1
|
Swana KW, Nagarajan R, Camesano TA. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Microorganisms 2021; 9:microorganisms9091975. [PMID: 34576869 PMCID: PMC8465339 DOI: 10.3390/microorganisms9091975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) interact with bacterial cell membranes through a variety of mechanisms, causing changes extending from nanopore formation to microscale membrane lysis, eventually leading to cell death. Several AMPs also disrupt mammalian cell membranes, despite their significantly different lipid composition and such collateral hemolytic damage hinders the potential therapeutic applicability of the AMP as an anti-microbial. Elucidating the mechanisms underlying the AMP-membrane interactions is challenging due to the variations in the chemical and structural features of the AMPs, the complex compositional variations of cell membranes and the inadequacy of any single experimental technique to comprehensively probe them. (1) Background: Atomic Force Microscopy (AFM) imaging can be used in combination with other techniques to help understand how AMPs alter the orientation and structural organization of the molecules within cell membranes exposed to AMPs. The structure, size, net charge, hydrophobicity and amphipathicity of the AMPs affect how they interact with cell membranes of differing lipid compositions. (2) Methods: Our study examined two different types of AMPs, a 20-amino acid, neutral, α-helical (amphipathic) peptide, alamethicin, and a 13-amino acid, non-α-helical cationic peptide, indolicidin (which intramolecularly folds, creating a hydrophobic core), for their interactions with supported lipid bilayers (SLBs). Robust SLB model membranes on quartz supports, incorporating predominantly anionic lipids representative of bacterial cells, are currently not available and remain to be developed. Therefore, the SLBs of zwitterionic egg phosphatidylcholine (PC), which represents the composition of a mammalian cell membrane, was utilized as the model membrane. This also allows for a comparison with the results obtained from the Quartz Crystal Microbalance with Dissipation (QCM-D) experiments conducted for these peptides interacting with the same zwitterionic SLBs. Further, in the case of alamethicin, because of its neutrality, the lipid charge may be less relevant for understanding its membrane interactions. (3) Results: Using AFM imaging and roughness analysis, we found that alamethicin produced large, unstable defects in the membrane at 5 µM concentrations, and completely removed the bilayer at 10 µM. Indolicidin produced smaller holes in the bilayer at 5 and 10 µM, although they were able to fill in over time. The root-mean-square (RMS) roughness values for the images showed that the surface roughness caused by visible defects peaked after peptide injection and gradually decreased over time. (4) Conclusions: AFM is useful for helping to uncover the dynamic interactions between different AMPs and cell membranes, which can facilitate the selection and design of more efficient AMPs for use in therapeutics and antimicrobial applications.
Collapse
Affiliation(s)
- Kathleen W. Swana
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA;
| | - Ramanathan Nagarajan
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA;
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Correspondence:
| |
Collapse
|
2
|
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. Chembiochem 2019; 20:2141-2150. [PMID: 31125169 DOI: 10.1002/cbic.201900263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Å apart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Jesus Raya
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Ruta Nacional N° 168, Km 472, Santa Fe, 3000, Argentina
| | - Cristina Peggion
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Burkhard Bechinger
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
3
|
Lizio MG, Andrushchenko V, Pike SJ, Peters AD, Whitehead GFS, Vitórica-Yrezábal IJ, Mutter ST, Clayden J, Bouř P, Blanch EW, Webb SJ. Optically Active Vibrational Spectroscopy of α-Aminoisobutyric Acid Foldamers in Organic Solvents and Phospholipid Bilayers. Chemistry 2018; 24:9399-9408. [PMID: 29745985 DOI: 10.1002/chem.201801121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Helical α-aminoisobutyric acid (Aib) foldamers show great potential as devices for the communication of conformational information across phospholipid bilayers, but determining their conformation in bilayers remains a challenge. In the present study, Raman, Raman optical activity (ROA), infrared (IR) and vibrational circular dichroism (VCD) spectroscopies have been used to analyze the conformational preferences of Aib foldamers in solution and when interacting with bilayers. A 310 -helix marker band at 1665-1668 cm-1 in Raman spectra was used to show that net helical content increased strongly with oligomer length. ROA and VCD spectra of chiral Aib foldamers provided the chiroptical signature for both left- and right-handed 310 -helices in organic solvents, with VCD establishing that foldamer screw-sense was preserved when the foldamers became embedded within bilayers. However, the population distribution between different secondary structures was perturbed by the chiral phospholipid. These studies indicate that ROA and VCD spectroscopies are valuable tools for the study of biomimetic structures, such as artificial signal transduction molecules, in phospholipid bilayers.
Collapse
Affiliation(s)
- Maria Giovanna Lizio
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Sarah J Pike
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Anna D Peters
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - George F S Whitehead
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Shaun T Mutter
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ewan W Blanch
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Simon J Webb
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Syryamina VN, De Zotti M, Toniolo C, Formaggio F, Dzuba SA. Alamethicin self-assembling in lipid membranes: concentration dependence from pulsed EPR of spin labels. Phys Chem Chem Phys 2018; 20:3592-3601. [DOI: 10.1039/c7cp07298h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial action of the peptide antibiotic alamethicin (Alm) is commonly related to peptide self-assembling resulting in the formation of voltage-dependent channels in bacterial membranes, which induces ion permeation.
Collapse
Affiliation(s)
- Victoria N. Syryamina
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| | - Marta De Zotti
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Claudio Toniolo
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Fernando Formaggio
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| |
Collapse
|
5
|
Salnikov ES, Raya J, De Zotti M, Zaitseva E, Peggion C, Ballano G, Toniolo C, Raap J, Bechinger B. Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophys J 2017; 111:2450-2459. [PMID: 27926846 DOI: 10.1016/j.bpj.2016.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Jesus Raya
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Ekaterina Zaitseva
- Department of Membrane Physiology and Technology, Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Gema Ballano
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France.
| |
Collapse
|
6
|
Afanasyeva EF, Syryamina VN, Dzuba SA. Communication: Alamethicin can capture lipid-like molecules in the membrane. J Chem Phys 2017; 146:011103. [DOI: 10.1063/1.4973703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ekaterina F. Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victoria N. Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Salnikov ES, Aisenbrey C, Aussenac F, Ouari O, Sarrouj H, Reiter C, Tordo P, Engelke F, Bechinger B. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. Sci Rep 2016; 6:20895. [PMID: 26876950 PMCID: PMC4753517 DOI: 10.1038/srep20895] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
Dynamic Nuclear Polarization (DNP) has been introduced to overcome the sensitivity limitations of nuclear magnetic resonance (NMR) spectroscopy also of supported lipid bilayers. When investigated by solid-state NMR techniques the approach typically involves doping the samples with biradicals and their investigation at cryo-temperatures. Here we investigated the effects of temperature and membrane hydration on the topology of amphipathic and hydrophobic membrane polypeptides. Although the antimicrobial PGLa peptide in dimyristoyl phospholipids is particularly sensitive to topological alterations, the DNP conditions represent well its membrane alignment also found in bacterial lipids at ambient temperature. With a novel membrane-anchored biradical and purpose-built hardware a 17-fold enhancement in NMR signal intensity is obtained by DNP which is one of the best obtained for a truly static matrix-free system. Furthermore, a membrane anchor sequence encompassing 19 hydrophobic amino acid residues was investigated. Although at cryotemperatures the transmembrane domain adjusts it membrane tilt angle by about 10 degrees, the temperature dependence of two-dimensional separated field spectra show that freezing the motions can have beneficial effects for the structural analysis of this sequence.
Collapse
Affiliation(s)
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
| | - Fabien Aussenac
- Bruker BioSpin, 34, rue de l’Industrie, 67166 Wissembourg, France
| | - Olivier Ouari
- Aix-Marseille University, Institut de Chimie Radicalaire, UMR 7273, Faculté des Sciences, 13397 Marseille, Cédex 20, France
| | - Hiba Sarrouj
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | | | - Paul Tordo
- Aix-Marseille University, Institut de Chimie Radicalaire, UMR 7273, Faculté des Sciences, 13397 Marseille, Cédex 20, France
| | - Frank Engelke
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
| |
Collapse
|
8
|
Milov AD, Tsvetkov YD, Raap J, De Zotti M, Formaggio F, Toniolo C. Review conformation, self-aggregation, and membrane interaction of peptaibols as studied by pulsed electron double resonance spectroscopy. Biopolymers 2016; 106:6-24. [DOI: 10.1002/bip.22713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Alexander D. Milov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion; Novosibirsk 630090 Russian Federation
| | - Yuri D. Tsvetkov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion; Novosibirsk 630090 Russian Federation
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University; 2300 RA Leiden The Netherlands
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | | | - Claudio Toniolo
- Department of Chemistry; University of Padova; Padova 35131 Italy
| |
Collapse
|
9
|
Salnikov ES, Sarrouj H, Reiter C, Aisenbrey C, Purea A, Aussenac F, Ouari O, Tordo P, Fedotenko I, Engelke F, Bechinger B. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers. J Phys Chem B 2015; 119:14574-83. [PMID: 26487390 DOI: 10.1021/acs.jpcb.5b07341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| | - Hiba Sarrouj
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France.,Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | | | - Christopher Aisenbrey
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| | - Armin Purea
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Fabien Aussenac
- Bruker BioSpin, 34, rue de l'Industrie, 67166 Wissembourg, France
| | - Olivier Ouari
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Paul Tordo
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Illya Fedotenko
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Frank Engelke
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| |
Collapse
|
10
|
Bobone S, De Zotti M, Bortolotti A, Biondi B, Ballano G, Palleschi A, Toniolo C, Formaggio F, Stella L. The fluorescence and infrared absorption probepara-cyanophenylalanine: Effect of labeling on the behavior of different membrane-interacting peptides. Biopolymers 2015; 104:521-32. [DOI: 10.1002/bip.22674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Bobone
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Gema Ballano
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| |
Collapse
|
11
|
De Zotti M, Ballano G, Jost M, Salnikov ES, Bechinger B, Oancea S, Crisma M, Toniolo C, Formaggio F. Solution synthesis, conformational analysis, and antimicrobial activity of three alamethicin F50/5 analogs bearing a trifluoroacetyl label. Chem Biodivers 2015; 11:1163-91. [PMID: 25146762 DOI: 10.1002/cbdv.201300394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 11/07/2022]
Abstract
We prepared, by solution-phase methods, and fully characterized three analogs of the membrane-active peptaibiotic alamethicin F50/5, bearing a single trifluoroacetyl (Tfa) label at the N-terminus, at position 9 (central region) or at position 19 (C-terminus), and with the three Gln at positions 7, 18, and 19 replaced by Glu(OMe) residues. To add the Tfa label at position 9 or 19, a γ-trifluoroacetylated α,γ-diaminobutyric acid (Dab) residue was incorporated as a replacement for the original Val(9) or Glu(OMe)(19) amino acid. We performed a detailed conformational analysis of the three analogs (using FT-IR absorption, CD, 2D-NMR, and X-ray diffraction), which clearly showed that Tfa labeling does not introduce any dramatic backbone modification in the predominantly α-helical structure of the parent peptaibiotic. The results of an initial solid-state (19)F-NMR study on one of the analogs favor the conclusion that the Tfa group is a very promising reporter for the analysis of peptaibioticmembrane interactions. Finally, we found that the antimicrobial activities of the three newly synthesized analogs depend on the position of the Tfa label in the peptide sequence.
Collapse
Affiliation(s)
- Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baul U, Vemparala S. Membrane-Bound Conformations of Antimicrobial Agents and Their Modes of Action. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Castro TG, Micaêlo NM. Conformational and thermodynamic properties of non-canonical α,α-dialkyl glycines in the peptaibol Alamethicin: molecular dynamics studies. J Phys Chem B 2014; 118:9861-70. [PMID: 25091499 DOI: 10.1021/jp505400q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the structure, dynamic and thermodynamic properties of noncanonical disubstituted amino acids (α,α-dialkyl glycines), also known as non-natural amino acids, in the peptaibol Alamethicin. The amino acids under study are Aib (α-amino isobutyric acid or α-methyl alanine), Deg (α,α-diethyl glycine), Dpg (α,α-dipropyl glycine), Dibg (α,α-di-isobutyl glycine), Dhg (α,α-dihexyl glycine), DΦg (α,α-diphenyl glycine), Dbzg (α,α-dibenzyl glycine), Ac6c (α,α-cyclohexyl glycine), and Dmg (α,α-dihydroxymethyl glycine). It is hypothesized that these amino acids are able to induce well-defined secondary structure in peptidomimetics. To test this hypothesis, new peptidomimetics of Alamethicin were constructed by replacing the native Aib positions of Alamethicin by one or more new α,α-dialkyl glycines. Dhg and Ac6c demonstrated the capacity to induce well-defined α-helical structures. Dhg and Ac6c also promote the thermodynamic stabilization of these peptides in a POPC model membrane and are better alternatives to the Aib in Alamethicin. These noncanonical amino acids also improved secondary structure properties, revealing preorganization in water and maintenance of α helical structure in POPC. We show that it is possible to optimize the helicity and thermodynamic properties of native Alamethicin, and we suggest that these amino acids could be incorporated in other peptides with similar structural effect.
Collapse
Affiliation(s)
- Tarsila G Castro
- Departamento de Química, Escola de Ciências, Universidade do Minho , Largo do Paço, Braga 4704-553, Portugal
| | | |
Collapse
|
14
|
Rahaman A, Lazaridis T. A thermodynamic approach to alamethicin pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014. [DOI: 10.1016/j.bbamem.2014.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wang KF, Nagarajan R, Camesano TA. Antimicrobial peptide alamethicin insertion into lipid bilayer: A QCM-D exploration. Colloids Surf B Biointerfaces 2014; 116:472-81. [DOI: 10.1016/j.colsurfb.2014.01.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 11/30/2022]
|
16
|
Vácha R, Frenkel D. Simulations suggest possible novel membrane pore structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1304-1310. [PMID: 24059441 DOI: 10.1021/la402727a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Amphiphilic proteins and peptides can induce the formation of stable and metastable pores in membranes. Using coarse-grained simulations, we have studied the factors that affect structure of peptide-stabilized pores. Our simulations are able to reproduce the formation of the well-known barrel-stave or toroidal pores, but in addition, we find evidence for a novel "double-belt" pore structure: in this structure the peptides that coat the membrane pore are oriented parallel to the membrane plane. To check the predictions of our coarse-grained model, we have performed more detailed simulations, using the MARTINI force field. These simulations show that the double-belt structure is stable up to at least the microsecond time scale.
Collapse
Affiliation(s)
- Robert Vácha
- National Centre for Biomolecular Research, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University , Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
| | | |
Collapse
|
17
|
Bortolus M, De Zotti M, Formaggio F, Maniero AL. Alamethicin in bicelles: Orientation, aggregation, and bilayer modification as a function of peptide concentration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2620-7. [DOI: 10.1016/j.bbamem.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
18
|
Dzuba SA. Structural studies of biological membranes using ESEEM spectroscopy of spin labels and deuterium substitution. J STRUCT CHEM+ 2013. [DOI: 10.1134/s0022476613070019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rahaman A, Lazaridis T. A thermodynamic approach to alamethicin pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:98-105. [PMID: 24071593 DOI: 10.1016/j.bbamem.2013.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 12/15/2022]
Abstract
The structure and energetics of alamethicin Rf30 monomer to nonamer in cylindrical pores of 5 to 11Å radius are investigated using molecular dynamics simulations in an implicit membrane model that includes the free energy cost of acyl chain hydrophobic area exposure. Stable, low energy pores are obtained for certain combinations of radius and oligomeric number. The trimer and the tetramer formed 6Å pores that appear closed while the larger oligomers formed open pores at their optimal radius. The hexamer in an 8Å pore and the octamer in an 11Å pore give the lowest effective energy per monomer. However, all oligomers beyond the pentamer have comparable energies, consistent with the observation of multiple conductance levels. The results are consistent with the widely accepted "barrel-stave" model. The N terminal portion of the molecule exhibits smaller tilt with respect to the membrane normal than the C terminal portion, resulting in a pore shape that is a hybrid between a funnel and an hourglass. Transmembrane voltage has little effect on the structure of the oligomers but enhances or decreases their stability depending on its orientation. Antiparallel bundles are lower in energy than the commonly accepted parallel ones and could be present under certain experimental conditions. Dry aggregates (without an aqueous pore) have lower average effective energy than the corresponding aggregates in a pore, suggesting that alamethicin pores may be excited states that are stabilized in part by voltage and in part by the ion flow itself.
Collapse
Affiliation(s)
- Asif Rahaman
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
20
|
Yang P, Wu FG, Chen Z. Lipid Fluid-Gel Phase Transition Induced Alamethicin Orientational Change Probed by Sum Frequency Generation Vibrational Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:17039-17049. [PMID: 24124624 PMCID: PMC3792402 DOI: 10.1021/jp4047215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alamethicin has been extensively studied as an antimicrobial peptide (AMP) and is widely used as a simple model for ion channel proteins. It has been shown that the antimicrobial activity of AMPs is related to their cell membrane orientation, which may be influenced by the phase of the lipid molecules in the cell membrane. The "healthy" cell membranes contain fluid phase lipids, while gel phase lipids can be found in injured or aged cells or in some phase separated membrane regions. Thus, investigations on how the phase of the lipids influences the membrane orientation of AMPs are important to understand more details regarding the AMP's action on cell membranes. In this study, we determined the orientational changes of alamethicin molecules associated with planar substrate supported single lipid bilayers (serving as model cell membranes) with different phases (fluid or gel) as a function of peptide concentration using sum frequency generation (SFG) vibrational spectroscopy. The phase changes of the lipid bilayers were realized by varying the sample temperature. Our SFG results indicated that alamethicin lies down on the surface of fluid and gel phase 1,2-dimyristoyl(d54)-sn-glycero-3-phosphocholine (d-DMPC) lipid bilayers when the lipid bilayers are in contact with a peptide solution with a low concentration of 0.84 μM. However, at a medium peptide concentration of 10.80 μM, alamethicin inserts into the fluid phase lipid bilayer. Its orientation switches from a transmembrane to an in-plane (or lying down) orientation when the phase of the lipid bilayer changes from a fluid state to a gel state. At a high peptide concentration of 21.60 μM, alamethicin adopts a transmembrane orientation while associated with both fluid and gel phase lipid bilayers. We also studied the structural changes of the fluid and gel phase lipid bilayers upon their interactions with alamethicin molecules at different peptide concentrations.
Collapse
Affiliation(s)
| | | | - Zhan Chen
- To whom correspondence should be addressed. Fax: 734-647-4865;
| |
Collapse
|
21
|
Yang P, Wu FG, Chen Z. Dependence of Alamethicin Membrane Orientation on the Solution Concentration. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:3358-3365. [PMID: 23565299 PMCID: PMC3613978 DOI: 10.1021/jp3099522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alamethicin has been extensively studied as an antimicrobial peptide and is widely used as a simple model for ion channel proteins. It has been shown that the antimicrobial activity of peptides is related to their membrane orientation. In this study, we determined the relationship between the solution concentration of alamethicin and its membrane orientation in lipid bilayers using sum frequency generation (SFG) vibrational spectroscopy. Our SFG results indicated that the alamethicin molecules more or less lay down on the surface of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers at a low peptide concentration of 0.84 μM; the α-helix segment tilts at about 88°, and 310-helix segment tilts at about 58° versus the surface normal. However, when the peptide concentration was increased to 15.6 μM, we observed that alamethicin molecules further inserted into the lipid bilayers: the α-helical component changes its orientation to make a 37° tilt from the lipid bilayer normal, and the 310-helical component tilts at about 50° versus the surface normal. This is in agreement with the barrel-stave mode for the alamethicin-cell membrane interaction as reported previously. Additionally, we have also studied membrane orientation of alamethicin as a function of peptide concentration with SFG. Our results showed that the membrane orientation of the alamethicin α-helical component changed substantially with the increase of the alamethicin concentration, while the membrane orientation of the 310-helical component remained more or less the same.
Collapse
Affiliation(s)
| | | | - Zhan Chen
- To whom correspondence should be addressed. Fax: 734-647-4865.
| |
Collapse
|
22
|
Lueders P, Jäger H, Hemminga MA, Jeschke G, Yulikov M. Distance Measurements on Orthogonally Spin-Labeled Membrane Spanning WALP23 Polypeptides. J Phys Chem B 2013; 117:2061-8. [DOI: 10.1021/jp311287t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Petra Lueders
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Heidrun Jäger
- Laboratory
of Biophysics, Wageningen University, Wageningen,
The Netherlands
| | - Marcus A. Hemminga
- Laboratory
of Biophysics, Wageningen University, Wageningen,
The Netherlands
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| |
Collapse
|
23
|
Hjørringgaard CU, Vad BS, Matchkov VV, Nielsen SB, Vosegaard T, Nielsen NC, Otzen DE, Skrydstrup T. Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance. J Phys Chem B 2012; 116:7652-9. [PMID: 22676384 DOI: 10.1021/jp2098679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial resistance to classical antibiotics is a serious medical problem, which continues to grow. Small antimicrobial peptides represent a potential solution and are increasingly being developed as novel therapeutic agents. Many of these peptides owe their antibacterial activity to the formation of trans-membrane ion-channels resulting in cell lysis. However, to further develop the field of peptide antibiotics, a thorough understanding of their mechanism of action is needed. Alamethicin belongs to a class of peptides called peptaibols and represents one of these antimicrobial peptides. To examine the dynamics of assembly and to facilitate a thorough structural evaluation of the alamethicin ion-channels, we have applied click chemistry for the synthesis of templated alamethicin multimers covalently attached to cyclodextrin-scaffolds. Using oriented circular dichroism, calcein release assays, and single-channel current measurements, the α-helices of the templated multimers were demonstrated to insert into lipid bilayers forming highly efficient and remarkably stable ion-channels.
Collapse
Affiliation(s)
- Claudia U Hjørringgaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ye S, Li H, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. J Am Chem Soc 2012; 134:6237-43. [PMID: 22420296 PMCID: PMC3328217 DOI: 10.1021/ja2110784] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes.
Collapse
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Feng Wei
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P.R.China 230026
| | - Joshua Jasensky
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
| | - Andrew P. Boughton
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Pei Yang
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| | - Zhan Chen
- Department of Biophysics, University of Michigan, AnnArbor, MI 48109, USA
- Department of Chemistry, University of Michigan, AnnArbor, MI 48109, USA
| |
Collapse
|
25
|
The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects. Biophys Rev 2012; 4:45-66. [PMID: 22347893 PMCID: PMC3271205 DOI: 10.1007/s12551-011-0064-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023] Open
Abstract
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.
Collapse
|
26
|
Butterfield SM, Lashuel HA. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed Engl 2011; 49:5628-54. [PMID: 20623810 DOI: 10.1002/anie.200906670] [Citation(s) in RCA: 489] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The toxicity of amyloid-forming proteins is correlated with their interactions with cell membranes. Binding events between amyloidogenic proteins and membranes result in mutually disruptive structural perturbations, which are associated with toxicity. Membrane surfaces promote the conversion of amyloid-forming proteins into toxic aggregates, and amyloidogenic proteins, in turn, compromise the structural integrity of the cell membrane. Recent studies with artificial model membranes have highlighted the striking resemblance of the mechanisms of membrane permeabilization of amyloid-forming proteins to those of pore-forming toxins and antimicrobial peptides.
Collapse
Affiliation(s)
- Sara M Butterfield
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne (EPFL), SV-BMI-LMNN AI2351, 1015 Lausanne, Switzerland
| | | |
Collapse
|
27
|
Bechinger B, Resende JM, Aisenbrey C. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 2010; 153:115-25. [PMID: 21145159 DOI: 10.1016/j.bpc.2010.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with lipids, and a variety of conceptually different approaches have been developed for their study. The technique is unique in allowing for the high-resolution investigation of liquid disordered lipid bilayers representing well the characteristics of natural membranes. Whereas magic angle solid-state NMR spectroscopy follows approaches that are related to those developed for solution NMR spectroscopy the use of static uniaxially oriented samples results in angular constraints which also provide information for the detailed analysis of polypeptide structures. This review introduces this latter concept theoretically and provides a number of examples. Furthermore, ongoing developments combining solid-state NMR spectroscopy with information from solution NMR spectroscopy and molecular modelling as well as exploratory studies using dynamic nuclear polarization solid-state NMR will be presented.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | | | | |
Collapse
|
28
|
Syryamina VN, Isaev NP, Peggion C, Formaggio F, Toniolo C, Raap J, Dzuba SA. Small-Amplitude Backbone Motions of the Spin-Labeled Lipopeptide Trichogin GA IV in a Lipid Membrane As Revealed by Electron Spin Echo. J Phys Chem B 2010; 114:12277-83. [DOI: 10.1021/jp106769q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victoria N. Syryamina
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Chemistry, University of Padova, 35131 Padova, Italy, and Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Nikolay P. Isaev
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Chemistry, University of Padova, 35131 Padova, Italy, and Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Cristina Peggion
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Chemistry, University of Padova, 35131 Padova, Italy, and Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Fernando Formaggio
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Chemistry, University of Padova, 35131 Padova, Italy, and Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Claudio Toniolo
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Chemistry, University of Padova, 35131 Padova, Italy, and Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Jan Raap
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Chemistry, University of Padova, 35131 Padova, Italy, and Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - Sergei A. Dzuba
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Chemistry, University of Padova, 35131 Padova, Italy, and Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| |
Collapse
|
29
|
Butterfield S, Lashuel H. Wechselwirkungen zwischen amyloidogenen Proteinen und Membranen: Modellsysteme liefern mechanistische Einblicke. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Salnikov E, Rosay M, Pawsey S, Ouari O, Tordo P, Bechinger B. Solid-State NMR Spectroscopy of Oriented Membrane Polypeptides at 100 K with Signal Enhancement by Dynamic Nuclear Polarization. J Am Chem Soc 2010; 132:5940-1. [DOI: 10.1021/ja1007646] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evgeniy Salnikov
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Melanie Rosay
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Shane Pawsey
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Olivier Ouari
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Paul Tordo
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| | - Burkhard Bechinger
- Insitut de Chimie, Université de Strasbourg-CNRS UMR7177, 4 rue Blaise Pascal, 67070 Strasbourg, France, Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, and Université de Provence-CNRS UMR6264, av. Normandie-Niemen 13397 Marseille cédex 20, France
| |
Collapse
|
31
|
Ye S, Nguyen KT, Chen Z. Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. J Phys Chem B 2010; 114:3334-40. [PMID: 20163089 PMCID: PMC2844632 DOI: 10.1021/jp911174d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Structures of membrane-associated peptides and molecular interactions between peptides and cell membrane bilayers govern biological functions of these peptides. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study such structures and interactions at the molecular level. In this research, SFG has been applied, supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), to characterize the interactions between alamethicin (a model for larger channel proteins) and different lipid bilayers in the absence of membrane potential. The orientation of alamethicin in lipid bilayers has been determined using SFG amide I spectra detected with different polarization combinations. It was found that alamethicin adopts a mixed alpha-helical and 3(10)-helical structure in fluid-phase lipid bilayers. The helix (mainly alpha-helix) at the N-terminus tilts at about 63 degrees versus the surface normal in a fluid-phase 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine-1,1,2,2-d4-N,N,N-trimethyl-d9 (d-DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. The 3(10)-helix at the C-terminus (beyond the Pro14 residue) tilts at about 43 degrees versus the surface normal. This is the first time to apply SFG to study a 3(10)-helix experimentally. When interacting with a gel-phase lipid bilayer, alamethicin lies down on the gel-phase bilayer surface or aggregates or both, which does not have significant insertion into the lipid bilayer.
Collapse
Affiliation(s)
- Shuji Ye
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, P.R. China 230026
| | - Khoi Tan Nguyen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Membrane association and pore formation by alpha-helical peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:24-30. [PMID: 20687478 DOI: 10.1007/978-1-4419-6327-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane-active peptides exhibit antimicrobial, channel-forming and transport activities and have therefore early on been interesting targets for biophysical investigations. When the peptide-lipid interactions are studied a dynamic view emerges in which the peptides change conformation upon membrane insertion, can adopt a variety of topologies and change the macroscopic phase properties of the membrane locally or globally. Interestingly several proteins have been identified that also interact with the membrane in a dynamic fashion and where the lessons learned from peptides may add to our understanding of the ways these proteins function.
Collapse
|
33
|
Abstract
Membrane-active peptides or protein segments play an important role in many biological processes at the cellular interface to the environment. They are involved, e.g., in cellular fusion or host defense, where they can cause not only merging but also the destabilization of cell membranes. Many factors determine how these typically amphipathic peptides interact with the lipid bilayer. For example, the peptide orientation in the membrane determines which parts of the peptide are exposed to the hydrophobic bilayer interior or to the polar lipid/water interface. As another example, oligomerization is required for many activities such as pore formation. Peptides have been often classified according to a single characteristic mode of interaction with the bilayer, but over the years a more versatile picture has emerged. It appears that any single peptide can adopt several different alignments and/or oligomeric states in response to changes in the environment. For instance, many antimicrobial peptides adopt a surface-parallel alignment at low concentration, but they tilt obliquely into or even fully insert transmembrane into the bilayer above a critical peptide-to-lipid ratio, often in the form of oligomeric pores. Similar changes in peptide orientation or oligomeric state have been observed as a function of, e.g., temperature, lipid composition, pH, or induced by a synergistic partner peptide. Such transitions between peptide states can be regarded as the result of a re-adjustment in the balance between peptide-peptide and peptide-lipid interactions, as the environment conditions are changed. Though often studied in model membrane systems, such rich variety of peptide states is even more likely to occur in native biomembranes with their diverse compositions and physicochemical properties. The ability to undergo transitions between different states thus plays a fundamental role for the biological activities of membrane-active peptides.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology, Institute for Biological Interfaces (IBG-2), Institute of Organic Chemistry, Karlsruhe, Germany
| | | | | |
Collapse
|
34
|
Milov AD, Samoilova RI, Tsvetkov YD, De Zotti M, Formaggio F, Toniolo C, Handgraaf JW, Raap J. Structure of self-aggregated alamethicin in ePC membranes detected by pulsed electron-electron double resonance and electron spin echo envelope modulation spectroscopies. Biophys J 2009; 96:3197-209. [PMID: 19383464 DOI: 10.1016/j.bpj.2009.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/17/2022] Open
Abstract
PELDOR spectroscopy was exploited to study the self-assembled super-structure of the [Glu(OMe)(7,18,19)]alamethicin molecules in vesicular membranes at peptide to lipid molar ratios in the range of 1:70-1:200. The peptide molecules were site-specifically labeled with TOAC electron spins. From the magnetic dipole-dipole interaction between the nitroxides of the monolabeled constituents and the PELDOR decay patterns measured at 77 K, intermolecular-distance distribution functions were obtained and the number of aggregated molecules (n approximately 4) was estimated. The distance distribution functions exhibit a similar maximum at 2.3 nm. In contrast to Alm16, for Alm1 and Alm8 additional maxima were recorded at 3.2 and approximately 5.2 nm. From ESEEM experiments and based on the membrane polarity profiles, the penetration depths of the different spin-labeled positions into the membrane were qualitatively estimated. It was found that the water accessibility of the spin-labels follows the order TOAC-1 > TOAC-8 approximately TOAC-16. The geometric data obtained are discussed in terms of a penknife molecular model. At least two peptide chains are aligned parallel and eight ester groups of the polar Glu(OMe)(18,19) residues are suggested to stabilize the self-aggregate superstructure.
Collapse
Affiliation(s)
- Alexander D Milov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090 Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|