1
|
Schweitzer-Stenner R. Probing the versatility of cytochrome c by spectroscopic means: A Laudatio on resonance Raman spectroscopy. J Inorg Biochem 2024; 259:112641. [PMID: 38901065 DOI: 10.1016/j.jinorgbio.2024.112641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Over the last 50 years resonance Raman spectroscopy has become an invaluable tool for the exploration of chromophores in biological macromolecules. Among them, heme proteins and metal complexes have attracted considerable attention. This interest results from the fact that resonance Raman spectroscopy probes the vibrational dynamics of these chromophores without direct interference from the surrounding. However, the indirect influence via through-bond and through-space chromophore-protein interactions can be conveniently probed and analyzed. This review article illustrates this point by focusing on class 1 cytochrome c, a comparatively simple heme protein generally known as electron carrier in mitochondria. The article demonstrates how through selective excitation of resonance Raman active modes information about the ligation, the redox state and the spin state of the heme iron can be obtained from band positions in the Raman spectra. The investigation of intensities and depolarization ratios emerged as tools for the analysis of in-plane and out-of-plane deformations of the heme macrocycle. The article further shows how resonance Raman spectroscopy was used to characterize partially unfolded states of oxidized cytochrome c. Finally, it describes its use for exploring structural changes due to the protein's binding to anionic surfaces like cardiolipin containing membranes.
Collapse
|
2
|
Schweitzer-Stenner R. Heme-Protein Interactions and Functional Relevant Heme Deformations: The Cytochrome c Case. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248751. [PMID: 36557884 PMCID: PMC9781506 DOI: 10.3390/molecules27248751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Heme proteins are known to perform a plethora of biologically important functions. This article reviews work that has been conducted on various class I cytochrome c proteins over a period of nearly 50 years. The article focuses on the relevance of symmetry-lowering heme-protein interactions that affect the function of the electron transfer protein cytochrome c. The article provides an overview of various, mostly spectroscopic studies that explored the electronic structure of the heme group in these proteins and how it is affected by symmetry-lowering deformations. In addition to discussing a large variety of spectroscopic studies, the article provides a theoretical framework that should enable a comprehensive understanding of the physical chemistry that underlies the function not only of cytochrome c but of all heme proteins.
Collapse
|
3
|
Lavrik NL. On the Nature of the Spectral Shift of the Soret Band of Erythrocyte Oxyhemoglobin when Organic Molecules Are Added to an Erythrocyte Suspension. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Drobizhev M, Molina RS, Callis PR, Scott JN, Lambert GG, Salih A, Shaner NC, Hughes TE. Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins. Front Mol Biosci 2021; 8:633217. [PMID: 33763453 PMCID: PMC7983054 DOI: 10.3389/fmolb.2021.633217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Genetically encoded probes with red-shifted absorption and fluorescence are highly desirable for imaging applications because they can report from deeper tissue layers with lower background and because they provide additional colors for multicolor imaging. Unfortunately, red and especially far-red fluorescent proteins have very low quantum yields, which undermines their other advantages. Elucidating the mechanism of nonradiative relaxation in red fluorescent proteins (RFPs) could help developing ones with higher quantum yields. Here we consider two possible mechanisms of fast nonradiative relaxation of electronic excitation in RFPs. The first, known as the energy gap law, predicts a steep exponential drop of fluorescence quantum yield with a systematic red shift of fluorescence frequency. In this case the relaxation of excitation occurs in the chromophore without any significant changes of its geometry. The second mechanism is related to a twisted intramolecular charge transfer in the excited state, followed by an ultrafast internal conversion. The chromophore twisting can strongly depend on the local electric field because the field can affect the activation energy. We present a spectroscopic method of evaluating local electric fields experienced by the chromophore in the protein environment. The method is based on linear and two-photon absorption spectroscopy, as well as on quantum-mechanically calculated parameters of the isolated chromophore. Using this method, which is substantiated by our molecular dynamics simulations, we obtain the components of electric field in the chromophore plane for seven different RFPs with the same chromophore structure. We find that in five of these RFPs, the nonradiative relaxation rate increases with the strength of the field along the chromophore axis directed from the center of imidazolinone ring to the center of phenolate ring. Furthermore, this rate depends on the corresponding electrostatic energy change (calculated from the known fields and charge displacements), in quantitative agreement with the Marcus theory of charge transfer. This result supports the dominant role of the twisted intramolecular charge transfer mechanism over the energy gap law for most of the studied RFPs. It provides important guidelines of how to shift the absorption wavelength of an RFP to the red, while keeping its brightness reasonably high.
Collapse
Affiliation(s)
- Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Rosana S Molina
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Patrik R Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Gerard G Lambert
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Anya Salih
- Antares & Fluoresci Research, Dangar Island, NSW, Australia
| | - Nathan C Shaner
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Thomas E Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| |
Collapse
|
5
|
Mejías SH, Roelfes G, Browne WR. Impact of binding to the multidrug resistance regulator protein LmrR on the photo-physics and -chemistry of photosensitizers. Phys Chem Chem Phys 2020; 22:12228-12238. [PMID: 32432253 DOI: 10.1039/d0cp01755h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Light activated photosensitizers generate reactive oxygen species (ROS) that interfere with cellular components and can induce cell death, e.g., in photodynamic therapy (PDT). The effect of cellular components and especially proteins on the photochemistry and photophysics of the sensitizers is a key aspect in drug design and the correlating cellular response with the generation of specific ROS species. Here, we show the complex range of effects of binding of photosensitizer to a multidrug resistance protein, produced by bacteria, on the formers reactivity. We show that recruitment of drug like molecules by LmrR (Lactococcal multidrug resistance Regulator) modifies their photophysical properties and their capacity to induce oxidative stress especially in 1O2 generation, including rose bengal (RB), protoporphyrin IX (PpIX), bodipy, eosin Y (EY), riboflavin (RBF), and rhodamine 6G (Rh6G). The range of neutral and charged dyes with different exited redox potentials, are broadly representative of the dyes used in PDT.
Collapse
Affiliation(s)
- Sara H Mejías
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Steele HBB, Elmer-Dixon MM, Rogan JT, Ross JBA, Bowler BE. The Human Cytochrome c Domain-Swapped Dimer Facilitates Tight Regulation of Intrinsic Apoptosis. Biochemistry 2020; 59:2055-2068. [PMID: 32428404 PMCID: PMC7291863 DOI: 10.1021/acs.biochem.0c00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidation of cardiolipin (CL) by cytochrome c (cytc) has been proposed to initiate the intrinsic pathway of apoptosis. Domain-swapped dimer (DSD) conformations of cytc have been reported both by our laboratory and by others. The DSD is an alternate conformer of cytc that could oxygenate CL early in apoptosis. We demonstrate here that the cytc DSD has a set of properties that would provide tighter regulation of the intrinsic pathway. We show that the human DSD is kinetically more stable than horse and yeast DSDs. Circular dichroism data indicate that the DSD has a less asymmetric heme environment, similar to that seen when the monomeric protein binds to CL vesicles at high lipid:protein ratios. The dimer undergoes the alkaline conformational transition near pH 7.0, 2.5 pH units lower than that of the monomer. Data from fluorescence correlation spectroscopy and fluorescence anisotropy suggest that the alkaline transition of the DSD may act as a switch from a high affinity for CL nanodiscs at pH 7.4 to a much lower affinity at pH 8.0. Additionally, the peroxidase activity of the human DSD increases 7-fold compared to that of the monomer at pH 7 and 8, but by 14-fold at pH 6 when mixed Met80/H2O ligation replaces the lysine ligation of the alkaline state. We also present data that indicate that cytc binding shows a cooperative effect as the concentration of cytc is increased. The DSD appears to have evolved into a pH-inducible switch that provides a means to control activation of apoptosis near pH 7.0.
Collapse
Affiliation(s)
- Harmen B. B. Steele
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Margaret M. Elmer-Dixon
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - James T. Rogan
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - J. B. Alexander Ross
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
7
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
8
|
Ponomarenko NS, Kokhan O, Pokkuluri PR, Mulfort KL, Tiede DM. Examination of abiotic cofactor assembly in photosynthetic biomimetics: site-specific stereoselectivity in the conjugation of a ruthenium(II) tris(bipyridine) photosensitizer to a multi-heme protein. PHOTOSYNTHESIS RESEARCH 2020; 143:99-113. [PMID: 31925630 PMCID: PMC6989566 DOI: 10.1007/s11120-019-00697-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 05/18/2023]
Abstract
To understand design principles for assembling photosynthetic biohybrids that incorporate precisely-controlled sites for electron injection into redox enzyme cofactor arrays, we investigated the influence of chirality in assembly of the photosensitizer ruthenium(II)bis(2,2'-bipyridine)(4-bromomethyl-4'-methyl-2,2'-bipyridine), Ru(bpy)2(Br-bpy), when covalently conjugated to cysteine residues introduced by site-directed mutagenesis in the triheme periplasmic cytochrome A (PpcA) as a model biohybrid system. For two investigated conjugates that show ultrafast electron transfer, A23C-Ru and K29C-Ru, analysis by circular dichroism spectroscopy, CD, demonstrated site-specific chiral discrimination as a factor emerging from the close association between [Ru(bpy)3]2+ and heme cofactors. CD analysis showed the A23C-Ru and K29C-Ru conjugates to have distinct, but opposite, stereoselectivity for the Λ and Δ-Ru(bpy)2(Br-bpy) enantiomers, with enantiomeric excesses of 33.1% and 65.6%, respectively. In contrast, Ru(bpy)2(Br-bpy) conjugation to a protein site with high flexibility, represented by the E39C-Ru construct, exhibited a nearly negligible chiral selectivity, measured by an enantiomeric excess of 4.2% for the Λ enantiomer. Molecular dynamics simulations showed that site-specific stereoselectivity reflects steric constraints at the conjugating sites and that a high degree of chiral selectivity correlates to reduced structural disorder for [Ru(bpy)3]2+ in the linked assembly. This work identifies chiral discrimination as means to achieve site-specific, precise geometric positioning of introduced photosensitizers relative to the heme cofactors in manner that mimics the tuning of cofactors in photosynthesis.
Collapse
Affiliation(s)
- Nina S Ponomarenko
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA.
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Phani R Pokkuluri
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - David M Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA.
| |
Collapse
|
9
|
Paradisi A, Lancellotti L, Borsari M, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Sola M, Battistuzzi G. Met80 and Tyr67 affect the chemical unfolding of yeast cytochrome c: comparing the solution vs.immobilized state. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00115e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The motional regime affects the unfolding propensity and axial heme coordination of the Met80Ala and Met80Ala/Tyr67Ala variants of yeast iso-1 cytochromec.
Collapse
Affiliation(s)
| | - Lidia Lancellotti
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Borsari
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marzia Bellei
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | | - Giulia Di Rocco
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Antonio Ranieri
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Sola
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | |
Collapse
|
10
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Milorey B, Schweitzer-Stenner R, Kurbaj R, Malyshka D. pH-Induced Switch between Different Modes of Cytochrome c Binding to Cardiolipin-Containing Liposomes. ACS OMEGA 2019; 4:1386-1400. [PMID: 31459406 PMCID: PMC6647999 DOI: 10.1021/acsomega.8b02574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 05/28/2023]
Abstract
Fluorescence, visible circular dichroism (CD), absorption, and resonance Raman spectroscopy techniques were combined to explore structural changes of ferricytochrome c upon its binding to cardiolipin-containing liposomes (20% 1,1',1,2'-tetraoleyolcardiolipin and 1,2-deoleyol-sn-glycero-3-phosphocholine) at acidic pH (6.5). According to the earlier work of Kawai [J. Biol. Chem.2005, 280, 34709-347171],cytochrome c binding at this pH is governed by interactions between the phosphate head groups of cardiolipin and amino acid side chains of the so-called L-site, which contains the charged residues K22, K25, K27, and potentially H26 and H33. We found that L-site binding causes a conformational transition that involves a change of the protein's ligation and spin state. In this paper, we report spectroscopic responses to an increasing number of cardiolipin-containing liposomes at pH 6.5 in the absence and presence of NaCl. The latter was found to mostly inhibit protein binding already with 50 mM concentration. The inhibition effect can be quantitatively reproduced by applying the electrostatic theory of Heimburg [Biophys. J.1995, 68, 536-546]. A comparison with corresponding spectroscopic response data obtained at pH 7.4 reveals major differences in that the latter indicates hydrophobic binding, followed by an electrostatically driven conformational change. Visible CD data suggest that structural changes in the heme pocket of liposome-bound ferricytochrome c resemble to some extent those in the denatured protein in urea at neutral and acidic pH. The measured noncoincidence between absorption and CD Soret band of cytochrome c in the presence of a large access of cardiolipin is caused by the electric field at the membrane surface. The very fact that its contribution to the internal electric field in the heme pocket is detectable by spectroscopic means suggests some penetration of the protein into membrane surface.
Collapse
|
12
|
Tokunou Y, Chinotaikul P, Hattori S, Clarke TA, Shi L, Hashimoto K, Ishii K, Okamoto A. Whole-cell circular dichroism difference spectroscopy reveals an in vivo-specific deca-heme conformation in bacterial surface cytochromes. Chem Commun (Camb) 2019; 54:13933-13936. [PMID: 30403202 PMCID: PMC6301274 DOI: 10.1039/c8cc06309e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our novel analytical framework to identify the inter-heme interaction in deca-heme cytochrome protein MtrC in whole cell revealed that the heme alignment in reduced MtrC is distinct from that in purified system.
We established whole-cell circular dichroism difference spectroscopy to identify the inter-heme interaction in deca-heme cytochrome protein MtrC in whole cell. Our data showed that the heme alignment of reduced MtrC in whole cell is distinct from that in purified one, suggesting the in vivo specific electron transport kinetics.
Collapse
Affiliation(s)
- Yoshihide Tokunou
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Elmer-Dixon MM, Bowler BE. Electrostatic Constituents of the Interaction of Cardiolipin with Site A of Cytochrome c. Biochemistry 2018; 57:5683-5695. [DOI: 10.1021/acs.biochem.8b00704] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Margaret M. Elmer-Dixon
- Department of Chemistry and Biochemistry, Center for Bimolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, Center for Bimolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
14
|
Schweitzer-Stenner R. Relating the multi-functionality of cytochrome c to membrane binding and structural conversion. Biophys Rev 2018; 10:1151-1185. [PMID: 29574621 PMCID: PMC6082307 DOI: 10.1007/s12551-018-0409-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Cytochrome c is known as an electron-carrying protein in the respiratory chain of mitochondria. Over the last 20 years, however, alternative functions of this very versatile protein have become the focus of research interests. Upon binding to anionic lipids such as cardiolipin, the protein acquires peroxidase activity. Multiple lines of evidence suggest that this requires a conformational change of the protein which involves partial unfolding of its tertiary structure. This review summarizes the current state of knowledge of how cytochrome c interacts with cardiolipin-containing surfaces and how this affects its structure and function. In this context, we delineate partially conflicting results regarding the affinity of cytochrome c binding to cardiolipin-containing liposomes of different size and its influence on the structure of the protein and the morphology of the membrane.
Collapse
|
15
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
16
|
Serpas L, Milorey B, Pandiscia LA, Addison AW, Schweitzer-Stenner R. Autoxidation of Reduced Horse Heart Cytochrome c Catalyzed by Cardiolipin-Containing Membranes. J Phys Chem B 2016; 120:12219-12231. [PMID: 27934230 DOI: 10.1021/acs.jpcb.6b05620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Visible circular dichroism, absorption, and fluorescence spectroscopy were used to probe the binding of horse heart ferrocytochrome c to anionic cardiolipin (CL) head groups on the surface of 1,1',2,2'-tetraoleoyl cardiolipin (TOCL)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (20%:80%) liposomes in an aerobic environment. We found that ferrocytochrome c undergoes a conformational transition upon binding that leads to complete oxidation of the protein at intermediate and high CL concentrations. At low lipid concentrations, the protein maintains a structure that is only slightly different from its native one, whereas an ensemble of misligated predominantly hexacoordinated low-spin states become increasingly populated at high lipid concentrations. A minor fraction of conformations with either high- or quantum-mixed-spin states were detected at a CL to protein ratio of 200 (the largest one investigated). The population of the non-native state is less pronounced than that found for cytochrome c-CL interactions initiated with oxidized cytochrome c. Under anaerobic conditions, the protein maintains its reduced state but still undergoes some conformational change upon binding to CL head groups on the liposome surface. Our data suggest that CL-containing liposomes function as catalysts by reducing the activation barrier for a Fe2+ → O2 electron transfer. Adding NaCl to the existing cytochrome-liposome mixtures under aerobic conditions inhibits protein autoxidation of ferrocytochrome c and stabilizes the reduced state of the membrane-bound protein.
Collapse
Affiliation(s)
- Lee Serpas
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Bridget Milorey
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Leah A Pandiscia
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Anthony W Addison
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Sinibaldi F, Milazzo L, Howes BD, Piro MC, Fiorucci L, Polticelli F, Ascenzi P, Coletta M, Smulevich G, Santucci R. The key role played by charge in the interaction of cytochrome c with cardiolipin. J Biol Inorg Chem 2016; 22:19-29. [PMID: 27826772 DOI: 10.1007/s00775-016-1404-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/17/2016] [Indexed: 12/27/2022]
Abstract
Cytochrome c undergoes structural variations upon binding of cardiolipin, one of the phospholipids constituting the mitochondrial membrane. Although several mechanisms governing cytochrome c/cardiolipin (cyt c/CL) recognition have been proposed, the interpretation of the process remains, at least in part, unknown. To better define the steps characterizing the cyt c-CL interaction, the role of Lys72 and Lys73, two residues thought to be important in the protein/lipid binding interaction, were recently investigated by mutagenesis. The substitution of the two (positively charged) Lys residues with Asn revealed that such mutations cancel the CL-dependent peroxidase activity of cyt c; furthermore, CL does not interact with the Lys72Asn mutant. In the present paper, we extend our study to the Lys → Arg mutants to investigate the influence exerted by the charge possessed by the residues located at positions 72 and 73 on the cyt c/CL interaction. On the basis of the present work a number of overall conclusions can be drawn: (i) position 72 must be occupied by a positively charged residue to assure cyt c/CL recognition; (ii) the Arg residues located at positions 72 and 73 permit cyt c to react with CL; (iii) the replacement of Lys72 with Arg weakens the second (low-affinity) binding transition; (iv) the Lys73Arg mutation strongly increases the peroxidase activity of the CL-bound protein.
Collapse
Affiliation(s)
- Federica Sinibaldi
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy
| | - Lisa Milazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino (Fi), Italy
| | - Barry D Howes
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino (Fi), Italy
| | - Maria Cristina Piro
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy
| | - Laura Fiorucci
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146, Rome, Italy
- National Institute of Nuclear Physics, 'Roma Tre' Section, Via della Vasca Navale 84, 00146, Rome, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy
| | - Giulietta Smulevich
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino (Fi), Italy.
| | - Roberto Santucci
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
18
|
Covington CL, Polavarapu PL. Concentration Dependent Specific Rotations of Chiral Surfactants: Experimental and Computational Studies. J Phys Chem A 2016; 120:5715-25. [PMID: 27355395 DOI: 10.1021/acs.jpca.6b05039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental studies have shown unexpected chiroptical response from some chiral surfactant molecules, where the specific rotations changed significantly as a function of concentration. To establish a theoretical understanding of this experimentally observed phenomena, a novel methodology for studying chiral surfactants via combined molecular dynamics (MD) and quantum mechanical (QM) calculations is presented. MD simulations on the +10 000 atom surfactant systems have been performed using MD and QM/molecular mechanics (MM) approaches. QM calculations performed on MD snapshots coupled with extensive analysis on lauryl ester of phenylalanine (LEP) surfactant system indicate that the experimentally observed variation of specific rotation with concentration may be due to the conformational differences of the surfactant monomers in the aggregates. Though traditional MM simulations did not show significant differences in the conformer populations, QM/MM simulations using the forces derived from the PM6 method did predict conformational differences between aggregated and nonaggregated LEP molecules, which is consistent with experimental data. Additionally the electrostatic environment of charged surfactants may also be important, since dramatic changes in the Boltzmann populations of surfactant monomers can be noted in the presence of an electric field generated by the chiral ionic aggregates.
Collapse
Affiliation(s)
- Cody L Covington
- Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
19
|
Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:387-95. [PMID: 26806033 DOI: 10.1016/j.bbabio.2016.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
Abstract
Protein function is frequently modulated by post-translational modifications of specific residues. Cytochrome c, in particular, is phosphorylated in vivo at threonine 28 and serine 47. However, the effect of such modifications on the physiological functions of cytochrome c - namely, the transfer of electrons in the respiratory electron transport chain and the triggering of programmed cell death - is still unknown. Here we replace each of these two residues by aspartate, in order to mimic phosphorylation, and report the structural and functional changes in the resulting cytochrome c variants. We find that the T28D mutant causes a 30-mV decrease on the midpoint redox potential and lowers the affinity for the distal site of Arabidopsis thaliana cytochrome c1 in complex III. Both the T28D and S47D variants display a higher efficiency as electron donors for the cytochrome c oxidase activity of complex IV. In both protein mutants, the peroxidase activity is significantly higher, which is related to the ability of cytochrome c to leave the mitochondria and reach the cytoplasm. We also find that both mutations at serine 47 (S47D and S47A) impair the ability of cytoplasmic cytochrome c to activate the caspases cascade, which is essential for triggering programmed cell death.
Collapse
|
20
|
Pandiscia LA, Schweitzer-Stenner R. Coexistence of Native-Like and Non-Native Cytochrome c on Anionic Liposomes with Different Cardiolipin Content. J Phys Chem B 2015; 119:12846-59. [PMID: 26369421 DOI: 10.1021/acs.jpcb.5b07328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a combination of fluorescence, visible circular dichroism, and absorption spectroscopy to study the conformational changes of ferricytochrome c upon its binding to cardiolipin-containing small unilamellar vesicles. The measurements were performed as a function of the cardiolipin concentration, the cardiolipin content of the liposomes, and the NaCl concentration of the solvent. The data were analyzed with a novel model that combines a single binding step with a conformational equilibrium between native-like and non-native-like proteins bound to the membrane surface. The equilibrium between the two conformations, which themselves are comprised of structurally slightly different subconformations, shifts to the more non-native-like conformation with increasing cardiolipin concentration. For the binding isotherms described in this paper, we explicitly considered the enthalpic and entropic contributions of molecular crowding to protein binding at low lipid concentrations and high occupancy of the liposome surface. Increasing the CL content of liposomes increases the overall binding affinity but makes the conformational distribution much more susceptible to the influence of sodium and chloride ions, which shifts the equilibrium toward the more native-like state and directly inhibits binding, particularly to liposomes with 100% cardiolipin content. Spectroscopic evidence further suggests that a fraction of the non-native conformers adopts a pentacoordinated state similar to those obtained in class C peroxidases. On the basis of our results, we propose a hypothesis that describes the balance between facilitating and impeding forces controlling the peroxidase activity of cytochrome c in the inner membrane space of mitochondria.
Collapse
Affiliation(s)
- Leah A Pandiscia
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Guerra-Castellano A, Díaz-Quintana A, Moreno-Beltrán B, López-Prados J, Nieto PM, Meister W, Staffa J, Teixeira M, Hildebrandt P, De la Rosa MA, Díaz-Moreno I. Mimicking Tyrosine Phosphorylation in Human Cytochrome c by the Evolved tRNA Synthetase Technique. Chemistry 2015; 21:15004-12. [PMID: 26329855 DOI: 10.1002/chem.201502019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/08/2022]
Abstract
Phosphorylation of tyrosine 48 of cytochrome c is related to a wide range of human diseases due to the pleiotropic role of the heme-protein in cell life and death. However, the structural conformation and physicochemical properties of phosphorylated cytochrome c are difficult to study as its yield from cell extracts is very low and its kinase remains unknown. Herein, we report a high-yielding synthesis of a close mimic of phosphorylated cytochrome c, developed by optimization of the synthesis of the non-canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF) and its efficient site-specific incorporation at position 48. It is noteworthy that the Y48pCMF mutation significantly destabilizes the Fe-Met bond in the ferric form of cytochrome c, thereby lowering the pKa value for the alkaline transition of the heme-protein. This finding reveals the differential ability of the phosphomimic protein to drive certain events. This modified cytochrome c might be an important tool to investigate the role of the natural protein following phosphorylation.
Collapse
Affiliation(s)
| | - Antonio Díaz-Quintana
- IBVF - cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, Sevilla 41092 (Spain).
| | - Blas Moreno-Beltrán
- IBVF - cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, Sevilla 41092 (Spain)
| | - Javier López-Prados
- IIQ - cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, Sevilla 41092 (Spain)
| | - Pedro M Nieto
- IIQ - cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, Sevilla 41092 (Spain)
| | - Wiebke Meister
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Jana Staffa
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica, António Xavier Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras (Portugal)
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Miguel A De la Rosa
- IBVF - cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, Sevilla 41092 (Spain)
| | - Irene Díaz-Moreno
- IBVF - cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, Sevilla 41092 (Spain).
| |
Collapse
|
22
|
Pandiscia LA, Schweitzer-Stenner R. Coexistence of Native-like and Non-Native Partially Unfolded Ferricytochrome c on the Surface of Cardiolipin-Containing Liposomes. J Phys Chem B 2015; 119:1334-49. [DOI: 10.1021/jp5104752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leah A. Pandiscia
- Department
of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | | |
Collapse
|
23
|
Cytochrome c: A Multifunctional Protein Combining Conformational Rigidity with Flexibility. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/484538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytochrome has served as a model system for studying redox reactions, protein folding, and more recently peroxidase activity induced by partial unfolding on membranes. This review illuminates some important aspects of the research on this biomolecule. The first part summarizes the results of structural analyses of its active site. Owing to heme-protein interactions the heme group is subject to both in-plane and out-of-plane deformations. The unfolding of the protein as discussed in detail in the second part of this review can be induced by changes of pH and temperature and most prominently by the addition of denaturing agents. Both the kinetic and thermodynamic folding and unfolding involve intermediate states with regard to all unfolding conditions. If allowed to sit at alkaline pH (11.5) for a week, the protein does not return to its folding state when the solvent is switched back to neutral pH. It rather adopts a misfolded state that is prone to aggregation via domain swapping. On the surface of cardiolipin containing liposomes, the protein can adopt a variety of partially unfolded states. Apparently, ferricytochrome c can perform biological functions even if it is only partially folded.
Collapse
|
24
|
Alvarez-Paggi D, Castro MA, Tórtora V, Castro L, Radi R, Murgida DH. Electrostatically Driven Second-Sphere Ligand Switch between High and Low Reorganization Energy Forms of Native Cytochrome c. J Am Chem Soc 2013; 135:4389-97. [DOI: 10.1021/ja311786b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and ‡INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA-Buenos Aires, Argentina
- Departamento
de Bioquímica and ⊥Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
25
|
Soffer JB, Fradkin E, Pandiscia LA, Schweitzer-Stenner R. The (Not Completely Irreversible) Population of a Misfolded State of Cytochrome c under Folding Conditions. Biochemistry 2013; 52:1397-408. [DOI: 10.1021/bi301586e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jonathan B. Soffer
- Departments of Chemistry and
Biology, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United
States
| | - Emma Fradkin
- Departments of Chemistry and
Biology, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United
States
| | - Leah A. Pandiscia
- Departments of Chemistry and
Biology, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United
States
| | - Reinhard Schweitzer-Stenner
- Departments of Chemistry and
Biology, Drexel University, 3141 Chestnut
Street, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|
26
|
Drobizhev M, Scott JN, Callis PR, Rebane A. All-Optical Sensing of the Components of the Internal Local Electric Field in Proteins. IEEE PHOTONICS JOURNAL 2012; 4:1996-2001. [PMID: 25419440 PMCID: PMC4238891 DOI: 10.1109/jphot.2012.2221124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here, we present a new all-optical method of interrogation of the internal electric field vector inside proteins. The method is based on experimental evaluation of the permanent dipole moment change upon excitation and the pure electronic transition frequency of a fluorophore embedded in a protein matrix. The permanent dipole moment change can be obtained from two-photon absorption measurements. In addition, permanent dipole moment change, tensor of polarizability change, and transition frequency for the free chromophore should be calculated quantum-mechanically. This allows obtaining the components of the electric field by considering the second-order Stark shift. We use the fluorescent protein mCherry as an example to demonstrate the applicability of the method.
Collapse
Affiliation(s)
- M Drobizhev
- Department of Physics, Montana State University, Bozeman, MT 59717 USA
| | - J N Scott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - P R Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - A Rebane
- Department of Physics, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
27
|
Schweitzer-Stenner R. Using spectroscopic tools to probe porphyrin deformation and porphyrin-protein interactions. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424611003343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reactivity and functionality of heme proteins are to a significant extent determined by the conformation of their functional heme groups and by the interaction of axial ligands with their protein environment. This review focuses on experimental methods and theoretical concepts for elucidating symmetry lowering perturbations of the heme induced by the protein environment of the heme pocket. First, we discuss a variety of methods which can be used to probe the electric field at the heme, including spectral hole burning as well as low temperature absorption and room temperature circular dichroism spectroscopy. Second, we show how heme deformations can be described as superposition of deformations along normal coordinates, thereby using the irreducible representations of the D4h point group as a classification tool. Finally, resonance Raman spectroscopy is introduced as a tool to probe the deformations of metalloprophyrins in solution and in protein matrices by measuring and comparing intensities and depolarization properties rather than wavenumber positions.
Collapse
|
28
|
Bräm O, Consani C, Cannizzo A, Chergui M. Femtosecond UV Studies of the Electronic Relaxation Processes in Cytochrome c. J Phys Chem B 2011; 115:13723-30. [DOI: 10.1021/jp207615u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olivier Bräm
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Switzerland
| | - Cristina Consani
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Switzerland
| | - Andrea Cannizzo
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Switzerland
| |
Collapse
|
29
|
Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J Biol Inorg Chem 2011; 16:1155-68. [PMID: 21706253 DOI: 10.1007/s00775-011-0804-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/07/2011] [Indexed: 11/27/2022]
Abstract
Cytochrome c (Cc) is a key protein in cell life (respiration) and cell death (apoptosis). On the one hand, it serves as a mitochondrial redox carrier, transferring electrons between the membrane-embedded complexes III and IV. On the other hand, it acts as a cytoplasmic apoptosis-triggering agent, forming the apoptosome with apoptosis protease-activating factor-1 (Apaf-1) and activating the caspase cascade. The two functions of cytochrome c are finely tuned by the phosphorylation of tyrosines and, in particular, those located at positions 48 and 97. However, the specific cytochrome c-phosphorylating kinase is still unknown. To study the structural and functional changes induced by tyrosine phosphorylation in cytochrome c, we studied the two phosphomimetic mutants Y48E and Y97E, in which each tyrosine residue is replaced by glutamate. Such substitutions alter both the physicochemical features and the function of each mutant compared with the native protein. Y97E is significantly less stable than the WT species, whereas Y48E not only exhibits lower values for the alkaline transition pK (a) and the midpoint redox potential, but it also impairs Apaf-1-mediated caspase activation. Altogether, these findings suggest that the specific phosphorylation of Tyr48 makes cytochrome c act as an anti-apoptotic switch.
Collapse
|
30
|
De Biase PM, Paggi DA, Doctorovich F, Hildebrandt P, Estrin DA, Murgida DH, Marti MA. Molecular basis for the electric field modulation of cytochrome C structure and function. J Am Chem Soc 2010; 131:16248-56. [PMID: 19886701 DOI: 10.1021/ja906726n] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c (Cyt) is a small soluble heme protein with a hexacoordinated heme and functions as an electron shuttle in the mitochondria and in early events of apoptosis when released to the cytoplasm. Using molecular dynamics simulations, we show here that biologically relevant electric fields induce an increased mobility and structural distortion of key protein segments that leads to the detachment of the sixth axial ligand Met80 from the heme iron. This electric-field-induced conformational transition is energetically and entropically driven and leads to a pentacoordinated high spin heme that is characterized by a drastically lowered reduction potential as well as by an increased peroxidase activity. The simulations provide a detailed atomistic picture of the structural effects of the electric field on the structure of Cyt, which allows a sound interpretation of recent experimental results. The observed conformational change may modulate the electron transfer reactions of Cyt in the mitochondria and, furthermore, may constitute a switch from the redox function in the respiratory chain to the peroxidase function in the early events of apoptosis.
Collapse
Affiliation(s)
- Pablo M De Biase
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
31
|
Verbaro D, Hagarman A, Kohli A, Schweitzer-Stenner R. Microperoxidase 11: a model system for porphyrin networks and heme–protein interactions. J Biol Inorg Chem 2009; 14:1289-300. [DOI: 10.1007/s00775-009-0574-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/15/2009] [Indexed: 11/30/2022]
|
32
|
Verbaro D, Hagarman A, Soffer J, Schweitzer-Stenner R. The pH Dependence of the 695 nm Charge Transfer Band Reveals the Population of an Intermediate State of the Alkaline Transition of Ferricytochrome c at Low Ion Concentrations. Biochemistry 2009; 48:2990-6. [DOI: 10.1021/bi802208f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel Verbaro
- Department of Chemistry and Department of Biology, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104
| | - Andrew Hagarman
- Department of Chemistry and Department of Biology, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104
| | - Jonathan Soffer
- Department of Chemistry and Department of Biology, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104
| | - Reinhard Schweitzer-Stenner
- Department of Chemistry and Department of Biology, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
Schweitzer-Stenner R, Hagarman A, Verbaro D, Soffer JB. Conformational Stability of Cytochrome c Probed by Optical Spectroscopy. Methods Enzymol 2009; 466:109-53. [DOI: 10.1016/s0076-6879(09)66006-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|