1
|
Selby TM, Goulay F, Soorkia S, Ray A, Jasper AW, Klippenstein SJ, Morozov AN, Mebel AM, Savee JD, Taatjes CA, Osborn DL. Radical-Radical Reactions in Molecular Weight Growth: The Phenyl + Propargyl Reaction. J Phys Chem A 2023; 127:2577-2590. [PMID: 36905386 DOI: 10.1021/acs.jpca.2c08121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The mechanism for hydrocarbon ring growth in sooting environments is still the subject of considerable debate. The reaction of phenyl radical (C6H5) with propargyl radical (H2CCCH) provides an important prototype for radical-radical ring-growth pathways. We studied this reaction experimentally over the temperature range of 300-1000 K and pressure range of 4-10 Torr using time-resolved multiplexed photoionization mass spectrometry. We detect both the C9H8 and C9H7 + H product channels and report experimental isomer-resolved product branching fractions for the C9H8 product. We compare these experiments to theoretical kinetics predictions from a recently published study augmented by new calculations. These ab initio transition state theory-based master equation calculations employ high-quality potential energy surfaces, conventional transition state theory for the tight transition states, and direct CASPT2-based variable reaction coordinate transition state theory (VRC-TST) for the barrierless channels. At 300 K only the direct adducts from radical-radical addition are observed, with good agreement between experimental and theoretical branching fractions, supporting the VRC-TST calculations of the barrierless entrance channel. As the temperature is increased to 1000 K we observe two additional isomers, including indene, a two-ring polycyclic aromatic hydrocarbon, and a small amount of bimolecular products C9H7 + H. Our calculated branching fractions for the phenyl + propargyl reaction predict significantly less indene than observed experimentally. We present further calculations and experimental evidence that the most likely cause of this discrepancy is the contribution of H atom reactions, both H + indenyl (C9H7) recombination to indene and H-assisted isomerization that converts less stable C9H8 isomers into indene. Especially at low pressures typical of laboratory investigations, H-atom-assisted isomerization needs to be considered. Regardless, the experimental observation of indene demonstrates that the title reaction leads, either directly or indirectly, to the formation of the second ring in polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Talitha M Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin-Milwaukee, West Bend, Wisconsin 53095, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, F-91405 Orsay, France
| | - Amelia Ray
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha, Wisconsin 53144, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - John D Savee
- KLA Corporation, Milpitas, California 95035, United States
| | - Craig A Taatjes
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204516. [DOI: 10.1002/anie.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
3
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
4
|
Schleier D, Reusch E, Gerlach M, Preitschopf T, Mukhopadhyay DP, Faßheber N, Friedrichs G, Hemberger P, Fischer I. Kinetics of 1- and 2-methylallyl + O 2 reaction, investigated by photoionisation using synchrotron radiation. Phys Chem Chem Phys 2021; 23:1539-1549. [PMID: 33404571 DOI: 10.1039/d0cp05441k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction kinetics of the isomers of the methylallyl radical with molecular oxygen has been studied in a flow tube reactor at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source storage ring. The radicals were generated by direct photodissociation of bromides or iodides at 213 nm. Experiments were conducted at room temperature and low pressures between 1 and 3 mbar using He as the buffer gas. Oxygen was employed in excess to maintain near pseudo-first-order reaction conditions. Concentration-time profiles of the radical were monitored by photoionisation. For the oxidation of 2-methylallyl (2-MA) and with k(2-MA + O2) = (5.1 ± 1.0) × 1011 cm3 mol-1 s-1, the rate constant was found to be in the high-pressure limit already at 1 mbar. In contrast, 1-methylallyl exists in two isomers, E- and Z-1-methylallyl. We selectively detected the E-conformer as well as a mixture of both isomers and observed almost identical rate constants within the uncertainty of the experiment. A small pressure dependence is observed with the rate constant increasing from k(1-MA + O2) = (3.5 ± 0.7) × 1011 cm3 mol-1 s-1 at 1 mbar to k(1-MA + O2) = (4.6 ± 0.9) × 1011 cm3 mol-1 s-1 at 3 mbar. While for 2-methylallyl + O2 no previous experimental data are available, the rate constants for 1-methylallyl are in agreement with previous work. A comparison is drawn for the trends of the high-pressure limiting rate constants and pressure dependences observed for the O2 recombination of allylic radicals with the corresponding reactions of alkyl radicals.
Collapse
Affiliation(s)
- Domenik Schleier
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Engelbert Reusch
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Marius Gerlach
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Deb Pratim Mukhopadhyay
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Nancy Faßheber
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, D-24118 Kiel, Germany.
| | - Gernot Friedrichs
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, D-24118 Kiel, Germany.
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland.
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
5
|
Hoseini SJ, Fath RH, Fard MA, Behnia A, Puddephatt RJ. A Bridging Peroxide Complex of Platinum(IV). Inorg Chem 2018; 57:8951-8955. [PMID: 30022661 DOI: 10.1021/acs.inorgchem.8b00888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photolysis of the allylplatinum(IV) complex [PtBr(C3H5)(4-MeC6H4)2(bipy)], 1, bipy = 2,2'-bipyridine, in air yielded [{PtBr(4-MeC6H4)2(bipy)}2(μ-O2)], 2, the first diplatinum(IV) complex containing a single bridging peroxide ligand. The PtO-OPt bond distance in 2 is 1.481(3) Å. Complex 2 is thought to be formed by homolysis of the allyl-platinum bond of 1, followed by reaction of the platinum(III) intermediate [PtBr(4-MeC6H4)2(bipy)] with oxygen.
Collapse
Affiliation(s)
- S Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry , College of Sciences, Shiraz University , Shiraz 7194684795 , Iran
| | - Roghayeh Hashemi Fath
- Department of Chemistry, Faculty of Sciences , Yasouj University , Yasouj 7591874831 , Iran
| | - Mahmood A Fard
- Department of Chemistry , University of Western Ontario , London N6A 5B7 , Canada
| | - Ava Behnia
- Department of Chemistry , University of Western Ontario , London N6A 5B7 , Canada
| | - Richard J Puddephatt
- Department of Chemistry , University of Western Ontario , London N6A 5B7 , Canada
| |
Collapse
|
6
|
Schleier D, Constantinidis P, Faßheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B, Voronova K. Kinetics of the a-C 3H 5 + O 2 reaction, investigated by photoionization using synchrotron radiation. Phys Chem Chem Phys 2018; 20:10721-10731. [PMID: 29340384 DOI: 10.1039/c7cp07893e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of the combustion-relevant reaction of the allyl radical, a-C3H5, with molecular oxygen has been studied in a flow tube reactor at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source storage ring, using the CRF-PEPICO (Combustion Reactions Followed by Photoelectron Photoion Coincidence Spectroscopy) setup. The ability to measure threshold photoelectron spectra enables a background-free detection of reactive species as well as an isomer-specific analysis of reaction products. Allyl was generated by direct photodissociation of allyl iodide at 266 nm and 213 nm and indirectly by the reaction of propene with Cl atoms, which were generated by photolysis from oxalyl chloride at 266 nm. Experiments were conducted at room temperature at low pressures between 0.8 and 3 mbar using Ar as the buffer gas and with excess O2 to maintain nearly pseudo-first-order reaction conditions. Whereas allyl was detected by photoionisation using synchrotron radiation, the main reaction product allyl peroxy was not observed due to dissociative ionisation of this weakly bound species. From the concentration-time profiles of the allyl signal, second-order rate constants between 1.35 × 1011 cm3 mol-1 s-1 at 0.8 mbar and 1.75 × 1011 cm3 mol-1 s-1 at 3 mbar were determined. The rates obtained for the different allyl radical generation schemes agree well with each other, but are about a factor of 2 higher than the ones reported previously using He as a buffer gas. The discrepancy is partly attributed to the higher collision efficiency of Ar causing a varying fall-off behavior. When allyl is produced by the reaction of propene with Cl atom, an unexpected product is observed at m/z = 68, which was identified as 1,3-butadienal in the threshold photoelectron spectrum. It is formed in a secondary reaction of allyl with the OCCl radical, which is generated in the 266 nm photolysis of oxalyl chloride.
Collapse
Affiliation(s)
- D Schleier
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bouwman J, Bodi A, Oomens J, Hemberger P. On the formation of cyclopentadiene in the C3H5˙ + C2H2 reaction. Phys Chem Chem Phys 2015; 17:20508-14. [PMID: 26086435 DOI: 10.1039/c5cp02243f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between the allyl radical (C3H5˙) and acetylene (C2H2) in a heated microtubular reactor has been studied at the VUV beamline of the Swiss Light Source. The reaction products are sampled from the reactor and identified by their photoion mass-selected threshold photoelectron spectra (ms-TPES) by means of imaging photoelectron photoion coincidence spectroscopy. Cyclopentadiene is identified as the sole reaction product by comparison of the measured photoelectron spectrum with that of cyclopentadiene. With the help of quantum-chemical computations of the C5H7 potential energy surface, the C2H2 + C3H5˙ association reaction is confirmed to be the rate determining step, after which H-elimination to form C5H6 is prompt in the absence of re-thermalization at low pressures. The formation of cyclopentadiene as the sole product from the allyl + acetylene reaction offers a direct path to the formation of cyclic hydrocarbons under combustion relevant conditions. Subsequent reactions of cyclopentadiene may lead to the formation of the smallest polycyclic aromatic molecule, naphthalene.
Collapse
Affiliation(s)
- Jordy Bouwman
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, NL-6525 ED Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Lynch PT, Troy TP, Ahmed M, Tranter RS. Probing Combustion Chemistry in a Miniature Shock Tube with Synchrotron VUV Photo Ionization Mass Spectrometry. Anal Chem 2015; 87:2345-52. [DOI: 10.1021/ac5041633] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick T. Lynch
- Chemical
Science and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Tyler P. Troy
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert S. Tranter
- Chemical
Science and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
9
|
Wang K, Villano SM, Dean AM. Reactions of allylic radicals that impact molecular weight growth kinetics. Phys Chem Chem Phys 2015; 17:6255-73. [DOI: 10.1039/c4cp05308g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis.
Collapse
Affiliation(s)
- Kun Wang
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | | | - Anthony M. Dean
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
10
|
Capron M, Bourgalais J, Abhinavam Kailasanathan RK, Osborn DL, Le Picard SD, Goulay F. Flow tube studies of the C(3P) reactions with ethylene and propylene. Phys Chem Chem Phys 2015; 17:23833-46. [DOI: 10.1039/c5cp03918e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Product detection studies of C(3P) atom reactions with ethylene, C2H4(X1Ag) and propylene, C3H6(X1A′) are carried out in a flow tube reactor at 332 K and 4 Torr (553.3 Pa) under multiple collision conditions.
Collapse
Affiliation(s)
- Michael Capron
- Institut de Physique de Rennes
- Département de Physique Moléculaire
- Astrophysique de Laboratoire
- 35042 Rennes Cedex
- France
| | - Jérémy Bourgalais
- Institut de Physique de Rennes
- Département de Physique Moléculaire
- Astrophysique de Laboratoire
- 35042 Rennes Cedex
- France
| | | | - David L. Osborn
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - Sébastien D. Le Picard
- Institut de Physique de Rennes
- Département de Physique Moléculaire
- Astrophysique de Laboratoire
- 35042 Rennes Cedex
- France
| | - Fabien Goulay
- Department of Chemistry
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
11
|
Leavitt CM, Moradi CP, Acrey BW, Douberly GE. Infrared laser spectroscopy of the helium-solvated allyl and allyl peroxy radicals. J Chem Phys 2013; 139:234301. [DOI: 10.1063/1.4844175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Seidel L, Hoyermann K, Mauß F, Nothdurft J, Zeuch T. Pressure dependent product formation in the photochemically initiated allyl + allyl reaction. Molecules 2013; 18:13608-22. [PMID: 24192913 PMCID: PMC6270213 DOI: 10.3390/molecules181113608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 11/16/2022] Open
Abstract
Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn's largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br), allyl chloride (C3H5Cl), and 1,5-hexadiene (CH2CH(CH2)2CHCH2) at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re-) combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re-) combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.
Collapse
Affiliation(s)
- Lars Seidel
- Lehrstuhl Thermodynamik/Thermische Verfahrenstechnik, BrandenburgischeTechnische-Universität, Siemens-Halske-Ring 8, Cottbus D-03046, Germany; E-Mails: (L.S.); (F.M.)
| | - Karlheinz Hoyermann
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstr. 6, Göttingen D-37077, Germany; E-Mails: (K.H.); (J.N.)
| | - Fabian Mauß
- Lehrstuhl Thermodynamik/Thermische Verfahrenstechnik, BrandenburgischeTechnische-Universität, Siemens-Halske-Ring 8, Cottbus D-03046, Germany; E-Mails: (L.S.); (F.M.)
| | - Jörg Nothdurft
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstr. 6, Göttingen D-37077, Germany; E-Mails: (K.H.); (J.N.)
| | - Thomas Zeuch
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstr. 6, Göttingen D-37077, Germany; E-Mails: (K.H.); (J.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-551-39-33126; Fax: +49-551-39-33117
| |
Collapse
|
13
|
Lynch PT, Annesley CJ, Aul CJ, Yang X, Tranter RS. Recombination of Allyl Radicals in the High Temperature Fall-Off Regime. J Phys Chem A 2013; 117:4750-61. [DOI: 10.1021/jp402484v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick T. Lynch
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| | - Christopher J. Annesley
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| | - Christopher J. Aul
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Xueliang Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| | - Robert S. Tranter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| |
Collapse
|
14
|
Fridlyand A, Lynch PT, Tranter RS, Brezinsky K. Single Pulse Shock Tube Study of Allyl Radical Recombination. J Phys Chem A 2013; 117:4762-76. [DOI: 10.1021/jp402391n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandr Fridlyand
- Department of Mechanical and
Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| | - Patrick T. Lynch
- Chemical Science and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Robert S. Tranter
- Chemical Science and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Kenneth Brezinsky
- Department of Mechanical and
Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
15
|
Rissanen MP, Amedro D, Krasnoperov L, Marshall P, Timonen RS. Gas Phase Kinetics and Equilibrium of Allyl Radical Reactions with NO and NO2. J Phys Chem A 2013; 117:793-805. [DOI: 10.1021/jp308621f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matti P. Rissanen
- Laboratory
of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55
(A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland
| | - Damien Amedro
- Laboratoire de Physico-Chimie des Processus
de Combustion et de l′Atmosphère CNRS UMR 8522, Université Lille 1, Villeneuve d’Ascq,
France
| | - Lev Krasnoperov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights,
Newark, New Jersey 07102, United States
| | - Paul Marshall
- Department of Chemistry and
Center for Advanced Scientific Computation and Modeling, University of North Texas, P.O. Box
305070, Denton, Texas 76203, United States
| | - Raimo S. Timonen
- Laboratory
of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55
(A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland
| |
Collapse
|
16
|
Zádor J, Huang H, Welz O, Zetterberg J, Osborn DL, Taatjes CA. Directly measuring reaction kinetics of ˙QOOH – a crucial but elusive intermediate in hydrocarbon autoignition. Phys Chem Chem Phys 2013; 15:10753-60. [DOI: 10.1039/c3cp51185e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Rissanen MP, Popli K, Timonen RS. Kinetics of resonance stabilized CH3CCCH2 radical reactions with NO and NO2. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Rissanen MP, Amedro D, Eskola AJ, Kurten T, Timonen RS. Kinetic (T = 201-298 K) and equilibrium (T = 320-420 K) measurements of the C3H5 + O2 ⇆ C3H5O2 reaction. J Phys Chem A 2012; 116:3969-78. [PMID: 22500811 DOI: 10.1021/jp209977h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics and equilibrium of the allyl radical reaction with molecular oxygen have been studied in direct measurements using temperature-controlled tubular flow reactor coupled to a laser photolysis/photoionization mass spectrometer. In low-temperature experiments (T = 201-298 K), association kinetics were observed, and the measured time-resolved C(3)H(5) radical signals decayed exponentially to the signal background. In this range, the determined rate coefficients exhibited a negative temperature dependence and were observed to depend on the carrier-gas (He) pressure {p = 0.4-36 Torr, [He] = (1.7-118.0) × 10(16) cm(-3)}. The bimolecular rate coefficients obtained vary in the range (0.88-11.6) × 10(-13) cm(3) s(-1). In higher-temperature experiments (T = 320-420 K), the C(3)H(5) radical signal did not decay to the signal background, indicating equilibration of the reaction. By measuring the radical decay rate under these conditions as a function of temperature and following typical second- and third-law procedures, plotting the resulting ln K(p) values versus 1/T in a modified van't Hoff plot, the thermochemical parameters of the reaction were extracted. The second-law treatment resulted in values of ΔH(298)° = -78.3 ± 1.1 kJ mol(-1) and ΔS(298)° = -129.9 ± 3.1 J mol(-1) K(-1), with the uncertainties given as one standard error. When results from a previous investigation were taken into account and the third-law method was applied, the reaction enthalpy was determined as ΔH(298)° = -75.6 ± 2.3 kJ mol(-1).
Collapse
Affiliation(s)
- Matti P Rissanen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
19
|
Welz O, Zádor J, Savee JD, Ng MY, Meloni G, Fernandes RX, Sheps L, Simmons BA, Lee TS, Osborn DL, Taatjes CA. Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550 K-750 K) oxidation chemistry of isopentanol. Phys Chem Chem Phys 2012; 14:3112-27. [PMID: 22286869 DOI: 10.1039/c2cp23248k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The branched C(5) alcohol isopentanol (3-methylbutan-1-ol) has shown promise as a potential biofuel both because of new advanced biochemical routes for its production and because of its combustion characteristics, in particular as a fuel for homogeneous-charge compression ignition (HCCI) or related strategies. In the present work, the fundamental autoignition chemistry of isopentanol is investigated by using the technique of pulsed-photolytic Cl-initiated oxidation and by analyzing the reacting mixture by time-resolved tunable synchrotron photoionization mass spectrometry in low-pressure (8 Torr) experiments in the 550-750 K temperature range. The mass-spectrometric experiments reveal a rich chemistry for the initial steps of isopentanol oxidation and give new insight into the low-temperature oxidation mechanism of medium-chain alcohols. Formation of isopentanal (3-methylbutanal) and unsaturated alcohols (including enols) associated with HO(2) production was observed. Cyclic ether channels are not observed, although such channels dominate OH formation in alkane oxidation. Rather, products are observed that correspond to formation of OH viaβ-C-C bond fission pathways of QOOH species derived from β- and γ-hydroxyisopentylperoxy (RO(2)) radicals. In these pathways, internal hydrogen abstraction in the RO(2)⇄ QOOH isomerization reaction takes place from either the -OH group or the C-H bond in α-position to the -OH group. These pathways should be broadly characteristic for longer-chain alcohol oxidation. Isomer-resolved branching ratios are deduced, showing evolution of the main products from 550 to 750 K, which can be qualitatively explained by the dominance of RO(2) chemistry at lower temperature and hydroxyisopentyl decomposition at higher temperature.
Collapse
Affiliation(s)
- Oliver Welz
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baeza-Romero MT, Blitz MA, Goddard A, Seakins PW. Time-of-flight mass spectrometry for time-resolved measurements: Some developments and applications. INT J CHEM KINET 2011. [DOI: 10.1002/kin.20620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Trevitt AJ, Soorkia S, Savee JD, Selby TS, Osborn DL, Taatjes CA, Leone SR. Branching Fractions of the CN + C3H6 Reaction Using Synchrotron Photoionization Mass Spectrometry: Evidence for the 3-Cyanopropene Product. J Phys Chem A 2011; 115:13467-73. [DOI: 10.1021/jp208496r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam J. Trevitt
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Satchin Soorkia
- Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States
| | - John D. Savee
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Talitha S. Selby
- Department of Chemistry, University of Wisconsin—Washington County, West Bend, Wisconsin 53095, United States
| | - David L. Osborn
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Craig A. Taatjes
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Stephen R. Leone
- Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Matsugi A, Suma K, Miyoshi A. Kinetics and Mechanisms of the Allyl + Allyl and Allyl + Propargyl Recombination Reactions. J Phys Chem A 2011; 115:7610-24. [DOI: 10.1021/jp203520j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akira Matsugi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohsuke Suma
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akira Miyoshi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Goulay F, Soorkia S, Meloni G, Osborn DL, Taatjes CA, Leone SR. Detection of pentatetraene by reaction of the ethynyl radical (C2H) with allene (CH2CCH2) at room temperature. Phys Chem Chem Phys 2011; 13:20820-7. [DOI: 10.1039/c1cp22609f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Taatjes CA, Osborn DL, Selby TM, Meloni G, Trevitt AJ, Epifanovsky E, Krylov AI, Sirjean B, Dames E, Wang H. Products of the Benzene + O(3P) Reaction. J Phys Chem A 2010; 114:3355-70. [DOI: 10.1021/jp9114145] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Craig A. Taatjes
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - David L. Osborn
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Talitha M. Selby
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Giovanni Meloni
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Adam J. Trevitt
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Evgeny Epifanovsky
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Anna I. Krylov
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Baptiste Sirjean
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Enoch Dames
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| | - Hai Wang
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551-0969, Departments of Chemistry and Physics, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, Department of Chemistry, University of Southern California, Los Angeles, California, 90089-0482, and Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, 90089-1453
| |
Collapse
|
25
|
Kaiser RI, Maksyutenko P, Ennis C, Zhang F, Gu X, Krishtal SP, Mebel AM, Kostko O, Ahmed M. Untangling the chemical evolution of Titan's atmosphere and surface–from homogeneous to heterogeneous chemistry. Faraday Discuss 2010; 147:429-78; discussion 527-52. [DOI: 10.1039/c003599h] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Lin ZK, Han DL, Li SF, Li YY, Yuan T. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame. J Chem Phys 2009; 130:154306. [DOI: 10.1063/1.3109687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Ismail H, Abel PR, Green WH, Fahr A, Jusinski LE, Knepp AM, Zádor J, Meloni G, Selby TM, Osborn DL, Taatjes CA. Temperature-Dependent Kinetics of the Vinyl Radical (C2H3) Self-Reaction. J Phys Chem A 2009; 113:1278-86. [DOI: 10.1021/jp8096132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huzeifa Ismail
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | - Askar Fahr
- Department of Chemistry, Howard University, Washington, D.C. 20059
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Casavecchia P, Leonori F, Balucani N, Petrucci R, Capozza G, Segoloni E. Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Phys Chem Chem Phys 2008; 11:46-65. [PMID: 19081908 DOI: 10.1039/b814709d] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective we highlight developments in the field of chemical reaction dynamics. Focus is on the advances recently made in the investigation of the dynamics of elementary multichannel radical-molecule and radical-radical reactions, as they have become possible using an improved crossed molecular beam scattering apparatus with universal electron-ionization mass spectrometric detection and time-of-flight analysis. These improvements consist in the implementation of (a) soft ionization detection by tunable low-energy electrons which has permitted us to reduce interfering signals originating from dissociative ionization processes, usually representing a major complication, (b) different beam crossing-angle set-ups which have permitted us to extend the range of collision energies over which a reaction can be studied, from very low (a few kJ mol(-1), as of interest in astrochemistry or planetary atmospheric chemistry) to quite high energies (several tens of kJ mol(-1), as of interest in high temperature combustion systems), and (c) continuous supersonic sources for producing a wide variety of atomic and molecular radical reactant beams. Exploiting these new features it has become possible to tackle the dynamics of a variety of polyatomic multichannel reactions, such as those occurring in many environments ranging from combustion and plasmas to terrestrial/planetary atmospheres and interstellar clouds. By measuring product angular and velocity distributions, after having suppressed or mitigated, when needed, the problem of dissociative ionization of interfering species (reactants, products, background gases) by soft ionization detection, essentially all primary reaction products can be identified, the dynamics of each reaction channel characterized, and the branching ratios determined as a function of collision energy. In general this information, besides being of fundamental relevance, is required for a predictive description of the chemistry of these environments via computer models. Examples are taken from recent on-going work (partly published) on the reactions of atomic oxygen with acetylene, ethylene and allyl radical, of great importance in combustion. A reaction of relevance in interstellar chemistry, as that of atomic carbon with acetylene, is also discussed briefly. Comparison with theoretical results is made wherever possible, both at the level of electronic structure calculations of the potential energy surfaces and dynamical computations. Recent complementary CMB work as well as kinetic work exploiting soft photo-ionization with synchrotron radiation are noted. The examples illustrated in this article demonstrate that the type of dynamical results now obtainable on polyatomic multichannel radical-molecule and radical-radical reactions might well complement reaction kinetics experiments and hence contribute to bridging the gap between microscopic reaction dynamics and thermal reaction kinetics, enhancing significantly our basic knowledge of chemical reactivity and understanding of the elementary reactions which occur in real-world environments.
Collapse
|
29
|
Osborn DL, Zou P, Johnsen H, Hayden CC, Taatjes CA, Knyazev VD, North SW, Peterka DS, Ahmed M, Leone SR. The multiplexed chemical kinetic photoionization mass spectrometer: a new approach to isomer-resolved chemical kinetics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:104103. [PMID: 19044733 DOI: 10.1063/1.3000004] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have developed a multiplexed time- and photon-energy-resolved photoionization mass spectrometer for the study of the kinetics and isomeric product branching of gas phase, neutral chemical reactions. The instrument utilizes a side-sampled flow tube reactor, continuously tunable synchrotron radiation for photoionization, a multimass double-focusing mass spectrometer with 100% duty cycle, and a time- and position-sensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed three-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation.
Collapse
Affiliation(s)
- David L Osborn
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|