1
|
Garduño-Juárez R, Tovar-Anaya DO, Perez-Aguilar JM, Lozano-Aguirre Beltran LF, Zubillaga RA, Alvarez-Perez MA, Villarreal-Ramirez E. Molecular Dynamic Simulations for Biopolymers with Biomedical Applications. Polymers (Basel) 2024; 16:1864. [PMID: 39000719 PMCID: PMC11244511 DOI: 10.3390/polym16131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 07/17/2024] Open
Abstract
Computational modeling (CM) is a versatile scientific methodology used to examine the properties and behavior of complex systems, such as polymeric materials for biomedical bioengineering. CM has emerged as a primary tool for predicting, setting up, and interpreting experimental results. Integrating in silico and in vitro experiments accelerates scientific advancements, yielding quicker results at a reduced cost. While CM is a mature discipline, its use in biomedical engineering for biopolymer materials has only recently gained prominence. In biopolymer biomedical engineering, CM focuses on three key research areas: (A) Computer-aided design (CAD/CAM) utilizes specialized software to design and model biopolymers for various biomedical applications. This technology allows researchers to create precise three-dimensional models of biopolymers, taking into account their chemical, structural, and functional properties. These models can be used to enhance the structure of biopolymers and improve their effectiveness in specific medical applications. (B) Finite element analysis, a computational technique used to analyze and solve problems in engineering and physics. This approach divides the physical domain into small finite elements with simple geometric shapes. This computational technique enables the study and understanding of the mechanical and structural behavior of biopolymers in biomedical environments. (C) Molecular dynamics (MD) simulations involve using advanced computational techniques to study the behavior of biopolymers at the molecular and atomic levels. These simulations are fundamental for better understanding biological processes at the molecular level. Studying the wide-ranging uses of MD simulations in biopolymers involves examining the structural, functional, and evolutionary aspects of biomolecular systems over time. MD simulations solve Newton's equations of motion for all-atom systems, producing spatial trajectories for each atom. This provides valuable insights into properties such as water absorption on biopolymer surfaces and interactions with solid surfaces, which are crucial for assessing biomaterials. This review provides a comprehensive overview of the various applications of MD simulations in biopolymers. Additionally, it highlights the flexibility, robustness, and synergistic relationship between in silico and experimental techniques.
Collapse
Affiliation(s)
- Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - David O Tovar-Anaya
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Coyoacán 04510, Mexico
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | | | - Rafael A Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Marco Antonio Alvarez-Perez
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Coyoacán 04510, Mexico
| | - Eduardo Villarreal-Ramirez
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Coyoacán 04510, Mexico
| |
Collapse
|
2
|
Hu D, Ren Q, Li Z, Han S, Ding L, Lu Z, Zhang L. Unveiling the mechanism of an amelogenin-derived peptide in promoting enamel biomimetic remineralization. Int J Biol Macromol 2023; 253:127322. [PMID: 37848117 DOI: 10.1016/j.ijbiomac.2023.127322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Amelogenin and its derived peptides have exhibited excellent efficacy in promoting enamel biomimetic remineralization. However, little is known about their specific action mechanisms. Herein, by combining experiments and computer simulation, the mechanism of an amelogenin-derived peptide QP5 in regulating enamel biomimetic remineralization is unveiled for the first time. In experiments, peptide QP5 was separated into (QPX)5 and C-tail domains, the interactions of peptide-minerals in nucleation solution and the regulation of peptide on enamel biomimetic remineralization were explored. QP5 exhibited an unordered conformation when mineral ions existed, and it could adsorb on minerals through its two domains, thereby inhibiting spontaneous nucleation. The remineralized enamel regulated by C-tail showed better mechanical properties and formed more biomimetic crystals than that of (QPX)5, indicating the C-tail domain of QP5 played an important role in forming enamel-like crystals. The simulation results showed that the conformation of QP5 changed greatly, mainly exhibiting β-bend, β-turn, and coil structures, and it eventually adsorbed on enamel through negatively charged residues of the C-tail domain, then captured Ca2+ from solution to promote enamel remineralization. This study improved the evaluation methods of the mechanism of biomimetic peptides, and laid a theoretical basis for the amelioration and clinical transformation of peptide QP5.
Collapse
Affiliation(s)
- Die Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu 610041, China
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu 610041, China
| | - Zhongcheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu 610041, China
| | - Sili Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu 610041, China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu 610041, China
| | - Ziqian Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu 610041, China.
| |
Collapse
|
3
|
Huang Y, Bai Y, Chang C, Bacino M, Cheng IC, Li L, Habelitz S, Li W, Zhang Y. A N-Terminus Domain Determines Amelogenin's Stability to Guide the Development of Mouse Enamel Matrix. J Bone Miner Res 2021; 36:1781-1795. [PMID: 33957008 PMCID: PMC9307086 DOI: 10.1002/jbmr.4329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Amelogenins, the principal proteins in the developing enamel microenvironment, self-assemble into supramolecular structures to govern the remodeling of a proteinaceous organic matrix into longitudinally ordered hydroxyapatite nanocrystal arrays. Extensive in vitro studies using purified native or recombinant proteins have revealed the potential of N-terminal amelogenin on protein self-assembly and its ability to guide the mineral deposition. We have previously identified a 14-aa domain (P2) of N-terminal amelogenin that can self-assemble into amyloid-like fibrils in vitro. Here, we investigated how this domain affects the ability of amelogenin self-assembling and stability of enamel matrix protein scaffolding in an in vivo animal model. Mice harboring mutant amelogenin lacking P2 domain had a hypoplastic, hypomineralized, and aprismatic enamel. In vitro, the mutant recombinant amelogenin without P2 had a reduced tendency to self-assemble and was prone to accelerated hydrolysis by MMP20, the prevailing metalloproteinase in early developing enamel matrix. A reduced amount of amelogenins and a lack of elongated fibrous assemblies in the development enamel matrix of mutant mice were evident compared with that in the wild-type mouse enamel matrix. Our study is the first to demonstrate that a subdomain (P2) at the N-terminus of amelogenin controls amelogenin's assembly into a transient protein scaffold that resists rapid proteolysis during enamel development in an animal model. Understanding the building blocks of fibrous scaffold that guides the longitudinal growth of hydroxyapatites in enamel matrix sheds light on protein-mediated enamel bioengineering. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yulei Huang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA
| | - Yushi Bai
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Chih Chang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Margot Bacino
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Ieong Cheng Cheng
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Li Li
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Stefan Habelitz
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun-Yat-sen University, Guangzhou, China
| | - Wu Li
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Shaw WJ, Tarasevich BJ, Buchko GW, Arachchige RMJ, Burton SD. Controls of nature: Secondary, tertiary, and quaternary structure of the enamel protein amelogenin in solution and on hydroxyapatite. J Struct Biol 2020; 212:107630. [PMID: 32979496 PMCID: PMC7744360 DOI: 10.1016/j.jsb.2020.107630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Amelogenin, a protein critical to enamel formation, is presented as a model for understanding how the structure of biomineralization proteins orchestrate biomineral formation. Amelogenin is the predominant biomineralization protein in the early stages of enamel formation and contributes to the controlled formation of hydroxyapatite (HAP) enamel crystals. The resulting enamel mineral is one of the hardest tissues in the human body and one of the hardest biominerals in nature. Structural studies have been hindered by the lack of techniques to evaluate surface adsorbed proteins and by amelogenin's disposition to self-assemble. Recent advancements in solution and solid state nuclear magnetic resonance (NMR) spectroscopy, atomic force microscopy (AFM), and recombinant isotope labeling strategies are now enabling detailed structural studies. These recent studies, coupled with insights from techniques such as CD and IR spectroscopy and computational methodologies, are contributing to important advancements in our structural understanding of amelogenesis. In this review we focus on recent advances in solution and solid state NMR spectroscopy and in situ AFM that reveal new insights into the secondary, tertiary, and quaternary structure of amelogenin by itself and in contact with HAP. These studies have increased our understanding of the interface between amelogenin and HAP and how amelogenin controls enamel formation.
Collapse
Affiliation(s)
- Wendy J Shaw
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Barbara J Tarasevich
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA; School of Molecular Bioscience, Washington State University, Pullman, WA 99164, USA
| | - Rajith M J Arachchige
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sarah D Burton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
5
|
Wang Y, Hu D, Cui J, Zeng Y, Gan X, Chen Z, Ren Q, Zhang L. Unraveling the mechanism for an amelogenin-derived peptide regulated hydroxyapatite mineralization via specific functional domain identification. J Mater Chem B 2020; 8:10373-10383. [PMID: 33112349 DOI: 10.1039/d0tb00949k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Amelogenin and its various derived peptides play important roles in promoting biomimetic mineralization of enamel. Previously, an amelogenin-derived peptide named QP5 was proved to be able to repair demineralized enamel. The objective here was to interpret the mechanism of QP5 by elucidating the specific function of each domain for further sequence and efficacy improvement. Peptide QP5 was separated into domains (QPX)5 and C-tail. (QPX)3 was also synthesized to investigate how QPX repeats affect the mineralization process. Circular dichroism spectroscopy showed that two (QPX) repeats adopted a β-sheet structure, while C-tail exhibited a disordered structure. (QPX)5 showed more absorption in confocal laser scanning microscopy observation and a higher K value in Langmuir adsorption isotherms compared to C-tail, while (QPX)3 with better hydropathy had greater adsorption capability than (QPX)5. Meanwhile, calcium consumption kinetics, transmission electron microscopy and selected area electron diffraction indicated that (QPX)5, C-tail and (QPX)3 had similar inhibitory effects on the spontaneous calcium consumption and the morphology of their nucleation products were alike, while QP5 had a greater inhibitory effect than them and induced elongated plate-like crystals. X-Ray diffraction further showed that both C-tail and (QPX)3 had greater potential in improving the apatite crystal orientation degree. In conclusion, (QPX)5 was the major adsorption region, both (QPX)5 and C-tail inhibited the nucleation, and C-tail contributed more to improve the HAP orientation degree, so QP5 could exert a significant remineralization effect. By reducing two repeats, (QPX)3 showed higher hydropathicity than (QPX)5 and achieved higher binding affinity, and it was more potential in improving the HAP orientation degree with lower economic cost.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Die Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China.
| | - Yuhao Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China.
| | - Zhongxin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China.
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Shlaferman J, Paige A, Meserve K, Miech JA, Gerdon AE. Selected DNA Aptamers Influence Kinetics and Morphology in Calcium Phosphate Mineralization. ACS Biomater Sci Eng 2019; 5:3228-3236. [DOI: 10.1021/acsbiomaterials.9b00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacob Shlaferman
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Alexander Paige
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Krista Meserve
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Jason A. Miech
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Aren E. Gerdon
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Abstract
The Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development workshop was held on 23 June 2017 at the Bethesda headquarters of the National Institute of Dental and Craniofacial Research (NIDCR). Discussion topics included model organisms, stem cells/cell lines, and tissues/3D cell culture/organoids. Scientists from a number of disciplines, representing institutions from across the United States, gathered to discuss advances in our understanding of enamel, as well as future directions for the field.
Collapse
|
8
|
Yamazaki H, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide. Front Physiol 2017; 8:450. [PMID: 28706493 PMCID: PMC5489624 DOI: 10.3389/fphys.2017.00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Previously, we have shown that serine-16 phosphorylation in native full-length porcine amelogenin (P173) and the Leucine-Rich Amelogenin Peptide (LRAP(+P)), an alternative amelogenin splice product, affects protein assembly and mineralization in vitro. Notably, P173 and LRAP(+P) stabilize amorphous calcium phosphate (ACP) and inhibit hydroxyapatite (HA) formation, while non-phosphorylated counterparts (rP172, LRAP(-P)) guide the growth of ordered bundles of HA crystals. Based on these findings, we hypothesize that the phosphorylation of full-length amelogenin and LRAP induces conformational changes that critically affect its capacity to interact with forming calcium phosphate mineral phases. To test this hypothesis, we have utilized Fourier transform infrared spectroscopy (FTIR) to determine the secondary structure of LRAP(-P) and LRAP(+P) in the absence/presence of calcium and selected mineral phases relevant to amelogenesis; i.e., hydroxyapatite (HA: an enamel crystal prototype) and (ACP: an enamel crystal precursor phase). Aqueous solutions of LRAP(-P) or LRAP(+P) were prepared with or without 7.5 mM of CaCl2 at pH 7.4. FTIR spectra of each solution were obtained using attenuated total reflectance, and amide-I peaks were analyzed to provide secondary structure information. Secondary structures of LRAP(+P) and LRAP(-P) were similarly assessed following incubation with suspensions of HA and pyrophosphate-stabilized ACP. Amide I spectra of LRAP(-P) and LRAP(+P) were found to be distinct from each other in all cases. Spectra analyses showed that LRAP(-P) is comprised mostly of random coil and β-sheet, while LRAP(+P) exhibits more β-sheet and α-helix with little random coil. With added Ca, the random coil content increased in LRAP(-P), while LRAP(+P) exhibited a decrease in α-helix components. Incubation of LRAP(-P) with HA or ACP resulted in comparable increases in β-sheet structure. Notably, however, LRAP(+P) secondary structure was more affected by ACP, primarily showing an increase in β-sheet structure, compared to that observed with added HA. These collective findings indicate that phosphorylation induces unique secondary structural changes that may enhance the functional capacity of native phosphorylated amelogenins like LRAP to stabilize an ACP precursor phase during early stages of enamel mineral formation.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Center for Biomineralization, The Forsyth InstituteCambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental MedicineBoston, MA, United States
| | - Elia Beniash
- Department of Oral Biology, Center for Craniofacial Regeneration, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, United States
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of DentistryAnn Arbor, MI, United States
| | - Henry C Margolis
- Center for Biomineralization, The Forsyth InstituteCambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental MedicineBoston, MA, United States
| |
Collapse
|
9
|
Villarreal-Ramirez E, Eliezer D, Garduño-Juarez R, Gericke A, Perez-Aguilar JM, Boskey A. Phosphorylation regulates the secondary structure and function of dentin phosphoprotein peptides. Bone 2017; 95:65-75. [PMID: 27810285 PMCID: PMC5234040 DOI: 10.1016/j.bone.2016.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/19/2016] [Accepted: 10/30/2016] [Indexed: 12/30/2022]
Abstract
Dentin phosphoprotein (DPP) is the most acidic protein in vertebrates and structurally is classified as an intrinsically disordered protein. Functionally, DPP is related to dentin and bone formation, however the specifics of such association remain unknown. Here, we used atomistic molecular dynamics simulations to screen selected binding domains of DPP onto hydroxyapatite (HA), which is one of its important interacting partners. From these results, we selected a functionally relevant peptide, Ace-SSDSSDSSDSSDSSD-NH2 (named P5) and its phosphorylated form (named P5P), for experimental characterization. SAXS experiments indicated that in solution P5 was disordered, possibly in an extended conformation while P5P displayed more compact globular conformations. Circular dichroism and FTIR confirmed that, either in the presence or absence of Ca2+/HA, P5 adopts a random coil structure, whereas its phosphorylated counterpart, P5P, has a more compact arrangement associated with conformations that display β-sheet and α-helix motifs when bound to HA. In solution, P5 inhibited HA crystal growth, whereas at similar concentrations, P5P stimulated it. These findings suggest that phosphorylation controls the transient formation of secondary and tertiary structure of DPP peptides, and, most likely of DPP itself, which in turn controls HA growth in solution and possibly HA growth in mineralized tissues.
Collapse
Affiliation(s)
- Eduardo Villarreal-Ramirez
- Mineralized Tissue Research Laboratory, Hospital for Special Surgery, New York, NY, USA; Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | | | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Adele Boskey
- Mineralized Tissue Research Laboratory, Hospital for Special Surgery, New York, NY, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
10
|
Shaw WJ. Solid-state NMR studies of proteins immobilized on inorganic surfaces. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 70:1-14. [PMID: 25466354 PMCID: PMC4615564 DOI: 10.1016/j.ssnmr.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 05/23/2023]
Abstract
Solid state NMR is the primary tool for studying the quantitative, site-specific structure, orientation, and dynamics of biomineralization proteins under biologically relevant conditions. Two calcium phosphate proteins, statherin (43 amino acids) and leucine rich amelogenin protein (LRAP; 59 amino acids), have been studied in depth and have different dynamic properties and 2D- and 3D-structural features. These differences make it difficult to extract design principles used in nature for building materials with properties such as high strength, unusual morphologies, or uncommon phases. Consequently, design principles needed for developing synthetic materials controlled by proteins are not clear. Many biomineralization proteins are much larger than statherin and LRAP, necessitating the study of larger biomineralization proteins. More recent studies of the significantly larger full-length amelogenin (180 residues) represent a significant step forward to ultimately investigate the full diversity of biomineralization proteins. Interactions of amino acids, a silaffin derived peptide, and the model LK peptide with silica are also being studied, along with qualitative studies of the organic matrices interacting with calcium carbonate. Dipolar recoupling techniques have formed the core of the quantitative studies, yet the need for isolated spin pairs makes this approach costly and time intensive. The use of multi-dimensional techniques to study biomineralization proteins is becoming more common, methodology which, despite its challenges with these difficult-to-study proteins, will continue to drive future advancements in this area.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratory, PO Box 999, MS K2-57, Richland, WA 99352, USA.
| |
Collapse
|
11
|
Lu JX, Burton SD, Xu YS, Buchko GW, Shaw WJ. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength. Front Physiol 2014; 5:254. [PMID: 25071599 PMCID: PMC4092356 DOI: 10.3389/fphys.2014.00254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022] Open
Abstract
Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that K24S28 may sit at a key region of structural flexibility and play a role in the protein's function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05, 0.15, 0.2 M), the calcium concentration (0.07 and 0.4 mM), and the surface to which it is binding [HAP and carbonated apatite (CAP), a more direct mimic of enamel]. A naturally occurring mutation found in amelogenin (T21I) was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca(2+) (8:1 [Ca(2+)]:[LRAP-K24S28(+P)]) resulting in a tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca(2+) and in the T21I-mutation. Collectively, these data suggest that phosphorylated LRAP is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24S28 region, a sensitivity that may contribute to function in biomineralization.
Collapse
Affiliation(s)
| | | | | | | | - Wendy J. Shaw
- Fundamental and Computational Sciences Directorate, Pacific Northwest National LaboratoryRichland, WA, USA
| |
Collapse
|
12
|
Goobes G. Past and Future Solid-State NMR Spectroscopy Studies at the Convergence Point between Biology and Materials Research. Isr J Chem 2014. [DOI: 10.1002/ijch.201300113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Lu JX, Xu YS, Buchko GW, Shaw WJ. Mineral association changes the secondary structure and dynamics of murine amelogenin. J Dent Res 2013; 92:1000-4. [PMID: 24130249 DOI: 10.1177/0022034513504929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amelogenin is one of the key protein constituents responsible for the exquisite organization of the calcium phosphate crystals in enamel. Amelogenin forms into nanospheres in solution, while its association with hydroxyapatite is also essential to enamel development. Structural information of full-length amelogenin in either of these physiologically important forms has the potential to provide mechanistic information; however, these data are limited because of the difficulty of determining the structure of large protein complexes and proteins bound to surfaces. To obtain structural insights into amelogenin during these early stages of enamel development, we used a lysine-specific (13)C-, (15)N-labeled sample of murine amelogenin to provide insight into the structure of the hydroxyapatite (HAP)-binding domains of the protein. A combination of one-and two-dimensional solid-state NMR experiments was used to obtain molecular-level insights into the secondary structure and dynamics of full-length amelogenin within a nanosphere-gel and on the surface of HAP. Regions of amelogenin that appear to be primarily random coil in the nanosphere-gel adopt a β-strand structure and are less mobile with HAP binding, indicative of a structural switch upon binding that may be important in the role of amelogenin in enamel development.
Collapse
Affiliation(s)
- J X Lu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
14
|
Roehrich A, Drobny G. Solid-state NMR studies of biomineralization peptides and proteins. Acc Chem Res 2013; 46:2136-44. [PMID: 23932180 DOI: 10.1021/ar300321e] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature has evolved sophisticated strategies for engineering hard tissues through the interaction of proteins, and ultimately cells, with inorganic mineral phases. This process, called biomineralization, is how living organisms transform inorganic materials such as hydroxyapatite, calcite, and silica into highly intricate and organized structures. The remarkable material properties of shell, bone, and teeth come from the activities of proteins that function at the organic-inorganic interface. A better understanding of the biomolecular mechanisms used to promote or retard the formation of mineral-based structures could provide important design principles for the development of calcification inhibitors and promoters in orthopedics, cardiology, urology, and dentistry. With the knowledge of the structural basis for control of hard tissue growth by proteins, scientists could potentially develop materials using biomimetic principles with applications in catalysis, biosensors, electronic devices, and chromatographic separations, to name a few. Additionally, biomineralization also has potential applications in electronics, catalysis, magnetism, sensory devices, and mechanical design. Where man-made hard materials require the use of extreme temperatures, high pressure, and pH, biological organisms can accomplish these feats at ambient temperature and at physiological pH. Despite the fact that many researchers want to identify and control the structure of proteins at material and biomineral interfaces, there is a decided lack of molecular-level structure information available for proteins at biomaterial interfaces in general. In particular, this holds for mammalian proteins that directly control calcification processes in hard tissue. The most fundamental questions regarding the secondary and tertiary structures of proteins adsorbed to material surfaces, how proteins catalyze the formation of biomineral composites, or how proteins interact at biomaterial interfaces remain unanswered. This is largely due to a lack of methods capable of providing high-resolution structural information for proteins adsorbed to material surfaces under physiologically relevant conditions. In this Account, we highlight recent work that is providing insight into the structure and crystal recognition mechanisms of a salivary protein model system, as well as the structure and interactions of a peptide that catalyzes the formation of biosilica composites. To develop a better understanding of the structure and interactions of proteins in biomaterials, we have used solid-state NMR techniques to determine the molecular structure and dynamics of proteins and peptides adsorbed onto inorganic crystal surfaces and embedded within biomineral composites. This work adds to the understanding of the structure and crystal recognition mechanisms of an acidic human salivary phosphoprotein, statherin.
Collapse
Affiliation(s)
- Adrienne Roehrich
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Gary Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Lu JX, Xu YS, Shaw WJ. Phosphorylation and ionic strength alter the LRAP-HAP interface in the N-terminus. Biochemistry 2013; 52:2196-205. [PMID: 23477367 PMCID: PMC3626292 DOI: 10.1021/bi400071a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The conditions present during enamel crystallite development change dramatically as a function of time, including the pH, protein concentration, surface type, and ionic strength. In this work, we investigate the role that two of these changing conditions, pH and ionic strength, have in modulating the interaction of the amelogenin, LRAP, with hydroxyapatite (HAP). Using solid-state NMR dipolar recoupling and chemical shift data, we investigate the structure, orientation, and dynamics of three regions in the N-terminus of the protein: L(15) to V(19), V(19) to L(23), and K(24) to S(28). These regions are also near the only phosphorylated residue in the protein pS(16); therefore, changes in the LRAP-HAP interaction as a function of phosphorylation (LRAP(-P) vs LRAP(+P)) were also investigated. All of the regions and conditions studied for the surface immobilized proteins showed restricted motion, with indications of slightly more mobility under all conditions for L(15)(+P) and K(24)(-P). The structure and orientation of the LRAP-HAP interaction in the N-terminus of the phosphorylated protein is very stable to changing solution conditions. From REDOR dipolar recoupling data, the structure and orientation in the region L(15)V(19)(+P) did not change significantly as a function of pH or ionic strength. The structure and orientation of the region V(19)L(23)(+P) were also stable to changes in pH, with the only significant change observed at high ionic strength, where the region becomes extended, suggesting this may be an important region in regulating mineral development. Chemical shift studies also suggest minimal changes in all three regions studied for both LRAP(-P) and LRAP(+P) as a function of pH or ionic strength, and also reveal that K(24) has multiple resolvable resonances, suggestive of two coexisting structures. Phosphorylation also alters the LRAP-HAP interface. All of the three residues investigated (L(15), V(19), and K(24)) are closer to the surface in LRAP(+P), but only K(24)S(28) changes structure as a result of phosphorylation, from a random coil to a largely helical structure, and V(19)L(23) becomes more extended at high ionic strength when phosphorylated. These observations suggest that ionic strength and dephosphorylation may provide switching mechanisms to trigger a change in the function of the N-terminus during enamel development.
Collapse
Affiliation(s)
- Jun-xia Lu
- Pacific Northwest National Laboratory, Richland, WA 99354
| | | | - Wendy J. Shaw
- Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
16
|
Tarasevich BJ, Perez-Salas U, Masica DL, Philo J, Kienzle P, Krueger S, Majkrzak CF, Gray JL, Shaw WJ. Neutron reflectometry studies of the adsorbed structure of the amelogenin, LRAP. J Phys Chem B 2013; 117:3098-109. [PMID: 23477285 PMCID: PMC3634335 DOI: 10.1021/jp311936j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenins make up over 90% of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayer (SAM) surfaces. Sedimentation velocity (SV) experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ∼32 Å thick layers at ∼70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. SV experiments and Rosetta simulations show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal regions (residues ∼8-24) located near the surface is consistent with the higher scattering length density (SLD) found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins.
Collapse
Affiliation(s)
- Barbara J Tarasevich
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Le Norcy E, Kwak SY, Allaire M, Fratzl P, Yamakoshi Y, Simmer JP, Margolis HC. Effect of phosphorylation on the interaction of calcium with leucine-rich amelogenin peptide. Eur J Oral Sci 2012; 119 Suppl 1:97-102. [PMID: 22243234 DOI: 10.1111/j.1600-0722.2011.00900.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amelogenin undergoes self-assembly and plays an essential role in guiding enamel mineral formation. The leucine-rich amelogenin peptide (LRAP) is an alternative splice product of the amelogenin gene and is composed of the N terminus (containing the only phosphate group) and the C terminus of full-length amelogenin. This study was conducted to investigate further the role of phosphorylation in LRAP self-assembly in the presence and absence of calcium using small angle X-ray scattering (SAXS). Consistent with our previous dynamic light-scattering findings for phosphorylated (+P) and non-phosphorylated (-P) LRAP, SAXS analyses revealed radii of gyration (R(g)) for LRAP(-P) (46.3-48.0 Å) that were larger than those for LRAP(+P) (25.0-27.4 Å) at pH 7.4. However, added calcium (up to 2.5 mM) induced significant increases in the R(g) of LRAP(+P) (up to 46.4 Å), while it had relatively little effect on LRAP(-P) particle size. Furthermore, SAXS analyses suggested compact folded structures for LRAP(-P) in the presence and absence of calcium, whereas the conformation of LRAP(+P) changed from an unfolded structure to a more compact structure upon the addition of calcium. We conclude that the single phosphate group in LRAP(+P) induces functionally important conformational changes, suggesting that phosphorylation may also influence amelogenin conformation and protein-mineral interactions during the early stages of amelogenesis.
Collapse
Affiliation(s)
- Elvire Le Norcy
- Department of Biomineralization, The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Amelogenin plays a key role in the formation of the highly mineralized structure of tooth enamel. During the secretory stage, amelogenin is cleaved gradually by a protease, matrix metalloproteinase-20 (MMP-20), releasing hydrophilic C-terminal peptides. In this study, the biophysical properties of synthetic C-terminal peptides (of 28, 17, and 11 residues), mimicking native peptides, were explored in vitro. A sudden decrease was observed in the zeta (ζ)-potential upon the addition of calcium or phosphates, which was also accompanied by an increased aggregation propensity of the peptides. Under most of the experimental conditions, the particle size increased at a pH 2-3 units higher than the isoelectric point (pI) of the peptides, while the peptides existed as smaller particles (<2 nm) near their pI values and in the acidic range. They showed poor affinity for calcium and phosphates, comparable to full-length amelogenin and variants. The secondary structure determination showed that the 11-amino-acid peptide contained defined secondary structure comprising beta-sheets and turns. Atomic force microscopy analysis revealed the presence of thin, disk-like nanostructures of 54.4 nm diameter for the 28-amino-acid peptide and 54.9 nm diameter for the 11-amino acid peptide, whereas no definite structures were observed for the 17-amino-acid peptide. It is concluded that the amelogenin C-terminal peptides are capable of interacting with calcium and phosphate ions, of self-assembly into nanostructures, and may have some secondary structure, and hence may have some role in enamel synthesis.
Collapse
Affiliation(s)
- Feroz Khan
- Department of Preventive and Restorative Dental Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| | - Wu Li
- Department of Oral and Craniofacial Sciences, University of California, San Francisco, USA
| | - Stefan Habelitz
- Department of Preventive and Restorative Dental Sciences, University of California, Parnassus Avenue 707, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Masica DL, Gray JJ, Shaw WJ. Partial high-resolution structure of phosphorylated and non-phosphorylated leucine-rich amelogenin protein adsorbed to hydroxyapatite. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011; 115:13775-13785. [PMID: 21845207 PMCID: PMC3155182 DOI: 10.1021/jp202965h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The formation of biogenic materials requires the interaction of organic molecules with the mineral phase. In forming enamel, the amelogenin proteins contribute to the mineralization of hydroxyapatite (HAp). Leucine-rich amelogenin protein (LRAP) is a naturally occurring splice variant of amelogenin that comprises amelogenin's predicted HAp binding domains. We determined the partial structure of phosphorylated and non-phosphorylated LRAP variants bound to HAp using combined solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. New ssNMR measurements in the N-terminus indicate a largely extended structure for both variants, though some measurements are consistent with a partially helical N-terminal segment. The N-terminus of the phosphorylated variant is found to be consistently closer to the HAp surface than the non-phosphorylated variant. Structure prediction was biased using 21 ssNMR measurements in the N- and C-terminus at five HAp crystal faces. The predicted fold of LRAP is similar at all HAp faces studied, regardless of phosphorylation. Largely consistent with experimental observations, LRAP's predicted structure is relatively extended with a helix-turn-helix motif in the N-terminal domain and some helix in the C-terminal domain, and the N-terminal domain of the phosphorylated variant binds HAp more closely than the N-terminal domain of the non-phosphorylated variant. Predictions for both variants show some potential binding specificity for the {010} HAp crystal face, providing further support that amelogenins block crystal growth on the a and b faces to allow elongated crystals in the c-axis.
Collapse
Affiliation(s)
- David L. Masica
- Program in Molecular Biophysics The Johns Hopkins University, Baltimore MD
| | - Jeffrey J. Gray
- Program in Molecular Biophysics The Johns Hopkins University, Baltimore MD
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, Baltimore MD
| | | |
Collapse
|
20
|
Friddle RW, Battle K, Trubetskoy V, Tao J, Salter EA, Moradian-Oldak J, De Yoreo JJ, Wierzbicki A. Single-Molecule Determination of the Face-Specific Adsorption of Amelogenin’s C-Terminus on Hydroxyapatite. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Friddle RW, Battle K, Trubetskoy V, Tao J, Salter EA, Moradian-Oldak J, De Yoreo JJ, Wierzbicki A. Single-molecule determination of the face-specific adsorption of Amelogenin's C-terminus on hydroxyapatite. Angew Chem Int Ed Engl 2011; 50:7541-5. [PMID: 21710666 DOI: 10.1002/anie.201100181] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/15/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Raymond W Friddle
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Le Norcy E, Kwak SY, Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Potential role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro. Cells Tissues Organs 2011; 194:188-93. [PMID: 21576914 DOI: 10.1159/000324827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
N-terminal and C-terminal (CT) domains of amelogenin have been shown to be essential for proper enamel formation. Recent studies have also suggested that although the C-terminus plays an apparent role in protein-mineral interactions, other amelogenin structural domains are involved. The objective was to explore the role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro. Spontaneous mineralization studies were carried out using the phosphorylated (+P) and nonphosphorylated (-P) N-terminus of the leucine-rich amelogenin peptide (LRAP) that lacks the hydrophilic CT domain. Mineralization progress was monitored via changes in solution pH. Mineral phases formed were characterized using TEM, selected area electron diffraction, and FT-IR. In controls, amorphous calcium phosphate was initially formed and subsequently transformed to randomly oriented hydroxyapatite (HA) plate-like crystals. In contrast to the control, LRAP(+P)-CT stabilized ACP formation for >1 day, while LRAP(-P)-CT accelerated the transformation of ACP to HA but had little effect on crystal shape or orientation. In conclusion, the N-terminal domain found in LRAP, as in amelogenins, appears to have the capacity to interact with forming calcium phosphate mineral phases. Results suggest that the N-terminal domain of amelogenin may play a direct role in early stages of enamel formation.
Collapse
Affiliation(s)
- E Le Norcy
- Department of Biomineralization, The Forsyth Institute, Cambridge, Mass., USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Streeter I, de Leeuw NH. Binding of glycosaminoglycan saccharides to hydroxyapatite surfaces: A density functional theory study. Proc Math Phys Eng Sci 2011; 467:2084-2101. [PMID: 23526875 DOI: 10.1098/rspa.2010.0559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Density functional theory calculations implemented by the SIESTA code are used to study the interactions of the saccharides N-acetylgalactosamine (GalNAc) and glucuronic acid (GlcA) with the (0001) and [Formula: see text] surfaces of the mineral hydroxyapatite (HAP). GalNAc and GlcA are the constituent monosaccharides of chondroitin, which is a glycosaminoglycan found in bone and cartilage, and whose interactions with HAP have been implicated as a controlling factor in the process of biomineralisation. Geometry optimisation calculations are used to identify low energy adsorption structures of the monosaccharides on the HAP surfaces, and to calculate the corresponding adsorption energies. The calculations show that GalNAc interacts with HAP principally through its hydroxy and acetyl amine functional groups, and deprotonated GlcA interacts principally through its hydroxy and carboxylate functional groups. The mode and strength of adsorption depends on the orientation of the saccharide with respect to the HAP surface, which has implications for the structural conformation of chondroitin chains in the presence of hydroxyapatite. Both monosaccharides bind more strongly to the [Formula: see text] surface than to the (0001) surface.
Collapse
Affiliation(s)
- Ian Streeter
- Department of Chemistry, University College London, 20 Gordon Street, London, United Kingdom WC1H 0AJ ; Insitute of Orthopaedics & Musculoskeletal Science, University College London, Brockley Hill, Stanmore, United Kingdom HA7 4LP
| | | |
Collapse
|
24
|
Almora-Barrios N, de Leeuw NH. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14535-14542. [PMID: 20731400 DOI: 10.1021/la101151e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Density functional theory calculations were applied to investigate the binding of four peptide strands, which are important in the collagen protein, to the bone and tooth mineral hydroxyapatite: amphiphilic PRO-HYP-GLY and HYP-PRO-GLY, and hydrophobic PRO-LYS-GLY and PRO-HYL-GLY. The particular peptide sequences are chosen for their different functional groups, containing (i) hydrophobic; (ii) uncharged polar; and (iii) charged polar side groups, thus allowing direct comparison of the general effect of these carboxylic acid and amine functional groups, as well as hydroxylation and charge, on their interactions with two major hydroxyapatite surfaces, (0001) and (0110). The calculated results are consistent with experiments, confirming that the terminal carboxyl groups and amine groups mainly contribute to the adsorption of the peptides to the hydroxyapatite surfaces and primarily to the (0110) surface rather than the dominant (0001) plane. Of the side groups in the tripeptide motifs representing the collagen protein, the -OH and positively charged -NH(3)(+) groups in particular bind strongly to the surfaces, and their presence should therefore promote hydroxyapatite growth.
Collapse
Affiliation(s)
- Neyvis Almora-Barrios
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | | |
Collapse
|
25
|
Aichmayer B, Wiedemann-Bidlack FB, Gilow C, Simmer JP, Yamakoshi Y, Emmerling F, Margolis HC, Fratzl P. Amelogenin nanoparticles in suspension: deviations from spherical shape and pH-dependent aggregation. Biomacromolecules 2010; 11:369-76. [PMID: 20038137 PMCID: PMC2817559 DOI: 10.1021/bm900983b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well-known that amelogenin self-assembles to form nanoparticles, usually referred to as amelogenin nanospheres, despite the fact that not much is known about their actual shape in solution. In the current paper, we combine SAXS and DLS to study the three-dimensional shape of the recombinant amelogenins rP172 and rM179. Our results show for the first time that amelogenins build oblate nanoparticles in suspension using experimental approaches that do not require the proteins to be in contact with a support material surface. The SAXS studies give evidence for the existence of isolated amelogenin nano-oblates with aspect ratios in the range of 0.45-0.5 at pH values higher than pH 7.2 and show an aggregation of these nano-oblates at lower pH values. The role of the observed oblate shape in the formation of chain-like structures at physiological conditions is discussed as a key factor in the biomineralization of dental enamel.
Collapse
Affiliation(s)
- Barbara Aichmayer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Buchko GW, Tarasevich BJ, Roberts J, Snead ML, Shaw WJ. A solution NMR investigation into the murine amelogenin splice-variant LRAP (Leucine-Rich Amelogenin Protein). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1768-74. [PMID: 20304108 DOI: 10.1016/j.bbapap.2010.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 11/27/2022]
Abstract
Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the (1)H-(15)N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the (1)H-(15)N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12 and Y12 near the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggests that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of (1)H-(15)N HSQC cross peaks. As observed for the full-length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different patterns of (1)H-(15)N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not to the full-length protein.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
27
|
Tarasevich BJ, Lea S, Shaw WJ. The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces. J Struct Biol 2010; 169:266-76. [PMID: 19850130 PMCID: PMC3084684 DOI: 10.1016/j.jsb.2009.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 10/03/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
Amelogenin is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein-surface interactions are critical to its function. We have previously used LRAP, a splice variant of amelogenin, as a model protein for the full-length amelogenin in solid-state NMR and neutron reflectivity studies at interfaces. In this work, we examined the adsorption behavior of LRAP in greater detail using model self-assembled monolayers containing COOH, CH(3), and NH(2) end groups as substrates. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline and solutions containing low concentrations of calcium and phosphate consisted of aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and quaternary structures on the surfaces. Relatively high amounts of adsorption occurred onto the CH(3) and NH(2) surfaces from both buffer solutions. Adsorption was also promoted onto COOH surfaces only when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies revealed that LRAP adsorbed onto the surfaces as small subnanosphere-sized structures such as monomers or dimers. We propose that the monomers/dimers were present in solution even though they were not detected by DLS or that they adsorbed onto the surfaces by disassembling or "shedding" from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces.
Collapse
Affiliation(s)
- Barbara J Tarasevich
- Pacific Northwest National Laboratory, 908 Battelle Blvd., Richland, WA 99352, USA.
| | | | | |
Collapse
|
28
|
Almora-Barrios N, de Leeuw NH. Modelling the interaction of a Hyp-Pro-Gly peptide with hydroxyapatite surfaces in aqueous environment. CrystEngComm 2010. [DOI: 10.1039/b917179g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Buchko GW, Tarasevich BJ, Bekhazi J, Snead ML, Shaw WJ. A solution NMR investigation into the early events of amelogenin nanosphere self-assembly initiated with sodium chloride or calcium chloride. Biochemistry 2009; 47:13215-22. [PMID: 19086270 DOI: 10.1021/bi8018288] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using solution-state NMR spectroscopy, new insights into the early events governing amelogenin supramolecular self-assembly have been identified using sodium chloride and calcium chloride to trigger the association. Two-dimensional 1H-15N HSQC spectra were recorded for 15N- and 13C-labeled murine amelogenin as a function of increasing NaCl and CaCl2 concentration beginning with solution conditions of 2% acetic acid at pH 3.0, where amelogenin was monomeric. Residue specific changes in molecular dynamics, manifested by the reduction in intensity and disappearance of 1H-15N HSQC cross-peaks, were observed with the addition of either salt to the protein. With increasing NaCl concentrations, residues between T21 and R31 near the N-terminus were affected first, suggesting that these residues may initiate amelogenin dimerization, the first step in nanosphere assembly. At higher NaCl concentrations, more residues near the N-terminus (Y12-I51) were affected, and with further additions of NaCl, residues near the C-terminus (L141-T171) began to show a similar change in molecular dynamics. With increasing CaCl2 concentrations, a similar stepwise change in molecular dynamics involving essentially the same set of amelogenin residues was observed. As the concentration of either salt was increased, a concomitant increase in the estimated overall rotational correlation time (tau(c)) was observed, consistent with assembly. Self-assembly into a dimer or trimer was established with dynamic light scattering studies under similar conditions that showed an increase in diameter of the smallest species from 4.1 nm in the absence of salt to 10 nm in the presence of salt. These results suggest a possible stepwise interaction mechanism, starting with the N-terminus and followed by the C-terminus, leading to amelogenin nanosphere assembly.
Collapse
Affiliation(s)
- Garry W Buchko
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | | | | |
Collapse
|