1
|
Pawlowska D, Erdmann N, Folz M, Langner A, Dobner B, Wölk C, Brezesinski G. Ionizable lipids based on branched fatty acids - An explorative study on Langmuir monolayers. Eur J Pharm Biopharm 2024; 200:114338. [PMID: 38789063 DOI: 10.1016/j.ejpb.2024.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Ionizable lipids are a class of pharmaceutical excipients with a main application in lipid nanoparticles for nucleic acid delivery. New ionizable lipids are needed to tune characteristics of lipid-based nucleic acid delivery systems, e.g. stability, nucleic acid loading capacity and binding strength, as well as bio-distribution. Herein, we present the synthesis of three novel ionizable lipids as putative excipients for lipid-based nucleic acid delivery systems. Langmuir monolayer experiments with classical surface pressure/area isotherm evaluation were used to understand the self-assembly behavior of the lipids. Additional experiments with surface sensitive techniques, namely grazing incidence x-ray scattering and infrared reflection-absorption spectroscopy (IRRAS), were performed to understand structural characteristics of lipid associates. The latter technique was also used to investigate the nucleic acid binding process between DNA and the ionizable lipids. Finally, first transfection experiments with the novel lipids formulated as cationic liposomes were performed providing first efficacy data. Although the alkyl chain pattern was comparable for all three ionizable lipids, the results demonstrated that with increasing head-group size the DNA binding capacity changed and the alkyl chain fluidity was increased. The lipid with the lowest phase transition temperature and the smallest packing parameter showed the highest DNA transfer efficiency.
Collapse
Affiliation(s)
- Dorota Pawlowska
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nicole Erdmann
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manuela Folz
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Andreas Langner
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Bodo Dobner
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Christian Wölk
- Leipzig University, Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Eilenburger Strasse 15a, 04317 Leipzig, Germany.
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Cao Y, Dai Y, Lu X, Li R, Zhou W, Li J, Zheng B. Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by Sipunculus nudus Water-Soluble Proteins (WSPs). Front Nutr 2021; 8:770218. [PMID: 34888338 PMCID: PMC8650626 DOI: 10.3389/fnut.2021.770218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
To form a stable emulsion system, the water-soluble proteins (WSPs) of Sipunculus nudus were prepared as the sole effective stabilizer for the high internal phase emulsion (HIPEs), of which the influence of the WSPs concentration and environmental stability was investigated. The HIPEs were fabricated using a simple one-pot homogenization process (10,000 rpm/min, 3 min) that involved blending the WSPs (0.1, 1, 2, 3, 4, and 5 wt%) with soybean oil (60, 65, 70, 75, 80, 85, and 90%). The microstructure and properties of stable HIPEs were characterized by particle size, ζ-potential, visual observations, optical microscopy, and dynamic rheology property measurements. As the concentration of WSPs increases, the mean particle diameter of HIPEs decreases, on the contrary, the apparent viscosity and storage modulus gradually increase. At a given emulsifier concentration (3 wt%), the stable and gel-like HIPEs were formed at the oil internal phase (ϕ) values of 70–75%, all the pH range in values from 3 to 9, and the ionic strength from 100 to 500 mM. Furthermore, the HIPEs that were stabilized formed a gel-like state that was relatively stable to heat and storage (30 days). And there was a new phenomenon that the destabilized HIPE of the freeze-thaw treatments could still return to a gel-like state again after homogenizing. The study results suggest that the WSPs of S. nudus as a natural emulsifier could be widely used in the food industry.
Collapse
Affiliation(s)
- Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Langmuir monolayers containing different amounts of cholesterol and cholesteryl stearate were studied at two different temperatures (24 °C and 35 °C). The main goal was to contribute towards the understanding of how the variations in the chemical composition may affect the physico-chemical properties of these specific lipid monolayers. The model mixture was chosen considering that cholesteryl esters are present in cell membranes and some other biological systems, including human tear lipids. Therefore, an investigation into the effect of the lipid monolayer composition on their interfacial properties may elucidate some of the fundamental reasons for the deficiencies in cell membranes and tear film functioning in vivo. The experimental results have shown that the molar ratio of the mixture plays a crucial role in the modulation of the Langmuir film properties. The condensing effects of the cholesterol and the interactions between the lipids in the monolayer were the main factors altering the monolayer response to dilatational deformation. The modification of the mixture compositions leads to significant changes in the Langmuir films and the mechanical performance, altering the ability of the monolayer to reduce the surface tension and the viscoelastic properties of the monolayers. This suggests that subtle modifications of the biomembrane composition may significantly alter its physiological function.
Collapse
|
4
|
Baxter AM, Jordan LR, Kullappan M, Wittenberg NJ. Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5753-5762. [PMID: 33939441 DOI: 10.1021/acs.langmuir.0c03363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We show that photosensitized phospholipid oxidation, initiated by the lipid-conjugated fluorophore TopFluor-PC, causes defects, namely, membrane tubes and vesicle-like structures, in supported lipid bilayers (SLBs). Lipid oxidation is detrimental to the integrity of the lipid molecules; when oxidized, they undergo a conformational expansion, which causes membrane tubes to protrude from the SLB. Lipid oxidation is verified by FT-IR spectroscopy, and area expansion is observed in Langmuir trough experiments. Upon growing to a critical length, the membrane tubes arising from SLBs rapidly undergo transition to vesicle-like structures. We find a correlation between the maximum tube length and the diameter of the resulting vesicle, suggesting the conservation of the surface area between these features. We use geometric modeling and the measured tube length and vesicle radius to calculate the tube radius; our calculated mean tube diameter of 243 nm is comparable to other groups' experimental findings. In the presence of fluid flow, membrane tubes can be extended to tens to hundreds of microns in length. SLBs composed of saturated lipids resist light-induced tubulation, and the inclusion of the lipophilic antioxidant α-tocopherol attenuates the tubulation process and increases the light intensity threshold for tubulation.
Collapse
Affiliation(s)
- Ashley M Baxter
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Monicka Kullappan
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
5
|
Schmidt TF, Riske KA, Caseli L, Salesse C. Dengue fusion peptide in Langmuir monolayers: A binding parameter study. Biophys Chem 2021; 271:106553. [PMID: 33626461 DOI: 10.1016/j.bpc.2021.106553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Membrane fusion is known to be the primary mechanism of entry of flaviviruses into host cells. Several studies reported the investigation of the membrane fusion mechanism mediated by the fusion peptide, a component of the membrane protein surrounding the flaviviruses. In this study, we investigated the interaction of Dengue fusion peptide (FLAg) with Langmuir monolayers to uncover the role of membrane charges and organization in its membrane binding. Binding parameters of FLAg were obtained by measuring its adsorption onto Langmuir monolayers of different types of individual lipids, as well as their mixtures. Specific peptide binding was observed in the presence of charged lipid monolayers at different pHs, revealing that the lipid composition of the membrane modulates peptide interaction, and the preference of the peptide for negatively charged lipids.
Collapse
Affiliation(s)
- Thaís F Schmidt
- Universidade Federal de São Paulo, Biophysics Department, São Paulo, SP, Brazil; Universidade Federal de São Paulo, Chemistry Department, Diadema, SP, Brazil; CUO-Recherche, Centre de recherche du CHU de Québec-Université Laval and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| | - Karin A Riske
- Universidade Federal de São Paulo, Biophysics Department, São Paulo, SP, Brazil
| | - Luciano Caseli
- Universidade Federal de São Paulo, Chemistry Department, Diadema, SP, Brazil
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec-Université Laval and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| |
Collapse
|
6
|
Zhang B, Zhou X, Miao Y, Wang X, Yang Y, Zhang X, Gan Y. Effect of phosphatidylcholine on the stability and lipolysis of nanoemulsion drug delivery systems. Int J Pharm 2020; 583:119354. [PMID: 32348799 DOI: 10.1016/j.ijpharm.2020.119354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Phosphatidylcholines (PCs) have been widely used in pharmaceutical research. Unfortunately, our understanding of how PCs influence the in vivo lipolysis process of drug delivery systems is still limited. In this study, PCs with fatty acid chains of varying lengths and saturability were used as emulsifiers to prepare curcumin-loaded nanoemulsions (Cur-NEs). The differences in particle size as well as drug and free fatty acid release during the lipolysis process were studied in a simulated blood environment. Furthermore, the pharmacokinetics and antitumor efficacy of Cur-NEs were evaluated in mice. The prepared 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-stabilized Cur-NEs showed similar particle size and stability during storage but exhibited different lipolysis behaviors in vitro and in vivo. Due to the gel state of DPPC in the physiological environment, DPPC-stabilized Cur-NEs had low binding affinity with proteins and maintained their integrity in plasma, leading to sustained drug release, prolonged circulation time and enhanced antitumor efficacy in 4T1 tumor-bearing mice. In contrast, DOPC and DSPC-stabilized Cur-NEs were prone to coalescence in the plasma, resulting in rapid drug release and elimination from circulation. Our findings demonstrated that proper use of PCs is beneficial for obtaining desired transport behavior and drug therapeutic effects, providing guiding principles for rational design of nanodelivery systems.
Collapse
Affiliation(s)
- Bo Zhang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Yunqiu Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoli Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
7
|
Li R, He Q, Guo M, Yuan J, Wu Y, Wang S, Rong L, Li J. Universal and simple method for facile fabrication of sustainable high internal phase emulsions solely using meat protein particles with various pH values. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Hatta E, Nihei K. Emergence of a linear slope region of the isotherm in the first-order liquid-expanded-liquid-condensed phase transition in Langmuir monolayers. Phys Rev E 2019; 100:022801. [PMID: 31574626 DOI: 10.1103/physreve.100.022801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 06/10/2023]
Abstract
A nonhorizontal slope in the isotherm has been observed in the two-phase coexisting region of the first-order liquid-expanded (LE)-liquid-condensed (LC) phase transition in Langmuir monolayers for many decades. We show that the simple analysis of a phenomenological Landau free energy involving the coupling-energy contributions of molecular lateral density (ρ) with spontaneous collective chain tilt (θ) and two-dimensional strain (ɛ_{s}) inside the LC domain enables one to understand the origin of a nonhorizontal straight-line slope in the LE-LC phase coexistence region of the isotherm. The presence of ρ-ɛ_{s} coupling must be essential for the appearance of the straight-line shape of a nonhorizontal plateau in the isotherm. Moreover, it is found from the comparison of the two-dimensional contour plots of the free energy that an LE phase may persist significantly even at the later stage of the straight-line regime beyond a transition midpoint surface pressure in the presence of this coupling. The persistence of the LE phase may lead to the delay of transition progress as manifested more clearly by the appearance of a compressibility plateau in the coexistence region that indicates the existence of persistent equilibrium density fluctuations in the monolayer.
Collapse
Affiliation(s)
- Eiji Hatta
- Nanoelectronics Laboratory, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Ko Nihei
- Nanoelectronics Laboratory, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| |
Collapse
|
9
|
Gupta A, Marzinek JK, Jefferies D, Bond PJ, Harryson P, Wohland T. The disordered plant dehydrin Lti30 protects the membrane during water-related stress by cross-linking lipids. J Biol Chem 2019; 294:6468-6482. [PMID: 30819802 DOI: 10.1074/jbc.ra118.007163] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Dehydrins are intrinsically disordered proteins, generally expressed in plants as a response to embryogenesis and water-related stress. Their suggested functions are in membrane stabilization and cell protection. All dehydrins contain at least one copy of the highly conserved K-segment, proposed to be a membrane-binding motif. The dehydrin Lti30 (Arabidopsis thaliana) is up-regulated during cold and drought stress conditions and comprises six K-segments, each with two adjacent histidines. Lti30 interacts with the membrane electrostatically via pH-dependent protonation of the histidines. In this work, we seek a molecular understanding of the membrane interaction mechanism of Lti30 by determining the diffusion and molecular organization of Lti30 on model membrane systems by imaging total internal reflection- fluorescence correlation spectroscopy (ITIR-FCS) and molecular dynamics (MD) simulations. The dependence of the diffusion coefficient explored by ITIR-FCS together with MD simulations yields insights into Lti30 binding, domain partitioning, and aggregation. The effect of Lti30 on membrane lipid diffusion was studied on fluorescently labeled supported lipid bilayers of different lipid compositions at mechanistically important pH conditions. In parallel, we compared the mode of diffusion for short individual K-segment peptides. The results indicate that Lti30 binds the lipid bilayer via electrostatics, which restricts the mobility of lipids and bound protein molecules. At low pH, Lti30 binding induced lipid microdomain formation as well as protein aggregation, which could be correlated with one another. Moreover, at physiological pH, Lti30 forms nanoscale aggregates when proximal to the membrane suggesting that Lti30 may protect the cell by "cross-linking" the membrane lipids.
Collapse
Affiliation(s)
- Anjali Gupta
- From the Center for BioImaging Sciences and.,the Department of Biological Sciences, National University of Singapore, 14 Science Dr. 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- the Bioinformatics Institute (A*STAR), 30 Biopolis St., 07-01 Matrix, Singapore 138671, Singapore
| | - Damien Jefferies
- the Bioinformatics Institute (A*STAR), 30 Biopolis St., 07-01 Matrix, Singapore 138671, Singapore.,the School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Peter J Bond
- the Department of Biological Sciences, National University of Singapore, 14 Science Dr. 4, Singapore 117543, Singapore.,the Bioinformatics Institute (A*STAR), 30 Biopolis St., 07-01 Matrix, Singapore 138671, Singapore
| | - Pia Harryson
- the Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden, and
| | - Thorsten Wohland
- From the Center for BioImaging Sciences and .,the Department of Biological Sciences, National University of Singapore, 14 Science Dr. 4, Singapore 117543, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
10
|
Kilic S. Quantification of PEG40St squeeze out from DSPC/PEG40St monolayers at higher molar ratios. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Monti D, Tampucci S, Zucchetti E, Granchi C, Minutolo F, Piras AM. Effect of Tumor Relevant Acidic Environment in the Interaction of a N-hydroxyindole-2-Carboxylic Derivative with the Phospholipid Bilayer. Pharm Res 2018; 35:175. [PMID: 29987655 DOI: 10.1007/s11095-018-2449-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE The inhibitors of the human isoform 5 of lactate dehydrogenase (hLDH5) have attracted growing interest as efficient anti-cancer agents. In the present paper, the interactions between an efficient hLDH5 inhibitor (N-hydroxyindole-2-carboxylic derivative) and lipid bilayers based on dipalmitoylphosphatidylcholine (DPPC) were investigated. Additionally, since interstitial acidification plays a key role in tumor pathogenesis and tumor drug therapy, the effect of acidic pH was assessed and correlated to DPPC/drug interaction. METHODS Four different techniques were used: differential scanning calorimetry, dynamic light scattering, UV-VIS second derivative spectrometry and attenuated total reflection Fourier transformed infrared spectroscopy. RESULTS All techniques concur in highlighting a structural change of lipid assembly, susceptible both to pH change and to the presence of the antitumor compound. Lipid vesicles appeared more compact at the lower pH, since the thermal pre-transition from the lamellar gel phase to the ripple gel phase was absent at pH 7.4 and the infrared analysis revealed a stronger acyl chain packing as well as a different hydration degree. Drug interaction was mainly detected in the lipid region including the ester linkages and the first portion of the acyl chains. Furthermore, a lower drug partitioning was recorded at pH 6.6. CONCLUSIONS The investigated antitumor agent possesses a stable negative charge at the investigated pH values, thus the lower interaction at the acidic pH is mainly ascribable to an environmental effect on lipid assembly. Therefore, drug efficacy under tumor acid conditions may be hampered by the observed lipid membrane constraints, and suggest for the development of suitable prodrugs.
Collapse
Affiliation(s)
- Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Erica Zucchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| |
Collapse
|
12
|
Adams EM, Verreault D, Jayarathne T, Cochran RE, Stone EA, Allen HC. Surface organization of a DPPC monolayer on concentrated SrCl 2 and ZnCl 2 solutions. Phys Chem Chem Phys 2018; 18:32345-32357. [PMID: 27854367 DOI: 10.1039/c6cp06887a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metals are known to be enriched in organic-coated marine aerosols, but the impact these cations have on their surface properties is not well understood. Here the effect of Zn2+ enrichment on the surface properties of a dipalmitoylphosphatidylcholine (DPPC) monolayer was investigated and compared to that of the alkaline earth metal Sr2+, an ion not enriched in aerosols. Phase behavior of the DPPC film on concentrated aqueous solutions was probed with surface pressure-area isotherms while domain morphology was monitored with Brewster angle microscopy (BAM). Infrared reflection-absorption spectroscopy (IRRAS) and vibrational sum frequency generation (VSFG) spectroscopy were used to assess the impact of cations on the conformation and orientation of alkyl chains as well as the hydration state of the carbonyl and phosphatidylcholine (PC) moieties. Results of compression isotherms and BAM show that Zn2+ strongly interacts with DPPC molecules, and induces condensation of the monolayer while Sr2+ only weakly interacts with the monolayer in expanded phases. Conformational order and orientation of alkyl chains in the condensed phase are not significantly altered by either cation. IRRAS indicates that Sr2+ has weak interactions with the PC headgroup. Zn2+ ions cause dehydration of carbonyl groups and binds to the phosphate group in a 2 : 1 bridging complex. Findings here suggest that Sr2+ is not enriched in aerosols because it behaves similar to a monovalent ion and only weakly interacts with the monolayer, while enrichment of Zn2+ is due to strong binding to the lipid film.
Collapse
Affiliation(s)
- Ellen M Adams
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Dominique Verreault
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | - Richard E Cochran
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Elizabeth A Stone
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
13
|
Davies MJ, Leach AG, Fullwood D, Mistry D, Hope A. The pH dependent interaction between nicotine and simulated pulmonary surfactant monolayers with associated molecular modelling. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael J. Davies
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Andrew G. Leach
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Danielle Fullwood
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Dinesh Mistry
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Alexandra Hope
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
14
|
Bothun GD, Ganji N, Khan IA, Xi A, Bobba C. Anionic and Cationic Silver Nanoparticle Binding Restructures Net-Anionic PC/PG Monolayers with Saturated or Unsaturated Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:353-360. [PMID: 27966970 DOI: 10.1021/acs.langmuir.6b02003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have examined the interactions between polymer-coated anionic (Ag-COOH) and cationic (Ag-NH) silver nanoparticles, and net-anionic lipid monolayers using dynamic surface pressure measurements. Monolayers composed of saturated or monounsaturated mixtures of anionic phosphatidylglycerol (PG) and zwitterionic phosphatidylcholine (PC) lipids (3:1 molar ratio) were used to determine how lipid packing and monolayer phase state influence the extent of nanoparticle binding and the monolayer response. Anionic Ag-COOH inserted into saturated dipalmitoyl-PC/PG (DPPC/DPPG) and dioleoyl-PC/PG (DOPC/DOPG) monolayers at a low initial surface pressure (10 mN m-1) and caused lipid condensation at high initial surface pressures (20 and 30 mN m-1). Hydrophobic interactions were responsible for insertion, while electrostatic and charge-dipole interactions with PCs were responsible for condensation. In contrast, cationic Ag-NH inserted only into saturated DPPC/DPPG monolayers and otherwise led to lipid condensation. For Ag-NH, adsorption was driven primarily by electrostatic interactions with PGs. Analysis of the subphase Ag and phosphorus concentrations confirmed that Ag-NH had a higher degree binding compared to Ag-COOH, and that the monolayer response was not due to lipid extraction.
Collapse
Affiliation(s)
- G D Bothun
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - N Ganji
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - I A Khan
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - A Xi
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| | - C Bobba
- Department of Chemical Engineering, University of Rhode Island , 16 Greenhouse Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
15
|
Sanver D, Murray BS, Sadeghpour A, Rappolt M, Nelson AL. Experimental Modeling of Flavonoid-Biomembrane Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13234-13243. [PMID: 27951697 DOI: 10.1021/acs.langmuir.6b02219] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nonspecific interactions of flavonoids with lipids can alter the membrane's features (e.g., thickness and fluctuations) as well as influence their therapeutic potentials. However, relatively little is known about the details of how flavonoids interact with lipid components. Structure-dependent interactions of a variety of flavonoids with phospholipid monolayers on a mercury (Hg) film electrode were established by rapid cyclic voltammetry (RCV). The data revealed that flavonoids adopting a planar configuration altered the membrane properties more significantly than nonplanar flavonoids. Quercetin, rutin, and tiliroside were selected for follow-up experiments with Langmuir monolayers, Brewster angle microscopy (BAM), and small-angle X-ray scattering (SAXS). Relaxation phenomena in DOPC monolayers and visualization of the surface with BAM revealed a pronounced monolayer stabilization effect with both quercetin and tiliroside, whereas rutin disrupted the monolayer structure rendering the surface entirely smooth. SAXS showed a monotonous membrane thinning for all compounds studied associated with an increase in the mean fluctuations of the membrane. Rutin, quercetin, and tiliroside decreased the bilayer thickness of DOPC by ∼0.45, 0.8, and 1.1 Å at 6 mol %, respectively. In addition to the novelty of using lipid monolayers to systematically characterize the structure-activity relationship (SAR) of a variety of flavonoids, this is the first report investigating the effect of tiliroside with biomimetic membrane models. All the flavonoids studied are believed to be localized in the lipid/water interface region. Both this localization and the membrane perturbations have implications for their therapeutic activity.
Collapse
Affiliation(s)
- Didem Sanver
- Department of Food Engineering, Necmettin Erbakan University , Koycegiz Kampusu, 420701 Konya, Turkey
| | | | | | | | | |
Collapse
|
16
|
Gradella Villalva D, Diociaiuti M, Giansanti L, Petaccia M, Bešker N, Mancini G. Molecular Packing in Langmuir Monolayers Composed of a Phosphatidylcholine and a Pyrene Lipid. J Phys Chem B 2016; 120:1126-33. [DOI: 10.1021/acs.jpcb.5b11836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Denise Gradella Villalva
- Dipartimento
di Chimica, Università degli Studi di Roma “Sapienza”, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Marco Diociaiuti
- Dipartimento
di Tecnologia e Salute, Istituto Superiore di Sanità, Viale
Regina Elena 299, 00161 Roma, Italy
| | - Luisa Giansanti
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Manuela Petaccia
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Neva Bešker
- CINECA,
SCAI—Super
Computing Applications and Innovation Department, Via dei Tizii, 6, 00185, Rome, Italy
| | - Giovanna Mancini
- CNR—Istituto di
Metodologie Chimiche, Via Salaria km
29.300, 00016 Monterotondo
Scalo, Roma, Italy
| |
Collapse
|
17
|
Terme N, Jacquemet A, Benvegnu T, Vié V, Lemiègre L. Modification of bipolar lipid conformation at the air/water interface by a single stereochemical variation. Chem Phys Lipids 2014; 183:9-17. [DOI: 10.1016/j.chemphyslip.2014.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023]
|
18
|
Collapsed bipolar glycolipids at the air/water interface: effect of the stereochemistry on the stretched/bent conformations. J Colloid Interface Sci 2013; 412:72-81. [PMID: 24144376 DOI: 10.1016/j.jcis.2013.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022]
Abstract
This article describes a comparative study of several bipolar lipids derived from tetraether structures. The sole structural difference between the main two glycolipids is a unique stereochemical variation on a cyclopentyl ring placed in the middle of the lipids. We discuss the comparative results obtained at the air/water interface on the basis of tensiometry and ellipsometry. Langmuir-Blodgett depositions during lipid film compressions and decompressions were also analyzed by AFM. The lactosylated tetraether (bipolar) lipid structures involved the formation of highly stable multilayers, which are still present at 10 mN m(-1) during decompression. This study suggests also that the stereochemistry of a central cyclopentyl ring dramatically drives the conformation of the corresponding bipolar lipids. Both isomers (trans and cis) adopt a U-shaped (bent) conformation at the air/water interface but the trans cyclopentyl ring induces a much more frustration within this type of conformation. Consequently, this bipolar lipid (trans-tetraether) undergoes a flip of one polar head-group (lactosyl) leading to a stretched conformation during collapse.
Collapse
|
19
|
Hao C, Sun R, Zhang J. Mixed monolayers of DOPC and palmitic acid at the liquid–air interface. Colloids Surf B Biointerfaces 2013; 112:441-5. [DOI: 10.1016/j.colsurfb.2013.07.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023]
|
20
|
Kurniawan Y, Scholz C, Bothun GD. n-Butanol partitioning into phase-separated heterogeneous lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10817-10823. [PMID: 23888902 DOI: 10.1021/la400977h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cellular adaptation to elevated alcohol concentration involves altering membrane lipid composition to counteract fluidization. However, few studies have examined the biophysical response of biologically relevant heterogeneous membranes. Lipid phase behavior, molecular packing, and elasticity have been examined by surface pressure-area (π-A) analysis in mixed monolayers composed of saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated dioleoylphosphatidylcholine (DOPC) as a function of DOPC and n-butanol concentration. n-Butanol partitioning into DPPC monolayers led to lipid expansion and increased elasticity. Greater lipid expansion occurred with increasing DOPC concentration, and a maximum was observed at equimolar DPPC:DOPC consistent with n-butanol partitioning between coexisting liquid expanded (LE, DOPC) phases and liquid condensed (LC, DPPC) domains. This led to distinct changes in the size and morphology of LC domains. In DOPC-rich monolayers the effect of n-butanol adsorption on π-A behavior was less pronounced due to DOPC tail kinking. These results point to the importance of lipid composition and phase coexistence on n-butanol partitioning and monolayer restructuring.
Collapse
Affiliation(s)
- Yogi Kurniawan
- Department of Chemical Engineering, University of Rhode Island, 16 Greenhouse Rd., Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
21
|
Griesbauer J, Bössinger S, Wixforth A, Schneider MF. Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061909. [PMID: 23367978 DOI: 10.1103/physreve.86.061909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/25/2012] [Indexed: 06/01/2023]
Abstract
Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions and individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, the controllable thermodynamic state of which enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing time-resolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0.1-3 mV based on the assumption of static mechanoelectrical coupling. We show that the underlying physics for such propagating pulses is the same for synthetic and natural extracted (pork brain) lipids and that the measured propagation velocities and pulse amplitudes depend on the compressibility of the interface. Given the ubiquitous presence of hydrated interfaces in biology, our experimental findings seem to support a fundamentally new mechanism for the propagation of signals and communication pathways in biology (signaling), which is based neither on protein-protein or receptor-ligand interaction nor diffusion.
Collapse
Affiliation(s)
- J Griesbauer
- University of Augsburg, Experimental Physics I, D-86159 Augsburg, Germany and Boston University, Dept. of Mechanical Engineering, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
22
|
Guzmán E, Liggieri L, Santini E, Ferrari M, Ravera F. DPPC–DOPC Langmuir monolayers modified by hydrophilic silica nanoparticles: Phase behaviour, structure and rheology. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.12.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Risović D, Frka S, Kozarac Z. The Structure of Percolating Lipid Monolayers. J Colloid Interface Sci 2012; 373:116-21. [DOI: 10.1016/j.jcis.2011.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
24
|
Backus EHG, Bonn D, Cantin S, Roke S, Bonn M. Laser-heating-induced displacement of surfactants on the water surface. J Phys Chem B 2012; 116:2703-12. [PMID: 22324652 DOI: 10.1021/jp2074545] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a combined vibrational sum-frequency generation (SFG) spectroscopy, Brewster angle microscopy (BAM), and ellipsometry study of different surfactants on water as a function of surfactant density. Vibrational SFG spectra of surfactants on the water surface in a Langmuir trough have been measured in both the surfactant CH and the water OH stretch regions. At low densities, the SFG signal generated at the surface in the presence of the surfactant is indistinguishable from the SFG signal generated at the clean water-air interface. When the surfactant density increases, i.e., upon compressing the monolayer, a very sudden increase in the SFG signal in both the CH and OH spectral regions is observed. For higher laser fluences, this stepwise increase occurs at increasingly higher surfactant densities. Since BAM shows that surfactant molecules are clearly present at these low densities, we conclude that at low surfactant density the laser beam displaces relatively high-density domains with surfactants in the liquid expanded phase out of the region of the laser focus. This is a consequence of the thermal gradient induced by local heating of the water phase with the monolayer on top due to repetitive laser excitation at 1 kHz. It can be circumvented by using a rotating trough. In this manner, the sampled surface area can be refreshed, allowing artifact-free vibrational SFG spectra to be measured down to the very lowest surfactant densities. In ellipsometry experiments, a similar step can be noticed, which, however, is of a different nature; i.e., it is not related to heating (the laser fluence is very low and the light nonresonant) but to a molecular transition. The occurrence of the step in ellipsometry as a function of area per molecule depends critically on the preparation of the monolayer. By giving the molecules time and space to relax during the preparation of the monolayer, this step could also be eliminated.
Collapse
Affiliation(s)
- Ellen H G Backus
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Krajewska B, Wydro P, Jańczyk A. Probing the Modes of Antibacterial Activity of Chitosan. Effects of pH and Molecular Weight on Chitosan Interactions with Membrane Lipids in Langmuir Films. Biomacromolecules 2011; 12:4144-52. [DOI: 10.1021/bm2012295] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barbara Krajewska
- Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Agnieszka Jańczyk
- Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| |
Collapse
|
26
|
Wydro P, Knapczyk S, Lapczyńska M. Variations in the condensing effect of cholesterol on saturated versus unsaturated phosphatidylcholines at low and high sterol concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5433-5444. [PMID: 21452813 DOI: 10.1021/la105142w] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work, we have investigated the condensing and ordering effect induced by cholesterol on phosphatidylcholines (PCs). To perform the studies systematically, for the experiments we have selected phospholipids differing only in the number of cis monounsaturated chains (1,2-distearoyl-sn-glycero-3-phosphocholine--DSPC, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine--SOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine--DOPC) or in the length (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine--POPC vs SOPC) of sn-1 acyl chain. Because the cholesterol concentration in mammalian membranes can be as high as 70 mol % of total lipids, the investigations were performed in a wide range of the sterol content. The results of the Langmuir monolayer experiments evidence that the relation between the structure of hydrophobic part of PC and the magnitude of the effects induced by cholesterol found at lower sterol content is different from that observed at higher sterol concentration. At a lower concentration of sterol (up to 30%), the condensing effect of cholesterol is stronger on saturated DSPC than on PCs containing monounsaturated chain(s), which is consistent with the conclusions drawn by other authors. However, at higher sterol content (≥50%), saturated DSPC is less susceptible to the influence of sterol than the investigated unsaturated PCs. To explain these irregularities, we have considered the strength of van der Waals interactions as well as the influence of sterol on the tilt of polar heads of PCs. It was also found that in the whole range of sterol concentration the ordering effect is stronger on saturated DSPC as compared to unsaturated phospholipids. However, at lower sterol content (up to 30%) the ordering effect induced on unsaturated PCs is rather weak, and the ordering does not change drastically in comparison with pure PCs film.
Collapse
Affiliation(s)
- Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | |
Collapse
|
27
|
Interaction of the cationic peptide bactenecin with mixed phospholipid monolayers at the air-water interface. J Colloid Interface Sci 2011; 359:279-88. [PMID: 21501845 DOI: 10.1016/j.jcis.2011.03.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/26/2011] [Accepted: 03/29/2011] [Indexed: 01/02/2023]
Abstract
The initial mechanism by which antimicrobial peptides target microbes occurs via electrostatic interactions; however, the mechanism is not well understood. We investigate the interaction of the antimicrobial peptide bactenecin with a 50:50 w:w% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) phospholipid mixture at the air-water interface with different NaCl concentrations (0.01, 0.05, 0.1, 0.5 M) in the subphase. A larger shift of DPPC:DMPG isotherms was obtained for 0.1 M salt concentration at lower and higher pressures, demonstrating the influence of the negative charge of DMPG molecules and the screening of the electrostatic interaction by the salt concentration. Raman spectroscopy of monolayers demonstrated the presence of cysteine-cysteine bridges in bactenecin loops. The peptide adsorption in DPPC:DMPG monolayers observed by AFM images suggests a self-assembled aggregation process, starting with filament-like networks. Domains similar to carpets were formed and pore structures were obtained after a critical peptide concentration, according to the carpet model.
Collapse
|
28
|
Tan LN, Bertics PJ, Abbott NL. Ordering transitions in nematic liquid crystals induced by vesicles captured through ligand-receptor interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1419-29. [PMID: 21142099 PMCID: PMC3036770 DOI: 10.1021/la103975s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report that phospholipid vesicles incorporating ligands, when captured from solution onto surfaces presenting receptors for these ligands, can trigger surface-induced orientational ordering transitions in nematic phases of 4'-pentyl-4-cyanobiphenyl (5CB). Specifically, whereas avidin-functionalized surfaces incubated against vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were observed to cause the liquid crystal (LC) to adopt a parallel orientation at the surface, the same surfaces incubated against biotinylated vesicles (DOPC and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (biotin-DOPE)) caused the homeotropic (perpendicular) ordering of the LC. The use of a combination of atomic force microscopy (AFM), ellipsometry and quantitative fluorimetry, performed as a function of vesicle composition and vesicle concentration in solution, revealed the capture of intact vesicles containing 1% biotin-DOPE from buffer at the avidin-functionalized surfaces. Subsequent exposure to water prior to contact with the LC, however, resulted in the rupture of the majority of vesicles into interfacial multilayer assemblies with a maximum phospholipid loading set by random close packing of the intact vesicles initially captured on the surface (5.1 ± 0.2 phospholipid molecules/nm(2)). At high concentrations of biotinylated lipid (>10% biotin-DOPE) in the vesicles, the limiting lipid loading was measured to be 4.0 ± 0.3 phospholipid molecules/nm(2), consistent with the maximum phospholipid loading set by the spontaneous formation of a bilayer during incubation with the biotinylated vesicles. We measured the homeotropic ordering of the LC on the surfaces independently of the initial morphology of the phospholipid assembly captured on the surface (intact vesicle, planar multilayer). We interpret this result to infer the reorganization of the phospholipid bilayers either prior to or upon contact with the LCs such that interactions of the acyl chains of the phospholipid and the LC dominate the ordering of the LC, a conclusion that is further supported by quantitative measurements of the orientation of the LC as a function of the phospholipid surface density (>1.8 molecules/nm(2) is required to cause the homeotropic ordering of the LC). These results and others presented herein provide fundamental insights into the interactions of phospholipid-decorated interfaces with LCs and thereby provide guidance for the design of surfaces on which phospholipid assemblies captured through ligand-receptor recognition can be reported via ordering transitions in LCs.
Collapse
Affiliation(s)
- Lie Na Tan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
| |
Collapse
|
29
|
Risović D, Frka S, Kozarac Z. Application of Brewster angle microscopy and fractal analysis in investigations of compressibility of Langmuir monolayers. J Chem Phys 2011; 134:024701. [DOI: 10.1063/1.3522646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
|
31
|
Chu BS, Gunning AP, Rich GT, Ridout MJ, Faulks RM, Wickham MSJ, Morris VJ, Wilde PJ. Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9782-9793. [PMID: 20222694 DOI: 10.1021/la1000446] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It is increasingly recognized that changes in the composition of the oil-water interface can markedly affect pancreatic lipase adsorption and function. To understand interfacial mechanisms determining lipase activity, we investigated the adsorption behavior of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol (DGDG) and dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. The results from Langmuir trough and pendant drop experiments showed that a DGDG interface was more resistant to the adsorption of bile salts, colipase, and lipase compared to that of DPPC. Atomic force microscopy (AFM) images showed that the adsorption of bile salts into a DPPC monolayer decreased the size of the liquid condensed (LC) domains while there was no visible topographical change for DGDG systems. The results also showed that colipase and lipase adsorbed exclusively onto the mixed DPPC-bile salt regions and not the DPPC condensed phase. When the colipase and lipase were in excess, they fully covered the mixed DPPC-bile salt regions. However, the colipase and lipase coverage on the mixed DGDG-bile salt monolayer was incomplete and discontinuous. It was postulated that bile salts adsorbed into the DPPC monolayers filling the gaps between the lipid headgroups and spacing out the lipid molecules, making the lipid hydrocarbon tails more exposed to the surface. This created hydrophobic patches suitable for the binding of colipase and lipase. In contrast, bile salts adsorbed less easily into the DGDG monolayer because DGDG has a larger headgroup, which has strong intermolecular interactions and the ability to adopt different orientations at the interface. Thus, there are fewer hydrophobic patches that are of sufficient size to accommodate the colipase on the mixed DGDG-bile salt monolayer compared to the mixed DPPC-bile salt regions. The results from this work have reinforced the hypothesis that the interfacial molecular packing of lipids at the oil-water interface influences the adsorption of bile salts, colipase, and lipase, which in turn impacts the rate of lipolysis.
Collapse
Affiliation(s)
- Boon-Seang Chu
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tzvetanov S, Shushkov P, Velinova M, Ivanova A, Tadjer A. Molecular dynamics study of the electric and dielectric properties of model DPPC and dicaprin insoluble monolayers: size effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8093-8105. [PMID: 20337416 DOI: 10.1021/la9047352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Atomistic modeling of insoluble monolayers is currently used to inspect their organization and electric characteristics, providing a link between theory and experiment. Extensive molecular dynamics simulations at 300 K were carried out for model films of the lipids dipalmitoylphosphatidylcholine (DPPC) and dicaprin (DC) at the air/water interface. Surface concentrations corresponding to a set of points along the surface pressure/area isotherms of the surfactants were considered. The models contained 25 or 81 lipid molecules in hexagonal arrangement and explicit aqueous media (TIP3P) treated in periodic boundary conditions. Molecular dynamics simulations based on a classical force field (CHARMM27) were carried out and key characteristics of the studied films were estimated. The dielectric properties of the films in normal and tangential direction were quantified by means of dipole moment magnitude and orientation analysis and by monolayer dielectric permittivity. The contributions of lipids and interfacial water to each component of the considered characteristics were assessed and their variations upon film compression were discussed and compared for the two monolayers and to earlier results. The dielectric permittivity tensors were analyzed. Electrostatic potential profiles across the layers and surface pressure values were used for more detailed clarification of experimental measurements. The results show dissimilar behavior of the two lipids at the air-water interface. While the average electric and dielectric properties of DPPC monolayers result from opposite surfactant and water contributions, the two subsystems are synergetic in the DC films. The anisotropy of the monolayer dipole moment and dielectric permittivity is explained by domination of a different subsystem in the various components. Tangential characteristics turn out to be more sensitive to the size of the model and to the degree of film compression.
Collapse
Affiliation(s)
- Stanislav Tzvetanov
- Laboratory of Quantum and Computational Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
33
|
Shushkov P, Tzvetanov S, Velinova M, Ivanova A, Tadjer A. Structural aspects of lipid monolayers: computer simulation analyses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8081-8092. [PMID: 20337413 DOI: 10.1021/la904734b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extensive molecular dynamics simulations at room temperature were carried out for model films of two dissimilar lipids (DPPC and dicaprin) at the air/water interface. To study the peculiarities of the organization patterns at different average areas per molecule, surface concentrations corresponding to five almost equally spaced points along the isotherms of the two surfactants were considered. A variable of prime interest was the density distribution in a direction normal to the interface of the monolayer components: interfacial water and surfactant on one hand and the separate moieties of the lipids on the other hand. The packing pattern and cluster size dispersion were studied by means of Voronoi tessellation and radial distribution functions. Speculations regarding structural changes upon phase-state changes during film compression were made. Individual characteristics for surfactant heads and tails as well as for interfacial water were outlined and related to the available experimental data. An analysis of the diffusion coefficients revealed the limiting factors for lipid lateral and normal diffusion. Structural arguments in support of changes in monolayer dielectric properties with the area per molecule were provided.
Collapse
Affiliation(s)
- Philip Shushkov
- Laboratory of Quantum and Computational Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
34
|
Wang Z, Li X, Yang S. Studies of dipalmitoylphosphatidylcholine (DPPC) monolayers embedded with endohedral metallofullerene (Dy@C82). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12968-12973. [PMID: 19739623 DOI: 10.1021/la9017932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Toxicological effects of carbon nanomaterials have attracted increasing attention. In this work, we studied the interaction between Dy@C(82) and dipalmitoylphosphatidylcholine (DPPC) in a monolayer at the N(2)/Tris buffer interface by thermodynamic analysis of surface pressure-area (pi-A) and surface potential-area (DeltaV-A) isotherms. Dy@C(82) was found to impact considerably more on the physical properties of the monolayers than C(60) because of its elliptical structure and distinctive dipole. The addition of Dy@C(82) essentially closed down the liquid expanded-liquid condensed (LE-LC) phase coexistence region of the mixed monolayers. Furthermore, Dy@C(82) reduced elasticity of the monolayers, as indicated by the decreasing elastic modulus (C(s)(-1)) with increasing molar ratio of Dy@C(82) (X(Dy@C82)). Brewster angle microscopy (BAM) and atomic force microscopy (AFM) revealed that the dispersion of Dy@C(82) depend on the state of the mixed films. Dy@C(82) formed flocs from aggregation of Dy@C(82) towers in the LE and LE-LC coexistence regions, accompanied by gradual falling down of Dy@C(82) from the towers and permeation of the falling metallofullerenes into the LE phase during their compression-induced reorientation process. In the LC and solid phases, the Dy@C(82) flocs were dispersed into isolated towers, accompanied by the partial squeezing out of the embedded metallofullerenes to above the DPPC monolayer. The continuous falling down of Dy@C(82) from the towers resulted in their height decrease but diameter enlargement. When the surface pressure was increased to the kink value (53 mN/m), Dy@C(82) was almost completely extruded from the DPPC monolayers. These findings are believed to be important for understanding the impact of fullerenes, metallofullerenes, and nanomaterials in general on biological membranes.
Collapse
Affiliation(s)
- Zhining Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
35
|
Lucero Caro A, Rodríguez Niño MR, Rodríguez Patino JM. Topography of dipalmitoyl-phosphatidyl-choline monolayers penetrated by β-casein. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
López-Oyama AB, Flores-Vázquez AL, Burboa MG, Gutiérrez-Millán LE, Ruiz-García J, Valdez MA. Interaction of the Cationic Peptide Bactenecin with Phospholipid Monolayers at the Air−Water Interface: I Interaction with 1,2-Dipalmitoyl-sn-Glycero-3-Phosphatidilcholine. J Phys Chem B 2009; 113:9802-10. [DOI: 10.1021/jp902709t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. B. López-Oyama
- Departamento de Investigación en Polímeros y Materiales, Departamento de Investigaciones Científicas y Tecnológicas, and Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, México and Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, México
| | - A. L. Flores-Vázquez
- Departamento de Investigación en Polímeros y Materiales, Departamento de Investigaciones Científicas y Tecnológicas, and Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, México and Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, México
| | - M. G. Burboa
- Departamento de Investigación en Polímeros y Materiales, Departamento de Investigaciones Científicas y Tecnológicas, and Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, México and Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, México
| | - L. E. Gutiérrez-Millán
- Departamento de Investigación en Polímeros y Materiales, Departamento de Investigaciones Científicas y Tecnológicas, and Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, México and Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, México
| | - J. Ruiz-García
- Departamento de Investigación en Polímeros y Materiales, Departamento de Investigaciones Científicas y Tecnológicas, and Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, México and Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, México
| | - M. A. Valdez
- Departamento de Investigación en Polímeros y Materiales, Departamento de Investigaciones Científicas y Tecnológicas, and Departamento de Física, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, México and Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, México
| |
Collapse
|
37
|
Caro AL, Rodríguez Niño MR, Rodríguez Patino JM. Dynamics of penetration of dipalmitoyl-phosphatidyl-choline (DPPC) monolayers by β-casein. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.03.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Niño MRR, Caro AL, Patino JMR. Structural, topographical, and rheological characteristics of β-casein–dioleoyl phosphatidylcholine (DOPC) mixed monolayers. Colloids Surf B Biointerfaces 2009; 69:15-25. [DOI: 10.1016/j.colsurfb.2008.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/26/2022]
|
39
|
Caro AL, Niño MRR, Patino JMR. The effect of pH on structural, topographical, and rheological characteristics of β-casein–DPPC mixed monolayers spread at the air–water interface. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2008.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Eeman M, Pegado L, Dufrêne YF, Paquot M, Deleu M. Influence of environmental conditions on the interfacial organisation of fengycin, a bioactive lipopeptide produced by Bacillus subtilis. J Colloid Interface Sci 2008; 329:253-64. [PMID: 18947831 DOI: 10.1016/j.jcis.2008.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/04/2008] [Accepted: 10/07/2008] [Indexed: 11/24/2022]
Abstract
The effect of the environmental conditions both on the behaviour of fengycin at the air-aqueous interface and on its interaction with DPPC was studied using surface pressure-area isotherms and AFM. The ionisation state of fengycin is at the origin of its monolayer interfacial properties. The most organised interfacial arrangement is obtained when fengycin behaves as if having zero net charge (pH 2). In a fully ionised state (pH 7.4), the organisation and the stability of fengycin monolayers depend on the ionic strength in the subphase. This can modulate the surface potential of fengycin and consequently the electrostatic repulsions inside the interfacial monolayer, as well as the lipopeptide interaction with the layer of water molecules forming the air-water interface. Intermolecular interactions of fengycin with DPPC are also strongly affected by the ionisation state of lipopeptide and the surface pressure (Pi) of the monolayer. A better miscibility between both interfacial components is observed at pH 2, while negatively charged lipopeptide molecules are segregated from the DPPC phase. A progressive desorption of fengycin from the interface is observed at pH 7.4 when Pi increases while at pH 2, fengycin desorption brutally occurs when Pi rises above Pi value of the intermediate plateau.
Collapse
Affiliation(s)
- Marc Eeman
- Unité de Chimie Biologique Industrielle, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | | | | | | | | |
Collapse
|
41
|
Lucero Caro A, Rodríguez Niño MR, Rodríguez Patino JM. The effect of pH on surface dilatational and shear properties of phospholipid monolayers. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|