1
|
Quaye J, Ouedraogo D, Gadda G. Targeted Mutation of a Non-catalytic Gating Residue Increases the Rate of Pseudomonas aeruginosa d-Arginine Dehydrogenase Catalytic Turnover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71. [PMID: 37933126 PMCID: PMC10655190 DOI: 10.1021/acs.jafc.3c05328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Commercial food and l-amino acid industries rely on bioengineered d-amino acid oxidizing enzymes to detect and remove d-amino acid contaminants. However, the bioengineering of enzymes to generate faster biological catalysts has proven difficult as a result of the failure to target specific kinetic steps that limit enzyme turnover, kcat, and the poor understanding of loop dynamics critical for catalysis. Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) oxidizes most d-amino acids and is a good candidate for application in the l-amino acid and food industries. The side chain of the loop L2 E246 residue located at the entrance of the PaDADH active site pocket potentially favors the closed active site conformation and secures the substrate upon binding. This study used site-directed mutagenesis, steady-state, and rapid reaction kinetics to generate the glutamine, glycine, and leucine variants and investigate whether increasing the rate of product release could translate to an increased enzyme turnover rate. Upon E246 mutation to glycine, there was an increased rate of d-arginine turnover kcat from 122 to 500 s-1. Likewise, the kcat values increased 2-fold for the glutamine or leucine variants. Thus, we have engineered a faster biocatalyst for industrial applications by selectively increasing the rate of the PaDADH product release.
Collapse
Affiliation(s)
- Joanna
Afokai Quaye
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Daniel Ouedraogo
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Giovanni Gadda
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Department
of Biology, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Center
for Diagnostics and Therapeutics, Georgia
State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
2
|
Moni BM, Quaye JA, Gadda G. Mutation of a distal gating residue modulates NADH binding in NADH:Quinone oxidoreductase from Pseudomonas aeruginosa PAO1. J Biol Chem 2023; 299:103044. [PMID: 36803963 PMCID: PMC10033279 DOI: 10.1016/j.jbc.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Enzymes require flexible regions to adopt multiple conformations during catalysis. The mobile regions of enzymes include gates that modulate the passage of molecules in and out of the enzyme's active site. The enzyme PA1024 from Pseudomonas aeruginosa PA01 is a recently discovered flavin-dependent NADH:quinone oxidoreductase (NQO, EC 1.6.5.9). Q80 in loop 3 (residues 75-86) of NQO is ∼15 Å away from the flavin and creates a gate that seals the active site through a hydrogen bond with Y261 upon NADH binding. In this study, we mutated Q80 to glycine, leucine, or glutamate to investigate the mechanistic significance of distal residue Q80 in NADH binding in the active site of NQO. The UV-visible absorption spectrum reveals that the mutation of Q80 minimally affects the protein microenvironment surrounding the flavin. The anaerobic reductive half-reaction of the NQO-mutants yields a ≥25-fold increase in the Kd value for NADH compared to the WT enzyme. However, we determined that the kred value was similar in the Q80G, Q80L, and wildtype enzymes and only ∼25% smaller in the Q80E enzyme. Steady-state kinetics with NQO-mutants and NQO-WT at varying concentrations of NADH and 1,4-benzoquinone establish a ≤5-fold decrease in the kcat/KNADH value. Moreover, there is no significant difference in the kcat/KBQ (∼1 × 106 M-1s-1) and kcat (∼24 s-1) values in NQO-mutants and NQO-WT. These results are consistent with the distal residue Q80 being mechanistically essential for NADH binding to NQO with minimal effect on the quinone binding to the enzyme and hydride transfer from NADH to flavin.
Collapse
Affiliation(s)
- Bilkis Mehrin Moni
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
3
|
Zhang ZB, Xia YL, Dong GH, Fu YX, Liu SQ. Exploring the Cold-Adaptation Mechanism of Serine Hydroxymethyltransferase by Comparative Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:1781. [PMID: 33670090 PMCID: PMC7916883 DOI: 10.3390/ijms22041781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cold-adapted enzymes feature a lower thermostability and higher catalytic activity compared to their warm-active homologues, which are considered as a consequence of increased flexibility of their molecular structures. The complexity of the (thermo)stability-flexibility-activity relationship makes it difficult to define the strategies and formulate a general theory for enzyme cold adaptation. Here, the psychrophilic serine hydroxymethyltransferase (pSHMT) from Psychromonas ingrahamii and its mesophilic counterpart, mSHMT from Escherichia coli, were subjected to μs-scale multiple-replica molecular dynamics (MD) simulations to explore the cold-adaptation mechanism of the dimeric SHMT. The comparative analyses of MD trajectories reveal that pSHMT exhibits larger structural fluctuations and inter-monomer positional movements, a higher global flexibility, and considerably enhanced local flexibility involving the surface loops and active sites. The largest-amplitude motion mode of pSHMT describes the trends of inter-monomer dissociation and enlargement of the active-site cavity, whereas that of mSHMT characterizes the opposite trends. Based on the comparison of the calculated structural parameters and constructed free energy landscapes (FELs) between the two enzymes, we discuss in-depth the physicochemical principles underlying the stability-flexibility-activity relationships and conclude that (i) pSHMT adopts the global-flexibility mechanism to adapt to the cold environment and, (ii) optimizing the protein-solvent interactions and loosening the inter-monomer association are the main strategies for pSHMT to enhance its flexibility.
Collapse
Affiliation(s)
- Zhi-Bi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (Z.-B.Z.); (Y.-L.X.); (G.-H.D.)
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (Z.-B.Z.); (Y.-L.X.); (G.-H.D.)
| | - Guang-Heng Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (Z.-B.Z.); (Y.-L.X.); (G.-H.D.)
| | - Yun-Xin Fu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (Z.-B.Z.); (Y.-L.X.); (G.-H.D.)
- Human Genetics Center and Division of Biostatistics, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (Z.-B.Z.); (Y.-L.X.); (G.-H.D.)
| |
Collapse
|
4
|
Sočan J, Purg M, Åqvist J. Computer simulations explain the anomalous temperature optimum in a cold-adapted enzyme. Nat Commun 2020; 11:2644. [PMID: 32457471 PMCID: PMC7250929 DOI: 10.1038/s41467-020-16341-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
Cold-adapted enzymes from psychrophilic species show the general characteristics of being more heat labile, and having a different balance between enthalpic and entropic contributions to free energy barrier of the catalyzed reaction compared to mesophilic orthologs. Among cold-adapted enzymes, there are also examples that show an enigmatic inactivation at higher temperatures before unfolding of the protein occurs. Here, we analyze these phenomena by extensive computer simulations of the catalytic reactions of psychrophilic and mesophilic α-amylases. The calculations yield temperature dependent reaction rates in good agreement with experiment, and also elicit the anomalous rate optimum for the cold-adapted enzyme, which occurs about 15 °C below the melting point. This result allows us to examine the structural basis of thermal inactivation, which turns out to be caused by breaking of a specific enzyme-substrate interaction. This type of behaviour is also likely to be relevant for other enzymes displaying such anomalous temperature optima.
Collapse
Affiliation(s)
- Jaka Sočan
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Miha Purg
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
5
|
Comparing mutagenesis and simulations as tools for identifying functionally important sequence changes for protein thermal adaptation. Proc Natl Acad Sci U S A 2018; 116:679-688. [PMID: 30584112 DOI: 10.1073/pnas.1817455116] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative studies of orthologous proteins of species evolved at different temperatures have revealed consistent patterns of temperature-related variation in thermal stabilities of structure and function. However, the precise mechanisms by which interspecific variations in sequence foster these adaptive changes remain largely unknown. Here, we compare orthologs of cytosolic malate dehydrogenase (cMDH) from marine molluscs adapted to temperatures ranging from -1.9 °C (Antarctica) to ∼55 °C (South China coast) and show how amino acid usage in different regions of the enzyme (surface, intermediate depth, and protein core) varies with adaptation temperature. This eukaryotic enzyme follows some but not all of the rules established in comparisons of archaeal and bacterial proteins. To link the effects of specific amino acid substitutions with adaptive variations in enzyme thermal stability, we combined site-directed mutagenesis (SDM) and in vitro protein experimentation with in silico mutagenesis using molecular dynamics simulation (MDS) techniques. SDM and MDS methods generally but not invariably yielded common effects on protein stability. MDS analysis is shown to provide insights into how specific amino acid substitutions affect the conformational flexibilities of mobile regions (MRs) of the enzyme that are essential for binding and catalysis. Whereas these substitutions invariably lie outside of the MRs, they effectively transmit their flexibility-modulating effects to the MRs through linked interactions among surface residues. This discovery illustrates that regions of the protein surface lying outside of the site of catalysis can help establish an enzyme's thermal responses and foster evolutionary adaptation of function.
Collapse
|
6
|
Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc Natl Acad Sci U S A 2018; 115:1274-1279. [PMID: 29358381 DOI: 10.1073/pnas.1718910115] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Orthologous proteins of species adapted to different temperatures exhibit differences in stability and function that are interpreted to reflect adaptive variation in structural "flexibility." However, quantifying flexibility and comparing flexibility across proteins has remained a challenge. To address this issue, we examined temperature effects on cytosolic malate dehydrogenase (cMDH) orthologs from differently thermally adapted congeners of five genera of marine molluscs whose field body temperatures span a range of ∼60 °C. We describe consistent patterns of convergent evolution in adaptation of function [temperature effects on KM of cofactor (NADH)] and structural stability (rate of heat denaturation of activity). To determine how these differences depend on flexibilities of overall structure and of regions known to be important in binding and catalysis, we performed molecular dynamics simulation (MDS) analyses. MDS analyses revealed a significant negative correlation between adaptation temperature and heat-induced increase of backbone atom movements [root mean square deviation (rmsd) of main-chain atoms]. Root mean square fluctuations (RMSFs) of movement by individual amino acid residues varied across the sequence in a qualitatively similar pattern among orthologs. Regions of sequence involved in ligand binding and catalysis-termed mobile regions 1 and 2 (MR1 and MR2), respectively-showed the largest values for RMSF. Heat-induced changes in RMSF values across the sequence and, importantly, in MR1 and MR2 were greatest in cold-adapted species. MDS methods are shown to provide powerful tools for examining adaptation of enzymes by providing a quantitative index of protein flexibility and identifying sequence regions where adaptive change in flexibility occurs.
Collapse
|
7
|
Molecular mechanism of interactions between inhibitory tripeptide GEF and angiotensin-converting enzyme in aqueous solutions by molecular dynamic simulations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Sang P, Du X, Yang LQ, Meng ZH, Liu SQ. Molecular motions and free-energy landscape of serine proteinase K in relation to its cold-adaptation: a comparative molecular dynamics simulation study and the underlying mechanisms. RSC Adv 2017. [DOI: 10.1039/c6ra23230b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physicochemical bases for enzyme cold-adaptation remain elusive.
Collapse
Affiliation(s)
- Peng Sang
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources
- Yunnan University
- Kunming
- P. R. China
- Department of Biochemistry and Molecular Biology
| | - Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Zhao-Hui Meng
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Shu-Qun Liu
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| |
Collapse
|
9
|
Dachuri V, Boyineni J, Choi S, Chung HS, Jang SH, Lee C. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Truongvan N, Jang SH, Lee C. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK. Biochemistry 2016; 55:3542-9. [DOI: 10.1021/acs.biochem.6b00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ngoc Truongvan
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Sei-Heon Jang
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| |
Collapse
|
11
|
Yang J, Li L, Xiao Y, Li J, Long L, Wang F, Zhang S. Identification and thermoadaptation engineering of thermostability conferring residue of deep sea bacterial α-amylase AMY121. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016; 116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Papaleo
- Computational
Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giorgio Saladino
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Lambrughi
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, National Cancer Institute Frederick, Frederick, Maryland 21702, United States
- Sackler Institute
of Molecular Medicine, Department of Human Genetics and Molecular
Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Yang LL, Tang SK, Huang Y, Zhi XY. Low Temperature Adaptation Is Not the Opposite Process of High Temperature Adaptation in Terms of Changes in Amino Acid Composition. Genome Biol Evol 2015; 7:3426-33. [PMID: 26614525 PMCID: PMC4700962 DOI: 10.1093/gbe/evv232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies focused on psychrophilic adaptation generally have demonstrated that multiple mechanisms work together to increase protein flexibility and activity, as well as to decrease the thermostability of proteins. However, the relationship between high and low temperature adaptations remains unclear. To investigate this issue, we collected the available predicted whole proteome sequences of species with different optimal growth temperatures, and analyzed amino acid variations and substitutional asymmetry in pairs of homologous proteins from related species. We found that changes in amino acid composition associated with low temperature adaptation did not exhibit a coherent opposite trend when compared with changes in amino acid composition associated with high temperature adaptation. This result indicates that during their evolutionary histories the proteome-scale evolutionary patterns associated with prokaryotes exposed to low temperature environments were distinct from the proteome-scale evolutionary patterns associated with prokaryotes exposed to high temperature environments in terms of changes in amino acid composition of the proteins.
Collapse
Affiliation(s)
- Ling-Ling Yang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Shu-Kun Tang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Meneksedag D, Dogan A, Kanlikilicer P, Ozkirimli E. Communication between the active site and the allosteric site in class A beta-lactamases. Comput Biol Chem 2013; 43:1-10. [DOI: 10.1016/j.compbiolchem.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/22/2012] [Accepted: 12/03/2012] [Indexed: 11/16/2022]
|
15
|
Fraccalvieri D, Tiberti M, Pandini A, Bonati L, Papaleo E. Functional annotation of the mesophilic-like character of mutants in a cold-adapted enzyme by self-organising map analysis of their molecular dynamics. MOLECULAR BIOSYSTEMS 2013; 8:2680-91. [PMID: 22802143 DOI: 10.1039/c2mb25192b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple comparison of the Molecular Dynamics (MD) trajectories of mutants in a cold-adapted α-amylase (AHA) could be used to elucidate functional features required to restore mesophilic-like activity. Unfortunately it is challenging to identify the different dynamic behaviors and correctly relate them to functional activity by routine analysis. We here employed a previously developed and robust two-stage approach that combines Self-Organising Maps (SOMs) and hierarchical clustering to compare conformational ensembles of proteins. Moreover, we designed a novel strategy to identify the specific mutations that more efficiently convert the dynamic signature of the psychrophilic enzyme (AHA) to that of the mesophilic counterpart (PPA). The SOM trained on AHA and its variants was used to classify a PPA MD ensemble and successfully highlighted the relationships between the flexibilities of the target enzyme and of the different mutants. Moreover the local features of the mutants that mostly influence their global flexibility in a mesophilic-like direction were detected. It turns out that mutations of the cold-adapted enzyme to hydrophobic and aromatic residues are the most effective in restoring the PPA dynamic features and could guide the design of more mesophilic-like mutants. In conclusion, our strategy can efficiently extract specific dynamic signatures related to function from multiple comparisons of MD conformational ensembles. Therefore, it can be a promising tool for protein engineering.
Collapse
|
16
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
17
|
Molecular mechanism of the interactions between inhibitory tripeptides and angiotensin-converting enzyme. Biophys Chem 2012; 168-169:60-6. [DOI: 10.1016/j.bpc.2012.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/13/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
|
18
|
Kosugi T, Hayashi S. Crucial Role of Protein Flexibility in Formation of a Stable Reaction Transition State in an α-Amylase Catalysis. J Am Chem Soc 2012; 134:7045-55. [DOI: 10.1021/ja212117m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Takahiro Kosugi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Papaleo E, Pasi M, Tiberti M, De Gioia L. Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insights into distal effects induced by the mutations. PLoS One 2011; 6:e24214. [PMID: 21915299 PMCID: PMC3168468 DOI: 10.1371/journal.pone.0024214] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
Networks and clusters of intramolecular interactions, as well as their "communication" across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site) should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme.
Collapse
Affiliation(s)
- Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | |
Collapse
|
20
|
Tiberti M, Papaleo E. Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 2011; 174:69-83. [DOI: 10.1016/j.jsb.2011.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/19/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
21
|
Kosugi T, Hayashi S. Local entropy difference upon a substrate binding of a psychrophilic α-amylase and a mesophilic homologue. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2010.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Siglioccolo A, Gerace R, Pascarella S. “Cold spots” in protein cold adaptation: Insights from normalized atomic displacement parameters (B′-factors). Biophys Chem 2010; 153:104-14. [DOI: 10.1016/j.bpc.2010.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/16/2022]
|
23
|
Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. J Mol Graph Model 2010; 28:755-65. [DOI: 10.1016/j.jmgm.2010.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/29/2009] [Accepted: 01/31/2010] [Indexed: 11/22/2022]
|