1
|
Zima V, Gladwish O, Marek A, Tureček F. Nucleoside Cation Radicals: Generation, Radical-Induced Hydrogen Atom Migrations, and Ribose Ring Cleavage in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1594-1608. [PMID: 38842116 DOI: 10.1021/jasms.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Nucleoside ions that were furnished on ribose with a 2'-O-acetyl radical group were generated in the gas phase by multistep collision-induced dissociation of precursor ions tagged with radical initiator groups, and their chemistry was investigated in the gas phase. 2'-O-Acetyladenosine cation radicals were found to undergo hydrogen transfer to the acetoxyl radical from the ribose ring positions that were elucidated using specific deuterium labeling of 1'-H, 2'-H, and 4'-H and in the N-H and O-H exchangeable positions, favoring 4'-H transfer. Ion structures and transition-state energies were calculated by a combination of Born-Oppenheimer molecular dynamics and density functional theory and used to obtain unimolecular rate constants for competitive hydrogen transfer and loss of the acetoxyl radical. Migrations to the acetoxyl radical of ribose hydrogens 1'-H, 2'-H, 3'-H, and 4'-H were all exothermic, but product formation was kinetically controlled. Both Rice-Ramsperger-Kassel-Marcus (RRKM) and transition-state theory (TST) calculations indicated preferential migration of 4'-H in a qualitative agreement with the deuterium labeling results. The hydrogen migrations displayed substantial isotope effects that along with quantum tunneling affected the relative rate constants and reaction branching ratios. UV-vis action spectroscopy indicated that the cation radicals from 2'-O-acetyladenosine consisted of a mixture of isomers. Radical-driven dissociations were also observed for protonated guanosine, cytosine, and thymidine conjugates. However, for those nucleoside ions and cation radicals, the dissociations were dominated by the loss of the nucleobase or formation of protonated nucleobase ions.
Collapse
Affiliation(s)
- Václav Zima
- Department of Chemistry, University of Washington, 351700 Bagley Hall, Seattle, Washington 98195-1700, United States
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Owen Gladwish
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, United States
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, 351700 Bagley Hall, Seattle, Washington 98195-1700, United States
| |
Collapse
|
2
|
Bhunia S, Kumar A, Ojha AK. Tuning of structural and magnetic properties by intriguing radical-radical interaction by double electron oxidation in U-A-U′ triplex formation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Choi J, Tojo S, Ahn DS, Fujitsuka M, Miyamoto S, Kobayashi K, Ihee H, Majima T. Proton Transfer Accompanied by the Oxidation of Adenosine. Chemistry 2019; 25:7711-7718. [PMID: 30957282 DOI: 10.1002/chem.201900732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Indexed: 11/07/2022]
Abstract
Despite numerous experimental and theoretical studies, the proton transfer accompanying the oxidation of 2'-deoxyadenosine 5'-monophosphate 2'-deoxyadenosine 5'-monophosphate (5'-dAMP, A) is still under debate. To address this issue, we have investigated the oxidation of A in acidic and neutral solutions by using transient absorption (TA) and time-resolved resonance Raman (TR3 ) spectroscopic methods in combination with pulse radiolysis. The steady-state Raman signal of A was significantly affected by the solution pH, but not by the concentration of adenosine (2-50 mm). More specifically, the A in acidic and neutral solutions exists in its protonated (AH+ (N1+H+ )) and neutral (A) forms, respectively. On the one hand, the TA spectral changes observed at neutral pH revealed that the radical cation (A.+ ) generated by pulse radiolysis is rapidly converted into A. (N6-H) through the loss of an imino proton from N6. In contrast, at acidic pH (<4), AH.2+ (N1+H+ ) generated by pulse radiolysis of AH+ (N1+H+ ) does not undergo the deprotonation process owing to the pKa value of AH.2+ (N1+H+ ), which is higher than the solution pH. Furthermore, the results presented in this study have demonstrated that A, AH+ (N1+H+ ), and their radical species exist as monomers in the concentration range of 2-50 mm. Compared with the Raman bands of AH+ (N1+H+ ), the TR3 bands of AH.2+ (N1+H+ ) are significantly down-shifted, indicating a decrease in the bond order of the pyrimidine and imidazole rings due to the resonance structure of AH.2+ (N1+H+ ). Meanwhile, A. (N6-H) does not show a Raman band corresponding to the pyrimidine+NH2 scissoring vibration due to diprotonation at the N6 position. These results support the final products generated by the oxidation of adenosine in acidic and neutral solutions being AH.2+ (N1+H+ ) and A. (N6-H), respectively.
Collapse
Affiliation(s)
- Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Doo-Sik Ahn
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Shunichi Miyamoto
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
4
|
Röttger K, Marroux HJB, Chemin AFM, Elsdon E, Oliver TAA, Street STG, Henderson AS, Galan MC, Orr-Ewing AJ, Roberts GM. Is UV-Induced Electron-Driven Proton Transfer Active in a Chemically Modified A·T DNA Base Pair? J Phys Chem B 2017; 121:4448-4455. [PMID: 28394602 DOI: 10.1021/acs.jpcb.7b02679] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Transient electronic and vibrational absorption spectroscopies have been used to investigate whether UV-induced electron-driven proton transfer (EDPT) mechanisms are active in a chemically modified adenine-thymine (A·T) DNA base pair. To enhance the fraction of biologically relevant Watson-Crick (WC) hydrogen-bonding motifs and eliminate undesired Hoogsteen structures, a chemically modified derivative of A was synthesized, 8-(tert-butyl)-9-ethyladenine (8tBA). Equimolar solutions of 8tBA and silyl-protected T nucleosides in chloroform yield a mixture of WC pairs, reverse WC pairs, and residual monomers. Unlike previous transient absorption studies of WC guanine-cytosine (G·C) pairs, no clear spectroscopic or kinetic evidence was identified for the participation of EDPT in the excited-state relaxation dynamics of 8tBA·T pairs, although ultrafast (sub-100 fs) EDPT cannot be discounted. Monomer-like dynamics are proposed to dominate in 8tBA·T.
Collapse
Affiliation(s)
- Katharina Röttger
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Hugo J B Marroux
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Arsène F M Chemin
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Emma Elsdon
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Thomas A A Oliver
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Steven T G Street
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | | | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Gareth M Roberts
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
5
|
Zheng L, Griesser M, Pratt DA, Greenberg MM. Aminyl Radical Generation via Tandem Norrish Type I Photocleavage, β-Fragmentation: Independent Generation and Reactivity of the 2'-Deoxyadenosin- N6-yl Radical. J Org Chem 2017; 82:3571-3580. [PMID: 28318253 DOI: 10.1021/acs.joc.7b00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Formal hydrogen atom abstraction from the nitrogen-hydrogen bonds in purine nucleosides produces reactive intermediates that are important in nucleic acid oxidation. Herein we describe an approach for the independent generation of the purine radical resulting from hydrogen atom abstraction from the N6-amine of 2'-deoxyadenosine (dA•). The method involves sequential Norrish Type I photocleavage of a ketone (7b) and β-fragmentation of the initially formed alkyl radical (8b) to form dA• and acetone. The formation of dA• was followed by laser flash photolysis, which yields a transient with λmax ≈ 340 nm and a broader weaker absorption centered at ∼560 nm. This transient grows in at ≥2 × 105 s-1; however, computations and reactivity data suggest that β-fragmentation occurs much faster, implying the consumption of dA• as it is formed. Continuous photolysis of 7b in the presence of ferrous ion or thiophenol produces good yields of dA, whereas less reactive thiols afford lower yields presumably due to a polarity mismatch. This tandem photochemical, β-fragmentation method promises to be useful for site-specific production of dA• in nucleic acid oligomers and/or polymers and also for the production of aminyl radicals, in general.
Collapse
Affiliation(s)
- Liwei Zheng
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Markus Griesser
- Department of Chemistry & Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa , 10 Marie Curie Pvt., Ottawa, Canada
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Francés-Monerris A, Merchán M, Roca-Sanjuán D. Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates. J Org Chem 2016; 82:276-288. [PMID: 27957829 DOI: 10.1021/acs.joc.6b02393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The OH radical is a well-known mediator in the oxidation of biological structures like DNA. Over the past decades, the precise events taking place after reaction of DNA nucleobases with OH radical have been widely investigated by the scientific community. Thirty years after the proposal of the main routes for the reaction of •OH with adenine ( Vieira , A. ; Steenken , S. J. Am. Chem. Soc. 1990 , 112 , 6986 - 6994 ), the present work demonstrates that the OH radical addition to C4 position is a minor pathway. Instead, the dehydration process is mediated by the A5OH adduct. Conclusions are based on density functional theory calculations for the ground-state reactivity and highly accurate multiconfigurational computations for the excited states of the radical intermediates. The methodology has been also used to study the mechanism giving rise to the mutagens 8-oxoA and FAPyA. Taking into account the agreement between the experimental data and the theoretical results, it is concluded that addition to the C5 and C8 positions accounts for at least ∼44.5% of the total •OH reaction in water solution. Finally, the current findings suggest that hydrophobicity in the DNA/RNA surroundings facilitates the formation of 8-oxoA and FAPyA.
Collapse
Affiliation(s)
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| |
Collapse
|
7
|
Banyasz A, Ketola TM, Muñoz-Losa A, Rishi S, Adhikary A, Sevilla MD, Martinez-Fernandez L, Improta R, Markovitsi D. UV-Induced Adenine Radicals Induced in DNA A-Tracts: Spectral and Dynamical Characterization. J Phys Chem Lett 2016; 7:3949-3953. [PMID: 27636653 PMCID: PMC5053904 DOI: 10.1021/acs.jpclett.6b01831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Adenyl radicals generated in DNA single and double strands, (dA)20 and (dA)20·(dT)20, by one- and two-photon ionization by 266 nm laser pulses decay at 600 nm with half-times of 1.0 ± 0.1 and 4 ± 1 ms, respectively. Though ionization initially forms the cation radical, the radicals detected for (dA)20 are quantitatively identified as N6-deprotonated adenyl radicals by their absorption spectrum, which is computed quantum mechanically employing TD-DFT. Theoretical calculations show that deprotonation of the cation radical induces only weak spectral changes, in line with the spectra of the adenyl radical cation and the deprotonated radical trapped in low temperature glasses.
Collapse
Affiliation(s)
- Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Tiia-Maaria Ketola
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Aurora Muñoz-Losa
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Sunny Rishi
- Department of Chemistry, Oakland University, Rochester, MI 48303
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48303
| | - Michael D. Sevilla
- Department of Chemistry, Oakland University, Rochester, MI 48303
- Corresponding Authors. , ,
| | - Lara Martinez-Fernandez
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
- Corresponding Authors. , ,
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Corresponding Authors. , ,
| |
Collapse
|
8
|
Nilov DI, Komarov DY, Panov MS, Karabaeva KE, Mereshchenko AS, Tarnovsky AN, Wilson RM. Oxidation of adenosine and inosine: the chemistry of 8-oxo-7,8-dihydropurines, purine iminoquinones, and purine quinones as observed by ultrafast spectroscopy. J Am Chem Soc 2013; 135:3423-38. [PMID: 23339714 DOI: 10.1021/ja3068148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxidative damage to purine nucleic acid bases proceeds through quinoidal intermediates derived from their corresponding 8-oxo-7,8-dihydropurine bases. Oxidation studies of 8-oxo-7,8-dihyroadenosine and 8-oxo-7,8-dihydroinosine indicate that these quinoidal species can produce stable cross-links with a wide variety of nucleophiles in the 2-positions of the purines. An azide precursor for the adenosine iminoquinone has been synthesized and applied in ultrafast transient absorption spectroscopic studies. Thus, the adenosine iminoquinone can be observed directly, and its susceptibility to nucleophilic attack with various nucleophiles as well as the stability of the resulting cross-linked species have been evaluated. Finally, these observations indicate that this azide might be a very useful photoaffinity labeling agent, because the reactive intermediate, adenosine iminoquinone, is such a good mimic for the universal purine base adenosine.
Collapse
Affiliation(s)
- Denis I Nilov
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Bhattacharjee S, Chatterjee S, Jiang J, Sinha BK, Mason RP. Detection and imaging of the free radical DNA in cells--site-specific radical formation induced by Fenton chemistry and its repair in cellular DNA as seen by electron spin resonance, immuno-spin trapping and confocal microscopy. Nucleic Acids Res 2012; 40:5477-86. [PMID: 22387463 PMCID: PMC3384307 DOI: 10.1093/nar/gks180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress-related damage to the DNA macromolecule produces lesions that are implicated in various diseases. To understand damage to DNA, it is important to study the free radical reactions causing the damage. Measurement of DNA damage has been a matter of debate as most of the available methods measure the end product of a sequence of events and provide limited information on the initial free radical formation. We report a measurement of free radical damage in DNA induced by a Cu(II)-H2O2 oxidizing system using immuno-spin trapping supplemented with electron paramagnetic resonance. In this investigation, the short-lived radical generated is trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) immediately upon formation. The DMPO adduct formed is initially electron paramagnetic resonance active, but is subsequently oxidized to the stable nitrone adduct, which can be detected and visualized by immuno-spin trapping and has the potential to be further characterized by other analytical techniques. The radical was found to be located on the 2′-deoxyadenosine (dAdo) moiety of DNA. The nitrone adduct was repaired on a time scale consistent with DNA repair. In vivo experiments for the purpose of detecting DMPO–DNA nitrone adducts should be conducted over a range of time in order to avoid missing adducts due to the repair processes.
Collapse
Affiliation(s)
- Suchandra Bhattacharjee
- Laboratory of Toxicology and Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
10
|
McEwen JS, Bray JM, Wu C, Schneider WF. How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). Phys Chem Chem Phys 2012; 14:16677-85. [DOI: 10.1039/c2cp42225e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Bhattacharjee S, Deterding LJ, Chatterjee S, Jiang J, Ehrenshaft M, Lardinois O, Ramirez DC, Tomer KB, Mason RP. Site-specific radical formation in DNA induced by Cu(II)-H₂O₂ oxidizing system, using ESR, immuno-spin trapping, LC-MS, and MS/MS. Free Radic Biol Med 2011; 50:1536-45. [PMID: 21382477 PMCID: PMC3100166 DOI: 10.1016/j.freeradbiomed.2011.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 11/29/2022]
Abstract
Oxidative stress-related damage to the DNA macromolecule produces a multitude of lesions that are implicated in mutagenesis, carcinogenesis, reproductive cell death, and aging. Many of these lesions have been studied and characterized by various techniques. Of the techniques that are available, the comet assay, HPLC-EC, GC-MS, HPLC-MS, and especially HPLC-MS/MS remain the most widely used and have provided invaluable information on these lesions. However, accurate measurement of DNA damage has been a matter of debate. In particular, there have been reports of artifactual oxidation leading to erroneously high damage estimates. Further, most of these techniques measure the end product of a sequence of events and thus provide only limited information on the initial radical mechanism. We report here a qualitative measurement of DNA damage induced by a Cu(II)-H₂O₂ oxidizing system using immuno-spin trapping (IST) with electron paramagnetic resonance (EPR), MS, and MS/MS. The radical generated is trapped by DMPO immediately upon formation. The DMPO adduct formed is initially EPR active but subsequently is oxidized to the stable nitrone, which can then be detected by IST and further characterized by MS and MS/MS.
Collapse
Affiliation(s)
- Suchandra Bhattacharjee
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reactivities of radicals of adenine and guanine towards reactive oxygen species and reactive nitrogen oxide species: OH and NO2. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.01.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Kobayashi K. Evidence of formation of adenine dimer cation radical in DNA: the importance of adenine base stacking. J Phys Chem B 2010; 114:5600-4. [PMID: 20369809 DOI: 10.1021/jp100589w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deprotonation of the adenine (A) base in both mononucleotide and oligonucleotide (ODN) was measured by nanosecond pulse radiolysis. The cation radical (A(+*)) of deoxyadenosine (dA), produced by oxidation with SO(4)(-*), rapidly deprotonated to form the neutral A radical (A(- H)(*)) with a rate constant of 2.0 x 10(7) s(-1) and a pK(a) value of 4.2, as determined by transient spectroscopy. A similar process was observed in experiments performed on a variety of double-stranded ODNs containing adenine x thymine (A x T) base pairs. The transient spectrum of A(+)(*) in an ODN composed of alternating A x T pairs was essentially identical to that of free dA and differed from the spectra of ODNs containing AA and AAA. In contrast, the spectra of A(- H)(*) were not affected by the sequence. These results suggest that the positive charge on A(+)(*) in ODNs is delocalized as the dimer is stabilized by pi-orbital stacking between adjacent A's. The rate constants for deprotonation of A(+)(*) in ODNs containing AA and AAA (0.9-1.1 x 10(7) s(-1)) were a factor of 2 smaller than the rate constants for deprotonation of A(+)(*) in ODNs containing alternating A x T and dA (2.0 x 10(7) s(-1)). This suggests that the formation of a charge resonance stabilized dimer AA(+)(*) in DNA produced a significant barrier to deprotonation.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki Osaka 567-0047, Japan.
| |
Collapse
|