.2012.07.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/22/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
We report an approach to the chemical oxidation of a ferrocene-containing cationic lipid [bis(11-ferrocenylundecyl)dimethylammonium bromide, BFDMA] that provides redox-based control over the delivery of DNA to cells. We demonstrate that BFDMA can be oxidized rapidly and quantitatively by treatment with Fe(III)sulfate. This chemical approach, while offering practical advantages compared to electrochemical methods used in past studies, was found to yield BFDMA/DNA lipoplexes that behave differently in the context of cell transfection from lipoplexes formed using electrochemically oxidized BFDMA. Specifically, while lipoplexes of the latter do not transfect cells efficiently, lipoplexes of chemically oxidized BFDMA promoted high levels of transgene expression (similar to levels promoted by reduced BFDMA). Characterization by SANS and cryo-TEM revealed lipoplexes of chemically and electrochemically oxidized BFDMA to both have amorphous nanostructures, but these lipoplexes differed significantly in size and zeta potential. Our results suggest that differences in zeta potential arise from the presence of residual Fe(2+) and Fe(3+) ions in samples of chemically oxidized BFDMA. Addition of the iron chelating agent EDTA to solutions of chemically oxidized BFDMA produced samples functionally similar to electrochemically oxidized BFDMA. These EDTA-treated samples could also be chemically reduced by treatment with ascorbic acid to produce samples of reduced BFDMA that do promote transfection. Our results demonstrate that entirely chemical approaches to oxidation and reduction can be used to achieve redox-based 'on/off' control of cell transfection similar to that achieved using electrochemical methods.
Collapse
Affiliation(s)
- Burcu S Aytar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Guo X, Cui B, Li Y, Ding J. Effects of salt and temperature on single-chained cationic surfactant/oligodeoxynucleotide vesicle formation. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.25940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Golan S, Talmon Y. Nanostructure of complexes between cationic lipids and an oppositely charged polyelectrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1668-1672. [PMID: 22214495 DOI: 10.1021/la204095s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The morphology of aqueous solutions of polyelectrolytes and oppositely charged lipids is the subject of extensive colloid science research, because of their application in industry and medicine, the latter especially for gene therapy. In this work, we show that complexes of two different cationic lipids with the polyelectrolyte sodium poly(acrylic acid), PAA, share similar morphology with the complexes of those lipids with nucleic acids, implying a broader and universal packing phenomenon. We characterized by direct-imaging cryogenic-temperature transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and zeta (ζ)-potential two cationic lipids, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and bis(11-ferrocenylundecyl) dimethylammonium bromide (BFDMA), which are used in gene transfection, at equivalent lipid/polyelectrolyte charge ratio. Our results revealed that, for both types of complexes, onion-like multilamellar nanostructures formed, which exhibited similar morphology as in complexes of DNA or oligonucleotides (lipoplexes), based on the same lipids. Our findings suggest that the onion-like packing may be energetically favorable for a wide range of polyelectrolyte-liposome systems, from oligonucleotides and DNA to PAA.
Collapse
Affiliation(s)
- Sharon Golan
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
22
|
Muller JPE, Aytar BS, Kondo Y, Lynn DM, Abbott NL. Incorporation of DOPE into Lipoplexes formed from a Ferrocenyl Lipid leads to Inverse Hexagonal Nanostructures that allow Redox-Based Control of Transfection in High Serum. SOFT MATTER 2012; 8:2608-2619. [PMID: 22707977 PMCID: PMC3374640 DOI: 10.1039/c2sm00047d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report small angle X-ray and neutron scattering measurements that reveal that mixtures of the redox-active lipid bis(11-ferrocenylundecyl)dimethylammonium bromide (BFDMA) and dioleoylphosphatidylethanolamine (DOPE) spontaneously form lipoplexes with DNA that exhibit inverse hexagonal nanostructure (H(II) (c)). In contrast to lipoplexes of DNA and BFDMA only, which exhibit a multilamellar nanostructure (L(α) (c)) and limited ability to transfect cells in the presence of serum proteins, we measured lipoplexes of BFDMA and DOPE with the H(II) (c) nanostructure to survive incubation in serum and to expand significantly the range of media compositions (e.g., up to 80% serum) over which BFDMA can be used to transfect cells with high efficiency. Importantly, we also measured the oxidation state of the ferrocene within the BFDMA/DNA lipoplexes to have a substantial influence on the transfection efficiency of the lipoplexes in media containing serum. Specifically, whereas lipoplexes of reduced BFDMA and DOPE transfect cells with high efficiency, lipoplexes of oxidized BFDMA and DNA lead to low levels of transfection. Complementary measurements using SAXS reveal that the low transfection efficiency of the lipoplexes of oxidized BFDMA and DOPE correlates with the presence of weak Bragg peaks and thus low levels of H(II) (c) nanostructure in solution. Overall, these results provide support for our hypothesis that DOPE-induced formation of the H(II) (c) nanostructure of the BFDMA-containing lipoplexes underlies the high cell transfection efficiency measured in the presence of serum, and that the oxidation state of BFDMA within lipoplexes with DOPE substantially regulates the formation of the H(II) (c) nanostructure and thus the ability of the lipoplexes to transfect cells with DNA. More generally, the results presented in this paper suggest that lipoplexes formed from BFDMA and DOPE may offer the basis of approaches that permit active and external control of transfection of cells in the presence of high (physiologically relevant) levels of serum.
Collapse
Affiliation(s)
- John P. E. Muller
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Burcu S. Aytar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Yukishige Kondo
- Department of Industrial Chemistry, Tokyo University of Science, Tokyo, Japan
| | - David M. Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| |
Collapse
|
23
|
Aytar BS, Muller JPE, Golan S, Hata S, Takahashi H, Kondo Y, Talmon Y, Abbott NL, Lynn DM. Addition of ascorbic acid to the extracellular environment activates lipoplexes of a ferrocenyl lipid and promotes cell transfection. J Control Release 2011; 157:249-59. [PMID: 21963768 DOI: 10.1016/j.jconrel.2011.09.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/11/2011] [Accepted: 09/15/2011] [Indexed: 12/12/2022]
Abstract
The level of cell transfection mediated by lipoplexes formed using the ferrocenyl lipid bis(11-ferrocenylundecyl)dimethylammonium bromide (BFDMA) depends strongly on the oxidation state of the two ferrocenyl groups of the lipid (reduced BFDMA generally mediates high levels of transfection, but oxidized BFDMA mediates very low levels of transfection). Here, we report that it is possible to chemically transform inactive lipoplexes (formed using oxidized BFMDA) to "active" lipoplexes that mediate high levels of transfection by treatment with the small-molecule reducing agent ascorbic acid (vitamin C). Our results demonstrate that this transformation can be conducted in cell culture media and in the presence of cells by addition of ascorbic acid to lipoplex-containing media in which cells are growing. Treatment of lipoplexes of oxidized BFDMA with ascorbic acid resulted in lipoplexes composed of reduced BFDMA, as characterized by UV/vis spectrophotometry, and lead to activated lipoplexes that mediated high levels of transgene expression in the COS-7, HEK 293T/17, HeLa, and NIH 3T3 cell lines. Characterization of internalization of DNA by confocal microscopy and measurements of the zeta potentials of lipoplexes suggested that these large differences in cell transfection result from (i) differences in the extents to which these lipoplexes are internalized by cells and (ii) changes in the oxidation state of BFDMA that occur in the extracellular environment (i.e., prior to internalization of lipoplexes by cells). Characterization of lipoplexes by small-angle neutron scattering (SANS) and by cryogenic transmission electron microscopy (cryo-TEM) revealed changes in the nanostructures of lipoplexes upon the addition of ascorbic acid, from aggregates that were generally amorphous, to aggregates with a more extensive multilamellar nanostructure. The results of this study provide guidance for the design of redox-active lipids that could lead to methods that enable spatial and/or temporal control of cell transfection.
Collapse
Affiliation(s)
- Burcu S Aytar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Verma G, Aswal V, Fritz-Popovski G, Shah C, Kumar M, Hassan P. Dilution induced thickening in hydrotrope-rich rod-like micelles. J Colloid Interface Sci 2011; 359:163-70. [DOI: 10.1016/j.jcis.2011.03.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 11/27/2022]
|
25
|
Golan S, Aytar BS, Muller JPE, Kondo Y, Lynn DM, Abbott NL, Talmon Y. Influence of biological media on the structure and behavior of ferrocene-containing cationic lipid/DNA complexes used for DNA delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6615-6621. [PMID: 21528933 PMCID: PMC3105205 DOI: 10.1021/la200450x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell culture medium (no serum) did not exhibit significant structural changes. The zeta potentials of lipoplexes in serum-free media (salt medium and cell culture medium) were similar (e.g., approximately -35 mV). Interestingly, the presence of serum caused the zeta potentials to become less negative (about -20 mV in OptiMEM and -10 mV in Li(2)SO(4)), even though serum contains negatively charged entities that have been demonstrated to lead to more negative zeta potentials in other lipoplex systems. The combined measurements of zeta potential and cryo-TEM are consistent with the proposition that DNA threads separate from the lipoplex in the presence of serum, resulting in a decrease in the net negative charge of the surface of the lipoplex.
Collapse
Affiliation(s)
- Sharon Golan
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Burcu S. Aytar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | - John P. E. Muller
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | - Yukishige Kondo
- Department of Industrial Chemistry, Tokyo University of Science, Tokyo, Japan
| | - David M. Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
26
|
Guo X, Cui B. Effects of Acid and Base on the Inductive Efficiency of Oligonucleotide on the Vesicle Formation from Single-Chained Cationic Surfactant. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Liu X, Abbott NL. Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant. J Phys Chem B 2010; 114:15554-64. [PMID: 21062067 DOI: 10.1021/jp107936b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the use of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) to characterize the nanostructure of complexes formed by either single- or double-stranded oligonucleotides with a cationic surfactant (cetyltrimethylammonium bromide, CTAB) in aqueous solution (1 mM Li(2)SO(4)). For single-stranded oligonucleotides 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', both the appearance of two Bragg peaks (at 0.14 and 0.28 Å(-1)) in SAXS spectra with a spacing of 1:2 and form factor fits to SANS spectra are consistent with the presence of multilamellar vesicles (with, on average, 6-9 layers with a periodicity of 45-48 Å). Some samples showed evidence of an additional Bragg peak (at 0.20 Å(-1)) associated with periodic packing (with a periodicity of 31 Å) of the oligonucleotides within the lamellae of the nanostructure. The nucleotide composition of the single-stranded oligonucleotides was also found to impact the number and size of the complexes formed with CTAB. In contrast to 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', 5'-T(20)-3' did not change the state of aggregation of CTAB (globular micelles) over a wide range of oligonucleotide:CTAB charge ratios. These results support the proposition that hydrophobic interactions, as well as electrostatics, play a central role in the formation of complexes between cationic amphiphiles and single-stranded oligonucleotides and thus give rise to nanostructures that depend on nucleotide composition. In contrast to the single-stranded oligonucleotides, for double-stranded oligonucleotides mixed with CTAB, three Bragg peaks (0.13, 0.23, and 0.25 Å(-1)) in SAXS spectra with a spacing ratio of 1:√3:√4 and characteristic changes in SANS spectra indicate formation of a hexagonal nanostructure. Also, the composition of the double-stranded oligonucleotides did not measurably impact the nanostructure of complexes formed with CTAB, suggesting that electrostatic interactions dominate the formation of these complexes. Overall, these results provide insights into the intermolecular interactions that occur between cationic amphiphiles and oligonucleotides and establish that single and double-stranded oligonucleotides form complexes with cationic surfactants that differ in nanostructure. The results also provide guidance for the design of oligonucleotide complexes with cationic amphiphiles.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53705-1691, United States
| | | |
Collapse
|
28
|
Zhong S, Pochan DJ. Cryogenic Transmission Electron Microscopy for Direct Observation of Polymer and Small-Molecule Materials and Structures in Solution. POLYM REV 2010. [DOI: 10.1080/15583724.2010.493254] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Guo X, Li H, Ran X, Gong Z, Guo R. Effect of oligonucleotide conformation on its facilitation efficiency on negatively charged micelle-to-vesicle transition. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.23835] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Liu X, Abbott NL. Spatial and temporal control of surfactant systems. J Colloid Interface Sci 2009; 339:1-18. [PMID: 19665723 PMCID: PMC3253364 DOI: 10.1016/j.jcis.2009.07.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 01/08/2023]
Abstract
This paper reviews some recent progress on approaches leading to spatial and temporal control of surfactant systems. The approaches revolve around the use of redox-active and light-sensitive surfactants. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous surfactant systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of surfactants with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene - reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive surfactants containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive surfactants that lead to large (>20mN/m) and spatially localized ( approximately mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures - such as micelle-to-vesicle transitions or monomer-to-micelle transitions - are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of surfactant systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of surfactants with biomolecules to modulate their transport into cells.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53705-1691
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53705-1691
| |
Collapse
|
31
|
Jewell CM, Hays ME, Kondo Y, Abbott NL, Lynn DM. Chemical activation of lipoplexes formed from DNA and a redox-active, ferrocene-containing cationic lipid. Bioconjug Chem 2009; 19:2120-8. [PMID: 18831573 DOI: 10.1021/bc8002138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently reported that the ferrocene-containing cationic lipid BFDMA [bis(11-ferrocenylundecyl)dimethylammonium bromide] can be used to mediate cell transfection, and that levels of transfection depend critically upon the oxidation state of the ferrocenyl groups of the lipid. Here, we report that the redox activity of BFDMA can be exploited to transform lipoplexes formed from oxidized BFDMA (which do not transfect cells) to lipoplexes that are "active" (and thus mediate high levels of transgene expression) by treatment with the chemical reducing agent glutathione (GSH). We demonstrate that GSH can be used to reduce the ferrocenium groups of oxidized BFDMA rapidly both (i) in solution and (ii) in lipoplexes formed by mixing oxidized BFDMA and DNA. Lipoplexes transformed in this manner mediate levels of cell transfection in vitro that are comparable to levels of transfection mediated by lipoplexes prepared by mixing DNA and reduced BFDMA. We demonstrate further that the chemical reduction of oxidized BFDMA leads to changes in the zeta potentials of these lipoplexes (e.g., from negative to positive). Characterization of lipoplex internalization using confocal microscopy demonstrated that these changes in zeta potential correlate to differences in the extents to which these lipoplexes are internalized by cells. These results provide a framework from which to interpret differences in cell transfection mediated by reduced and oxidized BFDMA. When combined, the results of this study suggest the basis of an approach that could be used to transform lipoplexes actively or "on-demand" and provide spatial and/or temporal control over the transfection of cells in a range of different fundamental and applied contexts.
Collapse
Affiliation(s)
- Christopher M Jewell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
32
|
Liu X, Abbott NL. Electrochemical generation of gradients in surfactant concentration across microfluidic channels. Anal Chem 2009; 81:772-81. [PMID: 19086794 DOI: 10.1021/ac801933v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the generation and manipulation of spatial gradients in surfactant and micelle concentration across microfluidic channels by combining use of a redox-active surfactant with electrochemical methods. The approach is founded on the observation that 11-ferrocenylundecyltrimethylammonium bromide (FTMA) behaves as a surfactant in aqueous solution (e.g., self-assembles to form micelles at a critical concentration of 0.1 mM in aqueous 0.1 M Li(2)SO(4)) whereas oxidized FTMA remains dispersed in a monomeric state up to concentrations of at least 30 mM. By flowing aqueous FTMA solutions through microfluidic channels (width of 80 microm, depth of 72 microm, and length of 42 mm) and by applying potentials of 0 V (vs Ag|AgCl; cathode) and +0.3 V (vs Ag|AgCl; anode) to gold electrodes lining both side-walls of the microfluidic channels, we measured lateral gradients in concentration of oxidized FTMA and reduced FTMA to be generated across the microfluidic channels by splitting the exiting stream into four channels. These measurements revealed the lateral concentration profile of FTMA to be consistent with the presence of slowly diffusing micelles of FTMA in a spatially localized region near the cathode and monomeric FTMA only near the anode. The lateral concentration profiles of reduced and oxidized FTMA, and thus the patterning of micelles within the microfluidic channels, were manipulated via changes in the inlet FTMA concentration, potentials applied to the electrodes, and flow rate. These experimental measurements were compared to a simple model, which assumed fast electrode kinetics, lateral transport of FTMA by diffusion only (no migration), and local micelle-monomer equilibrium within the bulk solution. This comparison revealed qualitative but not quantitative agreement between model and experiment. Calculations of ionic conductivity and associated experimental measurements support the proposition that Ohmic resistance to the passage of current along the channel (between the working and the counter electrodes) contribute, in part, to the lack of quantitative agreement between the model and the measurements. The capability to generate and manipulate lateral concentration profiles of surfactants and micelles across microfluidic channels, as demonstrated by the results presented in this paper, offers the basis of new principles for continuous separation processes and microanalytical systems, and more broadly, new methods to generate gradients in concentration of analytes that interact with surfactants.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1691, USA
| | | |
Collapse
|
33
|
Guo X, Cui B, Li H, Gong Z, Guo R. Facilitation effect of oligonucleotide on vesicle formation from single-chained cationic surfactant-Dependences of oligonucleotide sequence and size and surfactant structure. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Corbyn CP, Fletcher PDI, Gemici R, Dias RS, Miguel MG. Re-dissolution and de-compaction of DNA–cationic surfactant complexes using non-ionic surfactants. Phys Chem Chem Phys 2009; 11:11568-76. [DOI: 10.1039/b916116c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|