1
|
Masoodi HR, Bagheri S, Ghaderi Z. The influence of Cu + binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: a DFT study. J Biomol Struct Dyn 2018; 37:1923-1934. [PMID: 29757083 DOI: 10.1080/07391102.2018.1475256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present work, the influence of Cu+ binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu+ binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu+ binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu+ on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Reza Masoodi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Sotoodeh Bagheri
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Zahra Ghaderi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| |
Collapse
|
2
|
Stability of transient Cu+Aβ (1–16) species and influence of coordination and peptide configuration on superoxide formation. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1836-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Chen X, Wang Z, Li W, Wong YLE, Chan TWD. Effect of structural parameters on the electron capture dissociation and collision-induced dissociation pathways of copper(II)-peptide complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:649-657. [PMID: 26353987 DOI: 10.1255/ejms.1382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The gas-phase dissociation pathways of proteins/peptides are usually affected by the nature of the charge carrier and the sequence of amino acid residues. The effects of peptide structural parameters, including peptide composition, chain length and amide hydrogen, on the gas-phase dissociation of Cu(II)-model peptide complexes were explored in this study. Polyglycine peptides with flexible frames were used as probes to reduce the complexity of the system and illustrate the mechanism. Results revealed that the types of fragment ions generated in the electron capture dissociation (ECD) of Cu(II)-adducted peptides changed according to the basic amino acid residue composition. Charged or neutral tryptophan side-chain losses were observed in the collision-induced dissociation (CID) of Cu(II)-peptide complexes. Internal electron transfer between tryptophan and metal ion within the complex occurred during the CID reaction, leaving the charge-reduced Cu(+) as a closed d-shell stable electron configuration. The choice of the reaction channel was then determined by the gas-phase basicity of the peptide. Amide hydrogen was critical in the formation of metalated b-/y-ions in the ECD process as determined through mutation of the backbone amide group. Increasing the chain length suppressed the ECD of Cu-metalated peptide species. Our results indicate that the structural parameters of peptides play important roles in the gas-phase dissociation processes of Cu-peptide complexes.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China. Shandong Academy of Sciences, Jinan, Shandong, PR China.
| | - Ze Wang
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Wan Li
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Y L Elaine Wong
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - T-W Dominic Chan
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
4
|
Alí-Torres J, Mirats A, Maréchal JD, Rodríguez-Santiago L, Sodupe M. 3D structures and redox potentials of Cu2+-Aβ(1-16) complexes at different pH: a computational study. J Phys Chem B 2014; 118:4840-50. [PMID: 24738872 DOI: 10.1021/jp5019718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress induced by redox-active metal cations such as Cu(2+) is a key event in the development of Alzheimer's disease. A detailed knowledge of the structure of Cu(2+)-Aβ complex is thus important to get a better understanding of this critical process. In the present study, we use a computational approach that combines homology modeling with quantum-mechanics-based methods to determine plausible 3D structures of Cu(2+)-Aβ(1-16) complexes that enclose the different metal coordination spheres proposed experimentally at different pH values. With these models in hand, we determine their standard reduction potential (SRP) with the aim of getting new insights into the relation between the structure of these complexes and their redox behavior. Results show that in all cases copper reduction induces CObackbone decoordination, which, for distorted square planar structures in the oxidized state (Ia_δδ, IIa_εδε, IIa_εεε, and IIc_ε), leads to tricoordinated species. For the pentacoordinated structural candidate Ib_δε with Glu11 at the apical position, the reduction leads to a distorted tetrahedral structure. The present results highlight the importance of the nature of the ligands on the SRP. The computed values (with respect to the standard hydrogen electrode) for complexes enclosing negatively charged ligands in the coordination sphere (from -0.81 to -0.12 V) are significantly lower than those computed for models involving neutral ligands (from 0.19 to 0.28 V). Major geometry changes induced by reduction, on both the metal site and the peptide configuration, are discussed as well as their possible influence in the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Jorge Alí-Torres
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
5
|
Theoretical study of hydrated Ca2+-amino acids (glycine, threonine and phenylalanine) clusters. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
A quantum-chemical study of the binding ability of βXaaHisGlyHis towards copper(II) ion. J Mol Model 2012; 18:1365-74. [PMID: 21761180 PMCID: PMC3313029 DOI: 10.1007/s00894-011-1162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022]
Abstract
The present study analyzed binding of Cu2+ to tetrapeptides in water solution at several levels of theoretical approximation. The methods used to study the energetic and structural properties of the complexes in question include semiempirical hamiltonians, density functional theory as well as ab initio approaches including electron correlation effects. In order to shed light on the character of interactions between Cu2+ and peptides, which are expected to be mainly electrostatic in nature, decomposition of interaction energy into physically meaningful components was applied.
Collapse
|
7
|
Chen X, Fung YME, Chan WYK, Wong PS, Yeung HS, Chan TWD. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2232-2245. [PMID: 21952786 DOI: 10.1007/s13361-011-0246-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/31/2011] [Accepted: 09/04/2011] [Indexed: 05/31/2023]
Abstract
Electron capture dissociation (ECD) of model peptides adducted with first row divalent transition metal ions, including Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+), were investigated. Model peptides with general sequence of ZGGGXGGGZ were used as probes to unveil the ECD mechanism of metalated peptides, where X is either V or W; and Z is either R or N. Peptides metalated with different divalent transition metal ions were found to generate different ECD tandem mass spectra. ECD spectra of peptides metalated by Mn(2+) and Zn(2+) were similar to those generated by ECD of peptides adducted with alkaline earth metal ions. Series of c-/z-type fragment ions with and without metal ions were observed. ECD of Fe(2+), Co(2+), and Ni(2+) adducted peptides yielded abundant metalated a-/y-type fragment ions; whereas ECD of Cu(2+) adducted peptides generated predominantly metalated b-/y-type fragment ions. From the present experimental results, it was postulated that electronic configuration of metal ions is an important factor in determining the ECD behavior of the metalated peptides. Due presumably to the stability of the electronic configuration, metal ions with fully-filled (i.e., Zn(2+)) and half filled (i.e., Mn(2+)) d-orbitals might not capture the incoming electron. Dissociation of the metal ions adducted peptides would proceed through the usual ECD channel(s) via "hot-hydrogen" or "superbase" intermediates, to form series of c-/z(•)- fragments. For other transition metal ions studied, reduction of the metal ions might occur preferentially. The energy liberated by the metal ion reduction would provide enough internal energy to generate the "slow-heating" type of fragment ions, i.e., metalated a-/y- fragments and metalated b-/y- fragments.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
8
|
Watson HM, Vincent JB, Cassady CJ. Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1099-1107. [PMID: 22124980 DOI: 10.1002/jms.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.
Collapse
Affiliation(s)
- Heather M Watson
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | | |
Collapse
|
9
|
Alí-Torres J, Rodríguez-Santiago L, Sodupe M. Computational calculations of pKa values of imidazole in Cu(ii) complexes of biological relevance. Phys Chem Chem Phys 2011; 13:7852-61. [DOI: 10.1039/c0cp02319a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Corral I, Yáñez M. [MLn]2+ doubly charged systems: modeling, bonding, life times and unimolecular reactivity. Phys Chem Chem Phys 2011; 13:14848-64. [DOI: 10.1039/c1cp20622b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Rios-Font R, Sodupe M, Rodríguez-Santiago L, Taylor PR. The Role of Exact Exchange in the Description of Cu2+−(H2O)n (n = 1−6) Complexes by Means of DFT Methods. J Phys Chem A 2010; 114:10857-63. [DOI: 10.1021/jp105376s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Raquel Rios-Font
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain, and Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain, and Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Luis Rodríguez-Santiago
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain, and Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Peter R. Taylor
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain, and Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
12
|
Prell JS, Flick TG, Oomens J, Berden G, Williams ER. Coordination of Trivalent Metal Cations to Peptides: Results from IRMPD Spectroscopy and Theory. J Phys Chem A 2009; 114:854-60. [DOI: 10.1021/jp909366a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- James S. Prell
- Department of Chemistry, University of California, Berkeley, California 94720-1460, FOM Institute for Plasma Physics “Rijnhuizen,” Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Tawnya G. Flick
- Department of Chemistry, University of California, Berkeley, California 94720-1460, FOM Institute for Plasma Physics “Rijnhuizen,” Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Jos Oomens
- Department of Chemistry, University of California, Berkeley, California 94720-1460, FOM Institute for Plasma Physics “Rijnhuizen,” Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Giel Berden
- Department of Chemistry, University of California, Berkeley, California 94720-1460, FOM Institute for Plasma Physics “Rijnhuizen,” Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, FOM Institute for Plasma Physics “Rijnhuizen,” Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| |
Collapse
|
13
|
Rinkevicius Z, Vahtras O, Ågren H. Time-dependent closed and open-shell density functional theory from the perspective of partitioning techniques and projections. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gizzi P, Pasc A, Dupuy N, Parant S, Henry B, Gérardin C. Molecular Tailored Histidine-Based Complexing Surfactants: From Micelles to Hydrogels. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Constantino E, Rimola A, Sodupe M, Rodríguez-Santiago L. Coordination of (Glycyl)nglycine (n = 1−3) to Co+ and Co2+. J Phys Chem A 2009; 113:8883-92. [DOI: 10.1021/jp901179t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Erika Constantino
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | |
Collapse
|
16
|
Wang P, Ohanessian G, Wesdemiotis C. Cu(II)-catalyzed reactions in ternary [Cu(AA)(AA - H)]+ complexes (AA = Gly, Ala, Val, Leu, Ile, t-Leu, Phe). EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:325-335. [PMID: 19423917 DOI: 10.1255/ejms.987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The unimolecular chemistry of [Cu(II)AA(AA - H)](+) complexes, composed of an intact and a deprotonated amino acid (AA) ligand, have been probed in the gas phase by tandem and multistage mass spectrometry in an electrospray ionization quadrupole ion trap mass spectrometer. The amino acids examined include Gly, Ala, Val, Leu, Ile, t-Leu and Phe. Upon collisionally-activated dissociation (CAD), the [Cu(II)AA(AA - H)](+) complexes undergo decarboxylation with simultaneous reduction of Cu(II) to Cu(I); during this process, a radical site is created at the alpha-carbon of the decarboxylated ligand (H(2)N(1) - (*)C(alpha)H - C(beta)H(2) - R; R = side chain substituent). The radical site is able to move along the backbone of the decarboxylated amino acid to form two new radicals (HN(1)(*) - C(alpha)H(2) - C(beta)H(2) - R and H(2)N(1) - C(alpha)H(2) - (*)C(beta)H - R). From the complexes of Gly and t-Leu, only C(alpha) and N(1) radicals can be formed. The whole radical ligand can be lost to form [Cu(I)AA](+) from these three isomeric radicals. Alternatively, further radical induced dissociations can take place along the backbone of the decarboxylated amino acid ligand to yield [Cu(II)AA(AA - 2H - CO(2))](+), [Cu(I)AA((*)NH(2))](+), [Cu(I)AA(HN = C(alpha)H(2))](+), or [Cu(I)AA(H(2)N - C(alpha)H = C(beta)H - R'](+) (R' = partial side chain substituent). The sodiated copper complexes, [Cu(II)(AA - H + Na)(AA - H)](+), show the same fragmentation patterns as their non-sodiated counterparts; sodium ion is retained on the intact amino acid ligand and is not involved in the CAD pathways. The amino groups of both AA units, the carbonyl group of the intact amino acid, and the deprotonated hydroxyl oxygen coordinate Cu(II) in square-planar fashion. Ab initio calculations indicate that the metal ion facilitates hydrogen atom shuttling between the N(1), C(alpha) and C(beta) atoms of the decarboxylated amino acid ligand. The dissociations of the decarboxylated radical ions unveil important insight about the so far largely unknown intrinsic chemistry of alpha-amino acid and peptide radicals, which are implicated as intermediates in numerous pathogenic biological processes.
Collapse
Affiliation(s)
- Ping Wang
- The Dow Chemical Company, 2301 N. Brazosport Blvd, B-1219 Freeport, TX 77541-3257, USA
| | | | | |
Collapse
|