1
|
Ultrafast photooxidation of protein-bound anionic flavin radicals. Proc Natl Acad Sci U S A 2022; 119:2118924119. [PMID: 35181610 PMCID: PMC8872763 DOI: 10.1073/pnas.2118924119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Flavoproteins are colored proteins involved in a large variety of biochemical reactions. They can perform photochemical reactions, which are increasingly exploited for bioengineering new protein-derived photocatalysts. In particular, light-induced reduction of the resting oxidized state of the flavin by close-lying amino acids or substrates is extensively studied. Here, we demonstrate that the reverse and previously unknown reaction photooxidation of the anionic semireduced flavin radical, a short-lived reaction intermediate in many biochemical reactions, efficiently occurs in flavoprotein oxidases. We anticipate that this finding will allow photoreduction of external reactants and lead to exploration of novel photocatalytic pathways. The photophysical properties of anionic semireduced flavin radicals are largely unknown despite their importance in numerous biochemical reactions. Here, we studied the photoproducts of these intrinsically unstable species in five different flavoprotein oxidases where they can be stabilized, including the well-characterized glucose oxidase. Using ultrafast absorption and fluorescence spectroscopy, we unexpectedly found that photoexcitation systematically results in the oxidation of protein-bound anionic flavin radicals on a time scale of less than ∼100 fs. The thus generated photoproducts decay back in the remarkably narrow 10- to 20-ps time range. Based on molecular dynamics and quantum mechanics computations, positively charged active-site histidine and arginine residues are proposed to be the electron acceptor candidates. Altogether, we established that, in addition to the commonly known and extensively studied photoreduction of oxidized flavins in flavoproteins, the reverse process (i.e., the photooxidation of anionic flavin radicals) can also occur. We propose that this process may constitute an excited-state deactivation pathway for protein-bound anionic flavin radicals in general. This hitherto undocumented photochemical reaction in flavoproteins further extends the family of flavin photocycles.
Collapse
|
2
|
Taniguchi S, Chosrowjan H, Tamaoki H, Nishina Y, Nueangaudom A, Tanaka F. Ultrafast photoinduced electron transfer in o-aminobenzoate – d-Amino acid oxidase complex. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Zhuang B, Seo D, Aleksandrov A, Vos MH. Characterization of Light-Induced, Short-Lived Interacting Radicals in the Active Site of Flavoprotein Ferredoxin-NADP + Oxidoreductase. J Am Chem Soc 2021; 143:2757-2768. [PMID: 33591179 DOI: 10.1021/jacs.0c09627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radicals of flavin adenine dinucleotide (FAD), as well as tyrosine and tryptophan, are widely involved as key reactive intermediates during electron-transfer (ET) reactions in flavoproteins. Due to the high reactivity of these species and their corresponding short lifetime, characterization of these intermediates in functional processes of flavoproteins is usually challenging but can be achieved by ultrafast spectroscopic studies of light-activatable flavoproteins. In ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (BsFNR), fluorescence of the FAD cofactor that very closely interacts with a neighboring tyrosine residue (Tyr50) is strongly quenched. Here we study short-lived photoproducts of this enzyme and its variants, with Tyr50 replaced by tryptophan or glycine. Using time-resolved fluorescence and absorption spectroscopies, we show that, upon the excitation of WT BsFNR, ultrafast ET from Tyr50 to the excited FAD cofactor occurs in ∼260 fs, an order of magnitude faster than the decay by charge recombination, facilitating the characterization of the reaction intermediates in the charge-separated state with respect to other recently studied systems. These studies are corroborated by experiments on the Y50W mutant protein, which yield photoproducts qualitatively similar to those observed in other tryptophan-bearing flavoproteins. By combining the experimental results with molecular dynamics simulations and quantum mechanics calculations, we investigate in detail the effects of protein environment and relaxations on the spectral properties of those radical intermediates and demonstrate that the spectral features of radical anionic FAD are highly sensitive to its environment, and in particular to the dynamics and nature of the counterions formed in the photoproducts. Altogether, comprehensive characterizations are provided for important radical intermediates that are generally involved in functional processes of flavoproteins.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Kanazawa, Ishikawa, Japan
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
4
|
Taniguchi S, Chosrowjan H, Ito S, Miyasaka H, Katane M, Homma H, Tanaka F, Nueangaudom A, Lugsanangarm K, Kokpol S. Comparative studies on picosecond-resolved fluorescence of d-amino acid oxidases from human with one from porcine kidney. Photoinduced electron transfer from aromatic amino acids to the excited flavin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111546. [PMID: 31351309 DOI: 10.1016/j.jphotobiol.2019.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Fluorescence dynamics of human d-amino acid oxidase (hDAAO) and its five inhibitors have been studied in the picoseconds time domain, and compared with one in d-amino acid oxidase from porcine kidney (pkDAAO) reported. The fluorescence lifetimes were identified as 47 ps in the dimer, 235 ps in the monomer, which are compared with those of pkDAAO (45 ps-185 ps). The fluorescence lifetimes of the hDAAO did not change upon the inhibitor bindings despite of modifications in the absorption spectra. This indicates that the lifetimes of the complexes are too short to detect with the picosecond lifetime instrument. Numbers of the aromatic amino acids are similar between the both DAAOs. The fluorescence lifetimes of hDAAO were analysed with an ET theory using the crystal structure. The difference in the lifetimes of the dimer and monomer was well described in terms of difference in the electron affinity of the excited isoalloxazine (Iso*) between the two forms of the protein, though it is not known whether the structure of the monomer is different from the dimer. Three fastest ET donors were Tyr314, Trp52 and Tyr224 in the dimer, while Tyr314, Tyr224 and Tyr55 in the monomer, which are compared to those in pkDAAO, Tyr314, Tyr224 and Tyr228 in the dimer, and Tyr224, Tyr314 and Tyr228 in the monomer. The ET rate from Trp55 in hDAAO dimer was much faster compared to the rate in pkDAAO dimer. A rise component with negative pre-exponential factor was not observed in hDAAO, which are found in pkDAAO.
Collapse
Affiliation(s)
- Seiji Taniguchi
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan.
| | - Haik Chosrowjan
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan
| | - Shoji Ito
- Department of Chemistry, School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Department of Chemistry, School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Fumio Tanaka
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan; Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10,330, Thailand.
| | - Arthit Nueangaudom
- Program of General Science, Faculty of Science and Technology, Thepsatri Rajabhat University, Lopburi 15,000, Thailand
| | - Kiattisak Lugsanangarm
- Program of Chemistry, Faculty of Science, Bansomdejchaopraya Rajabhat University, Bangkok 10,600, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10,330, Thailand
| |
Collapse
|
5
|
Conformational difference between two subunits in flavin mononucleotide binding protein dimers from Desulfovibrio vulgaris (MF): molecular dynamics simulation. Comput Biol Chem 2016; 64:113-125. [PMID: 27327240 DOI: 10.1016/j.compbiolchem.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/11/2016] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
The structural and dynamical properties of five FMN binding protein (FBP) dimers, WT (wild type), E13K (Glu13 replaced by Lys), E13R (Glu13 replaced by Arg), E13T (Glu13 replaced by Thr) and E13Q (Glu13 replaced by Gln), were investigated using a method of molecular dynamics simulation (MDS). In crystal structures, subunit A (Sub A) and subunit B (Sub B) were almost completely equivalent in all of the five FBP dimers. However, the predicted MDS structures of the two subunits were not equivalent in solution, revealed by the distances and inter-planar angles between isoalloxazine (Iso) and aromatic amino acids (Trp32, Tyr35 and Trp106) as well as the hydrogen bonding pairs between Iso and nearby amino acids. Residue root of mean square fluctuations (RMSF) also displayed considerable differences between Sub A and Sub B and in the five FBP dimers. The dynamics of the whole protein structures were examined with the distance (RNN) between the peptide N atom of the N terminal (Met1) and the peptide N atom of the C terminal (Leu122). Water molecules were rarely accessible to Iso in all FBP dimers which are in contrast with other flavoenzymes.
Collapse
|
6
|
Lugsanangarm K, Nueangaudom A, Kokpol S, Pianwanit S, Nunthaboot N, Tanaka F, Taniguchi S, Chosrowjan H. Heterogeneous subunit structures in the pyranose 2-oxidase homotetramer revealed by theoretical analysis of the rates of photoinduced electron transfer from a tryptophan to the excited flavin. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Tanaka F, Lugsanangarm K, Nunthaboot N, Nueangaudom A, Pianwanit S, Kokpol S, Taniguchi S, Chosrowjan H. Classification of the mechanisms of photoinduced electron transfer from aromatic amino acids to the excited flavins in flavoproteins. Phys Chem Chem Phys 2015; 17:16813-25. [DOI: 10.1039/c5cp01432h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emission wavelength-dependence of the relationship between logarithmic ET rate vs. donor–acceptor distance in pyranose 2-oxidase.
Collapse
Affiliation(s)
- Fumio Tanaka
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Kiattisak Lugsanangarm
- Program of Science
- Faculty of Education
- Bansomdejchaopraya Rajabhat University
- Bangkok 10600
- Thailand
| | - Nadtanet Nunthaboot
- Department of Chemistry
- Faculty of Science
- Mahasarakham University
- Mahasarakham 44150
- Thailand
| | - Arthit Nueangaudom
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Somsak Pianwanit
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Sirirat Kokpol
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Seiji Taniguchi
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004
- Japan
| | - Haik Chosrowjan
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004
- Japan
| |
Collapse
|
8
|
Nunthaboot N, Tanaka F, Kokpol S. Comparison of the monomer structure of the FMN-binding protein from Desulfovibrio vulgarisobtained by NMR and molecular dynamics simulation approaches. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.837905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Photoinduced electron transfer modeling to simulate flavoprotein fluorescence decay. Methods Mol Biol 2014; 1076:337-55. [PMID: 24108633 DOI: 10.1007/978-1-62703-649-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A method of analysis is described on the photoinduced electron transfer (PET) from aromatic amino acids as tryptophans (Trp) and tyrosines (Tyr) to the excited isoalloxazine (Iso*) in FMN-binding proteins (FBP) from Desulfovibrio vulgaris (strain, Miyazaki F). Time-dependent geometrical factors as the donor-acceptor distances are determined by means of a molecular dynamics simulation (MDS) of the proteins. Fluorescence decays of the single mutated isoforms of FBP are used as experimental data. The electrostatic (ES) energy between the photoproducts and ionic groups in the proteins is introduced into the Kakitani and Mataga (KM) model, which is modeled for an electron transfer process in solution. The PET parameters contained in the KM rate are determined by means of a nonlinear least square method, according to the Marquardt algorithm. The agreement between the observed and calculated decays is quite good, but not optimal. Characteristics on PET in flavoproteins, obtained by the present method, are described. Possible improvements of the method are discussed.
Collapse
|
10
|
Nunthaboot N, Lugsanangarm K, Nueangaudom A, Pianwanit S, Kokpol S, Tanaka F. Role of the electrostatic energy between the photo-products and ionic groups on the photoinduced electron transfer rates from aromatic amino acids to the excited flavin in five single-point substitution isoforms of the charged amino acid residue-13 in the FMN-binding protein. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.902534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Nunthaboot N, Lugsanangarm K, Pianwanit S, Kokpol S, Tanaka F, Taniguchi S, Chosrowjan H, Nakanishi T, Kitamura M. Bell-shaped dependence of the rate of ultrafast photoinduced electron transfer from aromatic amino acids to the excited flavin on the donor–acceptor distance in FMN binding proteins. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Nueangaudom A, Lugsanangarm K, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F, Taniguchi S, Chosrowjan H. Theoretical analyses of the fluorescence lifetimes of the d-amino acid oxidase–benzoate complex dimer from porcine kidney: molecular dynamics simulation and photoinduced electron transfer. RSC Adv 2014. [DOI: 10.1039/c4ra05211k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of photoinduced electron transfer from benzoate and aromatic amino acids to the excited isoalloxazine in the d-amino acid oxidase–benzoate complex dimer was studied using molecular dynamics simulation and an electron transfer theory.
Collapse
Affiliation(s)
- Arthit Nueangaudom
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | - Kiattisak Lugsanangarm
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | - Somsak Pianwanit
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | | | - Fumio Tanaka
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
- Division of Laser Biochemistry
| | - Seiji Taniguchi
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004, Japan
| | - Haik Chosrowjan
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004, Japan
| |
Collapse
|
13
|
Nueangaudom A, Lugsanangarm K, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F. Non-equivalent conformations ofd-amino acid oxidase dimer from porcine kidney between the two subunits. Molecular dynamics simulation and photoinduced electron transfer. Phys Chem Chem Phys 2014; 16:1930-44. [DOI: 10.1039/c3cp53826e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
He TF, Guo L, Guo X, Chang CW, Wang L, Zhong D. Femtosecond dynamics of short-range protein electron transfer in flavodoxin. Biochemistry 2013; 52:9120-8. [PMID: 24289221 PMCID: PMC3909472 DOI: 10.1021/bi401137u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intraprotein electron transfer (ET) in flavoproteins is important for understanding the correlation of their redox, configuration, and reactivity at the active site. Here, we used oxidized flavodoxin as a model system and report our complete characterization of a photoinduced redox cycle from the initial charge separation in 135-340 fs to subsequent charge recombination in 0.95-1.6 ps and to the final cooling relaxation of the product(s) in 2.5-4.3 ps. With 11 mutations at the active site, we observed that these ultrafast ET dynamics, much faster than active-site relaxation, mainly depend on the reduction potentials of the electron donors with minor changes caused by mutations, reflecting a highly localized ET reaction between the stacked donor and acceptor at a van der Waals distance and leading to a gas-phase type of bimolecular ET reaction confined in the active-site nanospace. Significantly, these ultrafast ET reactions ensure our direct observation of vibrationally excited reaction product(s), suggesting that the back ET barrier is effectively reduced because of the decrease in the total free energy in the Marcus inverted region, leading to the accelerated charge recombination. Such vibrationally coupled charge recombination should be a general feature of flavoproteins with similar configurations and interactions between the cofactor flavin and neighboring aromatic residues.
Collapse
Affiliation(s)
| | | | - Xunmin Guo
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Chih-Wei Chang
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Lugsanangarm K, Pianwanit S, Nueangaudom A, Kokpol S, Tanaka F, Nunthaboot N, Ogino K, Takagi R, Nakanishi T, Kitamura M, Taniguchi S, Chosrowjan H. Mechanism of photoinduced electron transfer from tyrosine to the excited flavin in the flavodoxin from Helicobacter pylori. A comparative study with the flavodoxin and flavin mononucleotide binding protein from Desulfovibrio vulgaris (Miyazaki F). J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Taniguchi S, Chosrowjan H, Tanaka F, Nakanishi T, Sato S, Haruyama Y, Kitamura M. A Key Factor for Ultrafast Rates of Photoinduced Electron Transfer among Five Flavin Mononucleotide Binding Proteins: Effect of Negative, Positive, and Neutral Charges at Residue 13 on the Rate. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seiji Taniguchi
- Division of Laser Biochemistry, Institute for Laser Technology
| | - Haik Chosrowjan
- Division of Laser Biochemistry, Institute for Laser Technology
| | - Fumio Tanaka
- Division of Laser Biochemistry, Institute for Laser Technology
- Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Takeshi Nakanishi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Shuta Sato
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Yoshihiro Haruyama
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Masaya Kitamura
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| |
Collapse
|
17
|
Relationship between rate of photoinduced electron transfer and hydrogen bonding chain of tyrosine-glutamine-flavin in flavin photoreceptors: Global analyses among four TePixDs and three AppAs. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2012.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Nueangaudom A, Lugsanangarm K, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F. The mechanism of photoinduced electron transfer in the d-amino acid oxidase–benzoate complex from pig kidney: Electron transfer in the inverted region. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Taniguchi S, Chosrowjan H, Wongnate T, Sucharitakul J, Chaiyen P, Tanaka F. Ultrafast fluorescence dynamics of flavin adenine dinucleotide in pyranose 2-oxidases variants and their complexes with acetate: Conformational heterogeneity with different dielectric constants. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chosrowjan H, Taniguchi S, Wongnate T, Sucharitakul J, Chaiyen P, Tanaka F. Conformational heterogeneity in pyranose 2-oxidase from Trametes multicolor revealed by ultrafast fluorescence dynamics. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2011.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Nueangaudom A, Lugsanangarm K, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F. Structural basis for the temperature-induced transition of d-amino acid oxidase from pig kidney revealed by molecular dynamic simulation and photo-induced electron transfer. Phys Chem Chem Phys 2012; 14:2567-78. [DOI: 10.1039/c2cp23001a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Lugsanangarm K, Pianwanit S, Kokpol S, Tanaka F. Homology modelling and molecular dynamics simulations of wild type and mutated flavodoxins fromDesulfovibrio vulgaris(Miyazaki F): insight into FMN–apoprotein interactions. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.586348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Theoretical analyses of photoinduced electron transfer in medium chain acyl-CoA dehydrogenase: Electron transfer in the normal region. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Lugsanangarm K, Pianwanit S, Kokpol S, Tanaka F, Chosrowjan H, Taniguchi S, Mataga N. Photoinduced electron transfer in wild type and mutated flavodoxin from Desulfovibrio vulgaris, strain Miyazaki F.: Energy gap law. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Lugsanangarm K, Pianwanit S, Kokpol S, Tanaka F, Chosrowjan H, Taniguchi S, Mataga N. Analysis of photoinduced electron transfer in flavodoxin. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2010.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Nunthaboot N, Pianwanit S, Kokpol S, Tanaka F. Simultaneous analyses of photoinduced electron transfer in the wild type and four single substitution isomers of the FMN binding protein from Desulfovibrio vulgaris, Miyazaki F. Phys Chem Chem Phys 2011; 13:6085-97. [DOI: 10.1039/c0cp02634d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Chosrowjan H, Taniguchi S, Mataga N, Nakanishi T, Haruyama Y, Sato S, Kitamura M, Tanaka F. Effects of the disappearance of one charge on ultrafast fluorescence dynamics of the FMN binding protein. J Phys Chem B 2010; 114:6175-82. [PMID: 20397678 DOI: 10.1021/jp912137s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystal structures of E13T (Glu13 was replaced by Thr13) and E13Q (Glu13 was replaced by Gln13) FMN binding proteins (FMN-bp) from Desulfovibrio vulgaris, strain Miyazaki F, were determined by the X-ray diffraction method. Geometrical factors related to photoinduced electron transfer from Trp32, Tyr35, and Trp106 to the excited isoalloxazine (Iso*) were compared among the three forms of FMN-bp. The rate of ET is considered to be fastest from Trp32 to Iso* in FMN-bp and then from Tyr35 and Trp106. The distances between Iso and Trp32 did not change appreciably (0.705-0.712 nm) among WT, E13T, and E13Q FMN-bps, though the distances between Iso and Tyr35 or Trp106 became a little shorter by ca. 0.01 nm in both mutated FMN-bps. The distances between the residue at 13 and the ET donors or acceptor in the mutated proteins, however, changed markedly, compared to WT. Hydrogen bonding pairs and distances between Iso and surrounding amino acids were not modified when Glu13 was replaced by Thr13 or Gln13. Effects of elimination of ionic charge at Glu13 on the ultrafast fluorescence dynamics in E13T and E13Q were investigated comparing to WT, by means of a fluorescence up-conversion method. Fluorescence lifetimes were tau(1) = 107 fs (alpha(1) = 0.86), tau(2) = 475 fs (alpha(2) = 0.12), and tau(3) = 30 ps (alpha(3) = 0.02) in E13T and tau(1) = 134 fs (alpha(1) = 0.85), alpha(2) = 746 fs (alpha(2) = 0.12), and tau(3) = 30 ps (alpha(3) = 0.03) in E13Q, which are compared to the reported lifetimes in WT, tau(1) = 168 fs (alpha(1) = 0.95) and alpha(2) = 1.4 ps (alpha(2) = 0.05). Average lifetimes (tau(AV) = Sigma(i=1)(2or3)alpha(i)tau(i)) were 0.75 ps in E13T, 1.10 ps in E13Q, and 0.23 ps in WT, which implies that tau(AV) was 3.3 times longer in E13T and 4.8 times longer in E13Q, compared to WT. The ultrafast fluorescence dynamics of WT did not change when solvent changed from H(2)O to D(2)O. Static ET rates (inverse of average lifetimes) were analyzed with static structures of the three systems of FMN-bp. Net electrostatic (ES) energies of Iso and Trp32, on which ET rates depend, were 0.0263 eV in WT, 0.322 eV in E13T, and 0.412 eV in E13Q. The calculated ET rates were in excellent agreement with the observed ones in all systems.
Collapse
Affiliation(s)
- Haik Chosrowjan
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4, Nishiku, Osaka 550-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Simultaneous analysis of photoinduced electron transfer in wild type and mutated AppAs. J Photochem Photobiol A Chem 2010. [DOI: 10.1016/j.jphotochem.2009.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
|