1
|
Berryman JT, Taghavi A, Mazur F, Tkatchenko A. Quantum machine learning corrects classical forcefields: Stretching DNA base pairs in explicit solvent. J Chem Phys 2022; 157:064107. [PMID: 35963717 DOI: 10.1063/5.0094727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to improve the accuracy of molecular dynamics simulations, classical forcefields are supplemented with a kernel-based machine learning method trained on quantum-mechanical fragment energies. As an example application, a potential-energy surface is generalized for a small DNA duplex, taking into account explicit solvation and long-range electron exchange-correlation effects. A long-standing problem in molecular science is that experimental studies of the structural and thermodynamic behavior of DNA under tension are not well confirmed by simulation; study of the potential energy vs extension taking into account a novel correction shows that leading classical DNA models have excessive stiffness with respect to stretching. This discrepancy is found to be common across multiple forcefields. The quantum correction is in qualitative agreement with the experimental thermodynamics for larger DNA double helices, providing a candidate explanation for the general and long-standing discrepancy between single molecule stretching experiments and classical calculations of DNA stretching. The new dataset of quantum calculations should facilitate multiple types of nucleic acid simulation, and the associated Kernel Modified Molecular Dynamics method (KMMD) is applicable to biomolecular simulations in general. KMMD is made available as part of the AMBER22 simulation software.
Collapse
Affiliation(s)
- Joshua T Berryman
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Amirhossein Taghavi
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Florian Mazur
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
2
|
Shepherd JW, Greenall RJ, Probert M, Noy A, Leake M. The emergence of sequence-dependent structural motifs in stretched, torsionally constrained DNA. Nucleic Acids Res 2020; 48:1748-1763. [PMID: 31930331 PMCID: PMC7038985 DOI: 10.1093/nar/gkz1227] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/26/2022] Open
Abstract
The double-helical structure of DNA results from canonical base pairing and stacking interactions. However, variations from steady-state conformations resulting from mechanical perturbations in cells have physiological relevance but their dependence on sequence remains unclear. Here, we use molecular dynamics simulations showing sequence differences result in markedly different structural motifs upon physiological twisting and stretching. We simulate overextension on different sequences of DNA ((AA)12, (AT)12, (CC)12 and (CG)12) with supercoiling densities at 200 and 50 mM salt concentrations. We find that DNA denatures in the majority of stretching simulations, surprisingly including those with over-twisted DNA. GC-rich sequences are observed to be more stable than AT-rich ones, with the specific response dependent on the base pair order. Furthermore, we find that (AT)12 forms stable periodic structures with non-canonical hydrogen bonds in some regions and non-canonical stacking in others, whereas (CG)12 forms a stacking motif of four base pairs independent of supercoiling density. Our results demonstrate that 20-30% DNA extension is sufficient for breaking B-DNA around and significantly above cellular supercoiling, and that the DNA sequence is crucial for understanding structural changes under mechanical stress. Our findings have important implications for the activities of protein machinery interacting with DNA in all cells.
Collapse
Affiliation(s)
- Jack W Shepherd
- Department of Physics, University of York, York YO10 5DD, UK
| | | | | | - Agnes Noy
- Department of Physics, University of York, York YO10 5DD, UK
| | - Mark C Leake
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York,YO10 5NG, UK
| |
Collapse
|
3
|
DNA partitions into triplets under tension in the presence of organic cations, with sequence evolutionary age predicting the stability of the triplet phase. Q Rev Biophys 2018; 50:e15. [PMID: 29233227 DOI: 10.1017/s0033583517000130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using atomistic simulations, we show the formation of stable triplet structure when particular GC-rich DNA duplexes are extended in solution over a timescale of hundreds of nanoseconds, in the presence of organic salt. We present planar-stacked triplet disproportionated DNA (Σ DNA) as a possible solution phase of the double helix under tension, subject to sequence and the presence of stabilising co-factors. Considering the partitioning of the duplexes into triplets of base pairs as the first step of operation of recombinase enzymes like RecA, we emphasise the structure-function relationship in Σ DNA. We supplement atomistic calculations with thermodynamic arguments to show that codons for 'phase 1' amino acids (those appearing early in evolution) are more likely than a lower entropy GC-rich sequence to form triplets under tension. We further observe that the four amino acids supposed (in the 'GADV world' hypothesis) to constitute the minimal set to produce functional globular proteins have the strongest triplet-forming propensity within the phase 1 set, showing a series of decreasing triplet propensity with evolutionary newness. The weak form of our observation provides a physical mechanism to minimise read frame and recombination alignment errors in the early evolution of the genetic code.
Collapse
|
4
|
Wang K. DNA-Based Single-Molecule Electronics: From Concept to Function. J Funct Biomater 2018; 9:jfb9010008. [PMID: 29342091 PMCID: PMC5872094 DOI: 10.3390/jfb9010008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.
Collapse
Affiliation(s)
- Kun Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Garai A, Mogurampelly S, Bag S, Maiti PK. Overstretching of B-DNA with various pulling protocols: Appearance of structural polymorphism and S-DNA. J Chem Phys 2017; 147:225102. [DOI: 10.1063/1.4991862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ashok Garai
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur 302031, India
| | - Santosh Mogurampelly
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Saientan Bag
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Bruot C, Xiang L, Palma JL, Tao N. Effect of mechanical stretching on DNA conductance. ACS NANO 2015; 9:88-94. [PMID: 25530305 DOI: 10.1021/nn506280t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studying the structural and charge transport properties in DNA is important for unraveling molecular scale processes and developing device applications of DNA molecules. Here we study the effect of mechanical stretching-induced structural changes on charge transport in single DNA molecules. The charge transport follows the hopping mechanism for DNA molecules with lengths varying from 6 to 26 base pairs, but the conductance is highly sensitive to mechanical stretching, showing an abrupt decrease at surprisingly short stretching distances and weak dependence on DNA length. We attribute this force-induced conductance decrease to the breaking of hydrogen bonds in the base pairs at the end of the sequence and describe the data with a mechanical model.
Collapse
Affiliation(s)
- Christopher Bruot
- Center for Bioelectronics and Biosensors, Biodesign Institute, School of Electrical, Energy and Computer Engineering, Arizona State University , Tempe, Arizona 85287-5801, United States
| | | | | | | |
Collapse
|
7
|
Bongini L, Lombardi V, Bianco P. The transition mechanism of DNA overstretching: a microscopic view using molecular dynamics. J R Soc Interface 2015; 11:20140399. [PMID: 24920111 DOI: 10.1098/rsif.2014.0399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The overstretching transition in torsionally unconstrained DNA is studied by means of atomistic molecular dynamics simulations. The free-energy profile as a function of the length of the molecule is determined through the umbrella sampling technique providing both a thermodynamic and a structural characterization of the transition pathway. The zero-force free-energy profile is monotonic but, in accordance with recent experimental evidence, becomes two-state at high forces. A number of experimental results are satisfactorily predicted: (i) the entropic and enthalpic contributions to the free-energy difference between the basic (B) state and the extended (S) state; (ii) the longitudinal extension of the transition state and (iii) the enthalpic contribution to the transition barrier. A structural explanation of the experimental finding that overstretching is a cooperative reaction characterized by elementary units of approximately 22 base pairs is found in the average distance between adenine/thymine-rich regions along the molecule. The overstretched DNA adopts a highly dynamical and structurally disordered double-stranded conformation which is characterized by residual base pairing, formation of non-native intra-strand hydrogen bonds and effective hydrophobic screening of apolar regions.
Collapse
Affiliation(s)
- L Bongini
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - V Lombardi
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - P Bianco
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
8
|
Naserian-Nik AM, Tahani M, Karttunen M. Molecular dynamics study of DNA oligomers under angled pulling. RSC Adv 2014. [DOI: 10.1039/c3ra45604h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
Naserian-Nik AM, Tahani M, Karttunen M. Pulling of double-stranded DNA by atomic force microscopy: a simulation in atomistic details. RSC Adv 2013. [DOI: 10.1039/c3ra23213a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
10
|
Wolter M, Elstner M, Kubař T. On the Structure and Stretching of Microhydrated DNA. J Phys Chem A 2011; 115:11238-47. [DOI: 10.1021/jp204307t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mario Wolter
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|