1
|
Managing argon interference during measurements of 18O/ 16O ratios in O 2 by continuous-flow isotope ratio mass spectrometry. Anal Bioanal Chem 2022; 414:6177-6186. [PMID: 35841416 PMCID: PMC9314310 DOI: 10.1007/s00216-022-04184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Abstract Monitoring changes in stable oxygen isotope ratios in molecular oxygen allows for studying many fundamental processes in bio(geo)chemistry and environmental sciences. While the measurement of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{18}$$\end{document}18O/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{16}$$\end{document}16O ratios of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {O}_{2}$$\end{document}O2 in gaseous samples can be carried out conveniently and from extracting moderately small aqueous samples for analyses by continuous-flow isotope ratio mass spectrometry (CF-IRMS), oxygen isotope signatures, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\updelta ^{18}$$\end{document}δ18O, could be overestimated by more than 6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\permille$$\end{document}‱ because of interferences from argon in air. Here, we systematically evaluated the extent of such Ar interferences on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{18}$$\end{document}18O/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{16}$$\end{document}16O ratios of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {O}_{2}$$\end{document}O2 for measurements by gas chromatography/IRMS and GasBench/IRMS and propose simple instrumental modifications for improved Ar and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {O}_{2}$$\end{document}O2 separation as well as post-measurement correction procedures for obtaining accurate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\updelta ^{18}$$\end{document}δ18O. We subsequently evaluated the consequences of Ar interferences for the quantification of O isotope fractionation in terms of isotope enrichment factors, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upepsilon _{\mathrm {O}}$$\end{document}ϵO, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{18}$$\end{document}18O kinetic isotope effects (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{18}$$\end{document}18O KIEs) in samples where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {O}_{2}$$\end{document}O2 is consumed and Ar:\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {O}_{2}$$\end{document}O2 ratios increase steadily and substantially over the course of a reaction. We show that the extent of O isotope fractionation is overestimated only slightly and that this effect is typically smaller than uncertainties originating from the precision of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\updelta ^{18}$$\end{document}δ18O measurements and experimental variability. Ar interferences can become more relevant and bias \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upepsilon _{\mathrm {O}}$$\end{document}ϵO values by more than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\permille$$\end{document}2‱ in aqueous samples where fractional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {O}_{2}$$\end{document}O2 conversion exceeds 90%. Practically, however, such samples would typically contain less than 25 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μM of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {O}_{2}$$\end{document}O2 at ambient temperature, an amount that is close to the method detection limit of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{18}$$\end{document}18O/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{16}$$\end{document}16O ratio measurement by CF-IRMS. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00216-022-04184-3.
Collapse
|
2
|
Ghogare AA, Debaz CJ, Silva Oliveira M, Abramova I, Mohapatra PP, Kwon K, Greer EM, Prado FM, Valerio HP, Di Mascio P, Greer A. Experimental and DFT Computational Insight into Nitrosamine Photochemistry—Oxygen Matters. J Phys Chem A 2017; 121:5954-5966. [DOI: 10.1021/acs.jpca.7b02414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashwini A. Ghogare
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ciro J. Debaz
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Marilene Silva Oliveira
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Inna Abramova
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Prabhu P. Mohapatra
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Kitae Kwon
- Department
of Natural Sciences, Baruch College, City University of New York, New York 10010, United States
| | - Edyta M. Greer
- Department
of Natural Sciences, Baruch College, City University of New York, New York 10010, United States
| | - Fernanda Manso Prado
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Hellen Paula Valerio
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP, 05508-000 São Paulo, Brazil
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
3
|
Schneider TW, Angeles-Boza AM. Competitive 13C and 18O kinetic isotope effects on CO2 reduction catalyzed by Re(bpy)(CO)3Cl. Dalton Trans 2015; 44:8784-7. [DOI: 10.1039/c4dt03977g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Competitive 13C and 18O kinetic isotope effects (KIEs) on CO2 reduction reactions catalyzed by Re(bpy)(CO)3Cl are reported.
Collapse
|
4
|
Angeles-Boza AM, Ertem MZ, Sarma R, Ibañez CH, Maji S, Llobet A, Cramer CJ, Roth JP. Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes. Chem Sci 2014. [DOI: 10.1039/c3sc51919h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Competitive 18O KIEs on water oxidation catalysis provide a probe of transition states for O–O bond formation.
Collapse
Affiliation(s)
| | - Mehmed Z. Ertem
- Department of Chemistry and Supercomputing Center
- University of Minnesota
- Minneapolis, USA
| | - Rupam Sarma
- Department of Chemistry
- Johns Hopkins University
- Baltimore, USA
| | | | - Somnath Maji
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona, Spain
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Center
- University of Minnesota
- Minneapolis, USA
| | - Justine P. Roth
- Department of Chemistry
- Johns Hopkins University
- Baltimore, USA
| |
Collapse
|
5
|
Liu Y, Mukherjee A, Nahumi N, Ozbil M, Brown D, Angeles-Boza AM, Dooley DM, Prabhakar R, Roth JP. Experimental and Computational Evidence of Metal-O2 Activation and Rate-Limiting Proton-Coupled Electron Transfer in a Copper Amine Oxidase. J Phys Chem B 2012; 117:218-29. [DOI: 10.1021/jp3121484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yi Liu
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Nadav Nahumi
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Mehmet Ozbil
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Doreen Brown
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - David M. Dooley
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Sarma R, Angeles-Boza AM, Brinkley DW, Roth JP. Studies of the Di-iron(VI) Intermediate in Ferrate-Dependent Oxygen Evolution from Water. J Am Chem Soc 2012; 134:15371-86. [DOI: 10.1021/ja304786s] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rupam Sarma
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - David W. Brinkley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| |
Collapse
|
7
|
Huff GS, Doncheva IS, Brinkley DW, Angeles-Boza AM, Mukherjee A, Cramer CJ, Roth JP. Experimental and Computational Investigations of Oxygen Reactivity in a Heme and Tyrosyl Radical-Containing Fatty Acid α-(Di)oxygenase. Biochemistry 2011; 50:7375-89. [DOI: 10.1021/bi201016h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gregory S. Huff
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Irina S. Doncheva
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - David W. Brinkley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis,
Minnesota 55455, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street
Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Ashley DC, Brinkley DW, Roth JP. Oxygen Isotope Effects as Structural and Mechanistic Probes in Inorganic Oxidation Chemistry. Inorg Chem 2010; 49:3661-75. [DOI: 10.1021/ic901778g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel C. Ashley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - David W. Brinkley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
9
|
Zimmermann T, Vanícek J. Path integral evaluation of equilibrium isotope effects. J Chem Phys 2009; 131:024111. [PMID: 19603974 DOI: 10.1063/1.3167353] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A general and rigorous methodology to compute the quantum equilibrium isotope effect is described. Unlike standard approaches, ours does not assume separability of rotational and vibrational motions and does not make the harmonic approximation for vibrations or rigid rotor approximation for the rotations. In particular, zero point energy and anharmonicity effects are described correctly quantum mechanically. The approach is based on the thermodynamic integration with respect to the mass of isotopes and on the Feynman path integral representation of the partition function. An efficient estimator for the derivative of free energy is used whose statistical error is independent of the number of imaginary time slices in the path integral, speeding up calculations by a factor of approximately 60 at 500 K and more at room temperature. We describe the implementation of the methodology in the molecular dynamics package AMBER 10. The method is tested on three [1,5] sigmatropic hydrogen shift reactions. Because of the computational expense, we use ab initio potentials to evaluate the equilibrium isotope effects within the harmonic approximation and then the path integral method together with semiempirical potentials to evaluate the anharmonicity corrections. Our calculations show that the anharmonicity effects amount up to 30% of the symmetry reduced reaction free energy. The numerical results are compared with recent experiments of Doering et al., [J. Am. Chem. Soc. 128, 9080 (2006); J. Am. Chem. Soc.129, 2488 (2007)] confirming the accuracy of the most recent measurement on 2,4,6,7,9-pentamethyl-5-(5,5-(2)H(2))methylene-11,11a-dihydro-12H-naphthacene as well as concerns about compromised accuracy, due to side reactions, of another measurement on 2-methyl-10-(10,10-(2)H(2))methylenebicyclo[4.4.0]dec-1-ene.
Collapse
Affiliation(s)
- Tomás Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
10
|
Roth JP. Oxygen isotope effects as probes of electron transfer mechanisms and structures of activated O2. Acc Chem Res 2009; 42:399-408. [PMID: 19195996 DOI: 10.1021/ar800169z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Competitively determined oxygen ((18)O) isotope effects can be powerful probes of chemical and biological transformations involving molecular oxygen as well as superoxide and hydrogen peroxide. They play a complementary role to crystallography and spectroscopy in the study of activated oxygen intermediates by forging a link between electronic/vibrational structure and the bonding that occurs within ground and transition states along the reaction coordinate. Such analyses can be used to assess the plausibility of intermediates and their catalytic relevance in oxidative processes. This Account describes efforts to advance oxygen kinetic isotope effects ((18)O KIEs) and equilibrium isotope effects ((18)O EIEs) as mechanistic probes of reactive, oxygen-derived species. We focus primarily on transition metal mediated oxidations, outlining both advances over the past five years and current limitations of this approach. Computational methods are now being developed to probe transition states and the accompanying kinetic isotope effects. In particular, we describe the importance of using a full-frequency model to accurately predict the magnitudes as well as the temperature dependence of the isotope effects. Earlier studies have used a "cut-off model," which employs only a few isotopic vibrational modes, and such models tend to overestimate (18)O EIEs. Researchers in mechanistic biological inorganic chemistry would like to differentiate "inner-sphere" from "outer-sphere" reactivity of O(2), a designation that describes the extent of the bonding interaction between metal and oxygen in the transition state. Though this problem remains unsolved, we expect that this isotopic approach will help differentiate these processes. For example, comparisons of (18)O KIEs to (18)O EIEs provide benchmarks that allow us to calibrate computationally derived reaction coordinates. Once the physical origins of heavy atom isotope effects are better understood, researchers will be able to apply the competitive isotope fractionation technique to a wide range of pressing problems in small molecule chemistry and biochemistry.
Collapse
Affiliation(s)
- Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|