1
|
Krajňák V, Wiggins S. Roaming in acetaldehyde. J Chem Phys 2024; 160:244104. [PMID: 38912673 DOI: 10.1063/5.0212443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
We investigate roaming in the photodissociation of acetaldehyde (CH3CHO), providing insights into the contrasting roaming dynamics observed for this molecule compared to formaldehyde. We carry out trajectory studies for full-dimensional acetaldehyde, supplemented with an analysis of a two-degree-of-freedom restricted model and obtain evidence for two distinct roaming pathways. Trajectories exhibit roaming at both shorter (9-11.5 au) and larger (14.5-22.9 au) maximum CH3-HCO separations, characterized by differing amounts of HCO rotation. No roaming trajectories were found in the intervening gap region. The roaming dynamics near 14.5-22.9 au are well-reproduced by the restricted model and involve passage through a centrifugal barrier, analogous to formaldehyde roaming. However, the shorter-range 9-11.5 au roaming appears unique to acetaldehyde and is likely facilitated by repulsive interactions absent in the simplified models. Phase space analysis reveals that this additional roaming pathway is inaccessible in the reduced dimensionality system. The findings suggest that acetaldehyde's increased propensity for roaming compared to formaldehyde may arise from the presence of multiple distinct roaming mechanisms rather than solely the higher roaming fragment mass.
Collapse
Affiliation(s)
- Vladimír Krajňák
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, United Kingdom
| | - Stephen Wiggins
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, United Kingdom
- Department of Mathematics, United States Naval Academy, Chauvenet Hall, 572C Holloway Road, Annapolis, Maryland 21402-5002, USA
| |
Collapse
|
2
|
Jaddi A, Marakchi K, Zanchet A, García-Vela A. A high-level ab initio study of the photodissociation of acetaldehyde. J Chem Phys 2024; 160:224309. [PMID: 38874103 DOI: 10.1063/5.0207362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Acetaldehyde is a very relevant atmospheric species whose photodissociation has been extensively studied in the first absorption band both experimentally and theoretically. Very few works have been reported on acetaldehyde photodissociation at higher excitation energies. In this work, the photodissociation dynamics of acetaldehyde is investigated by means of high-level multireference configuration interaction ab initio calculations. Five different fragmentation pathways of acetaldehyde are explored by calculating the potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distances. The excitation energy range covered in the study is up to 10 eV, nearly the ionization energy of acetaldehyde. We intend to rationalize the available experimental results and, in particular, to elucidate why some of the studied fragmentation pathways are experimentally observed in the different excitation energy regions and some others are not. Based on the shape of the calculated potential curves, we are able to explain the main findings of the available experiments, also suggesting possible dynamical dissociation mechanisms in the different energy regions. Thus, the reported potential curves are envisioned as a useful tool to interpret the currently available experiments as well as future ones on acetaldehyde photodissociation at excitation wavelengths in the range studied here.
Collapse
Affiliation(s)
- A Jaddi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, LS3MN2E/CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| | - K Marakchi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, LS3MN2E/CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - A Zanchet
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| | - A García-Vela
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
3
|
Abma G, Parkes MA, Razmus WO, Zhang Y, Wyatt AS, Springate E, Chapman RT, Horke DA, Minns RS. Direct Observation of a Roaming Intermediate and Its Dynamics. J Am Chem Soc 2024; 146:12595-12600. [PMID: 38682306 PMCID: PMC11082896 DOI: 10.1021/jacs.4c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Chemical reactions are often characterized by their transition state, which defines the critical geometry the molecule must pass through to move from reactants to products. Roaming provides an alternative picture, where in a dissociation reaction, the bond breaking is frustrated and a loosely bound intermediate is formed. Following bond breaking, the two partners are seen to roam around each other at distances of several Ångstroms, forming a loosely bound, and structurally ill-defined, intermediate that can subsequently lead to reactive or unreactive collisions. Here, we present a direct and time-resolved experimental measurement of roaming. By measuring the photoelectron spectrum of UV-excited acetaldehyde with a femtosecond extreme ultraviolet pulse, we captured spectral signatures of all of the key reactive structures, including that of the roaming intermediate. This provided a direct experimental measurement of the roaming process and allowed us to identify the time scales by which the roaming intermediate is formed and removed and the electronic potential surfaces upon which roaming proceeds.
Collapse
Affiliation(s)
- Grite
L. Abma
- Institute
for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Michael A. Parkes
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Weronika O. Razmus
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Yu Zhang
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Adam S. Wyatt
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Emma Springate
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Richard T. Chapman
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Daniel A. Horke
- Institute
for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Russell S. Minns
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| |
Collapse
|
4
|
Klippenstein SJ, Elliott SN. OH Roaming during the Ozonolysis of α-Pinene: A New Route to Highly Oxygenated Molecules? J Phys Chem A 2023; 127:10647-10662. [PMID: 38055299 DOI: 10.1021/acs.jpca.3c05179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The formation of low-volatility organic compounds in the ozonolysis of α-pinene, the dominant atmospheric monoterpene, provides an important route to aerosol formation. In this work, we consider a previously unexplored set of pathways for the formation of highly oxygenated molecules in α-pinene ozonolysis. Pioneering, direct experimental observations of Lester and co-workers have demonstrated a significant production of hydroxycarbonyl products in the dissociation of Criegee intermediates. Theoretical analyses indicate that this production arises from OH roaming-induced pathways during the OO fission of the vinylhydroperoxides (VHPs), which in turn come from internal H transfers in the Criegee intermediates. Ab initio kinetics computations are used here to explore the OH roaming-induced channels that arise from the ozonolysis of α-pinene. For computational reasons, the calculations consider a surrogate for α-pinene, where two spectator methyl groups are replaced with H atoms. Multireference electronic structure calculations are used to illustrate a variety of energetically accessible OH roaming pathways for the four VHPs arising from the ozonolysis of this α-pinene surrogate. Ab initio transition-state theory-based master equation calculations indicate that for the dissociation of stabilized VHPs, these OH roaming pathways are kinetically significant with a branching that generally increases from ∼20% at room temperature up to ∼70% at lower temperatures representative of the troposphere. For one of the VHPs, this branching already exceeds 60% at room temperature. For the overall ozonolysis process, these branching ratios would be greatly reduced by a limited branching to the stabilized VHP, although there would also be some modest roaming fraction for the nonthermal VHP dissociation process. The strong exothermicities of the roaming-induced isomerizations/additions and abstractions suggest new routes to fission of the cyclobutane rings. Such ring fissions would facilitate further autoxidation reactions, thereby providing a new route for producing highly oxygenated nonvolatile precursors to aerosol formation.
Collapse
Affiliation(s)
- Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Yuan Y, Tsai P. Photodissociation dynamics of acetaldehyde at 267 nm: A computational study of the
CO
‐forming channels. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Zaleski DP, Sivaramakrishnan R, Weller HR, Seifert NA, Bross DH, Ruscic B, Moore KB, Elliott SN, Copan AV, Harding LB, Klippenstein SJ, Field RW, Prozument K. Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm. J Am Chem Soc 2021; 143:3124-3142. [PMID: 33615780 DOI: 10.1021/jacs.0c11677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of high-fidelity mechanisms for chemically reactive systems is a challenging process that requires the compilation of rate descriptions for a large and somewhat ill-defined set of reactions. The present unified combination of modeling, experiment, and theory provides a paradigm for improving such mechanism development efforts. Here we combine broadband rotational spectroscopy with detailed chemical modeling based on rate constants obtained from automated ab initio transition state theory-based master equation calculations and high-level thermochemical parametrizations. Broadband rotational spectroscopy offers quantitative and isomer-specific detection by which branching ratios of polar reaction products may be obtained. Using this technique, we observe and characterize products arising from H atom substitution reactions in the flash pyrolysis of acetone (CH3C(O)CH3) at a nominal temperature of 1800 K. The major product observed is ketene (CH2CO). Minor products identified include acetaldehyde (CH3CHO), propyne (CH3CCH), propene (CH2CHCH3), and water (HDO). Literature mechanisms for the pyrolysis of acetone do not adequately describe the minor products. The inclusion of a variety of substitution reactions, with rate constants and thermochemistry obtained from automated ab initio kinetics predictions and Active Thermochemical Tables analyses, demonstrates an important role for such processes. The pathway to acetaldehyde is shown to be a direct result of substitution of acetone's methyl group by a free H atom, while propene formation arises from OH substitution in the enol form of acetone by a free H atom.
Collapse
Affiliation(s)
- Daniel P Zaleski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, Colgate University, Hamilton, New York 13346, United States
| | - Raghu Sivaramakrishnan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hailey R Weller
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nathan A Seifert
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kevin B Moore
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andreas V Copan
- Emmanuel College, Natural Sciences Department, Franklin Springs, Georgia 30639, United States
| | - Lawrence B Harding
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert W Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kirill Prozument
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Palazzetti F, Tsai PY. Photodissociation Dynamics of CO-Forming Channels on the Ground-State Surface of Methyl Formate at 248 nm: Direct Dynamics Study and Assessment of Generalized Multicenter Impulsive Models. J Phys Chem A 2021; 125:1198-1220. [PMID: 33507759 DOI: 10.1021/acs.jpca.0c10464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The photodissociation dynamics of methyl formate in the electronic ground state S0, initiated by a 248 nm-wavelength laser, is studied by direct dynamics simulations. We analyze five channels, where four of them have as products CH3OH + CO, one leading to the formation of three fragments, H2CO + H2 + CO, and a channel characterized by a roaming transition state. The analysis of energy distribution among the degrees of freedom of the product and the comparison with experimental results previously published by other groups provide the ingredients to distinguish the examined dissociation pathways. The interpretation of the results proves that the characterization of dissociation mechanisms must rely on a dynamics approach involving multiple electronic states, including considerations on the features of the S1/S0 conical intersection. Here, we also assess the generalized multicenter impulsive model, GMCIM, that has been designed for dissociation processes with exit barriers, and the energy distribution in the products is predicted on the basis of information from the saddle points and the intrinsic reaction coordinates. Main features, advantages, limits, and future perspectives of the method are reported and discussed.
Collapse
Affiliation(s)
- Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Po-Yu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
8
|
Kleimeier NF, Turner AM, Fortenberry RC, Kaiser RI. On the Formation of the Popcorn Flavorant 2,3-Butanedione (CH 3 COCOCH 3 ) in Acetaldehyde-Containing Interstellar Ices. Chemphyschem 2020; 21:1531-1540. [PMID: 32458552 DOI: 10.1002/cphc.202000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/25/2020] [Indexed: 11/06/2022]
Abstract
Acetaldehyde (CH3 CHO) is ubiquitous throughout the interstellar medium and has been observed in cold molecular clouds, star forming regions, and in meteorites such as Murchison. As the simplest methyl-bearing aldehyde, acetaldehyde constitutes a critical precursor to prebiotic molecules such as the sugar deoxyribose and amino acids via the Strecker synthesis. In this study, we reveal the first laboratory detection of 2,3-butanedione (diacetyl, CH3 COCOCH3 ) - a butter and popcorn flavorant - synthesized within acetaldehyde-based interstellar analog ices exposed to ionizing radiation at 5 K. Detailed isotopic substitution experiments combined with tunable vacuum ultraviolet (VUV) photoionization of the subliming molecules demonstrate that 2,3-butanedione is formed predominantly via the barrier-less radical-radical reaction of two acetyl radicals (CH3 ĊO). These processes are of fundamental importance for a detailed understanding of how complex organic molecules (COMs) are synthesized in deep space thus constraining the molecular structures and complexity of molecules forming in extraterrestrial ices containing acetaldehyde through a vigorous galactic cosmic ray driven non-equilibrium chemistry.
Collapse
Affiliation(s)
- N Fabian Kleimeier
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | - Andrew M Turner
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, 322 Coulter Hall, University, MS, 38677-1848, USA
| | - Ralf I Kaiser
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawai'i at Manoa 2545 McCarthy Mall, Honolulu, HI, 96822, USA
| |
Collapse
|
9
|
Käser S, Unke OT, Meuwly M. Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces. J Chem Phys 2020; 152:214304. [DOI: 10.1063/5.0008223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Oliver T. Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
10
|
Sullivan EN, Saric S, Neumark DM. Photodissociation of iso-propoxy (i-C 3H 7O) radical at 248 nm. Phys Chem Chem Phys 2020; 22:17738-17748. [DOI: 10.1039/d0cp02493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodissociation of the i-C3H7O radical is investigated using fast beam photofragment translational spectroscopy.
Collapse
Affiliation(s)
- Erin N. Sullivan
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Steven Saric
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Daniel M. Neumark
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
11
|
del Mazo-Sevillano P, Aguado A, Jiménez E, Suleimanov YV, Roncero O. Quantum Roaming in the Complex-Forming Mechanism of the Reactions of OH with Formaldehyde and Methanol at Low Temperature and Zero Pressure: A Ring Polymer Molecular Dynamics Approach. J Phys Chem Lett 2019; 10:1900-1907. [PMID: 30939028 PMCID: PMC6534501 DOI: 10.1021/acs.jpclett.9b00555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The quantum dynamics of the title reactions are studied using the ring polymer molecular dynamics (RPMD) method from 20 to 1200 K using recently proposed full dimensional potential energy surfaces which include long-range dipole-dipole interactions. A V-shaped dependence of the reaction rate constants is found with a minimum at 200-300 K, in rather good agreement with the current experimental data. For temperatures above 300 K the reaction proceeds following a direct H-abstraction mechanism. However, below 100 K the reaction proceeds via organic-molecule···OH collision complexes, with very long lifetimes, longer than 10-7 s, associated with quantum roaming arising from the inclusion of quantum effects by the use of RPMD. The long lifetimes of these complexes are comparable to the time scale of the tunnelling to form reaction products. These complexes are formed at zero pressure because of quantum effects and not only at high pressure as suggested by transition state theory (TST) calculations for OH + methanol and other OH reactions. The zero-pressure rate constants reproduce quite well measured ones below 200 K, and this agreement opens the question of how important the pressure effects on the reaction rate constants are, as implied in TST-like formalisms. The zero-pressure mechanism is applicable only to very low gas density environments, such as the interstellar medium, which are not repeatable by experiments.
Collapse
Affiliation(s)
- Pablo del Mazo-Sevillano
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alfredo Aguado
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica, Universidad de Castilla La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - Yury V. Suleimanov
- Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Str., Nicosia 2121, Cyprus
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
12
|
Christensen PA, Mashhadani ZTAW, Md Ali AHB, Manning DAC, Carroll MA, Martin PA. An in situ FTIR study of the plasma- and thermally-driven reaction of isopropyl alcohol at CeO2: evidence for a loose transition state involving Ce3+? Phys Chem Chem Phys 2019; 21:1354-1366. [DOI: 10.1039/c8cp05983g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports on the thermally-driven and non-thermal plasma-driven reaction of IsoPropyl Alcohol (IPA) on ceria (CeO2) with the aim to investigate the differences between plasma catalytic interactions and the analogous thermal reactions.
Collapse
Affiliation(s)
- P. A. Christensen
- School of Engineering
- Newcastle University
- Bedson Building
- Newcastle upon Tyne
- UK
| | | | | | - D. A. C. Manning
- School of Engineering
- Newcastle University
- Bedson Building
- Newcastle upon Tyne
- UK
| | - M. A. Carroll
- School of Natural and Environmental Sciences
- Bedson Building
- Newcastle University
- Newcastle upon Tyne
- UK
| | - P. A. Martin
- School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
13
|
Harrison AW, Kharazmi A, Shaw MF, Quinn MS, Lee KLK, Nauta K, Rowell KN, Jordan MJT, Kable SH. Dynamics and quantum yields of H2 + CH2CO as a primary photolysis channel in CH3CHO. Phys Chem Chem Phys 2019; 21:14284-14295. [DOI: 10.1039/c8cp06412a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ketene + H2 channel in CH3CHO photolysis is not modelled by quasi-classical trajectories over the transition state.
Collapse
Affiliation(s)
| | - Alireza Kharazmi
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | | | | | - K. L. Kelvin Lee
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | - Klaas Nauta
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | - Keiran N. Rowell
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| | | | - Scott H. Kable
- School of Chemistry, University of New South Wales
- Sydney
- Australia
| |
Collapse
|
14
|
Han YC. Quasiclassical trajectory calculations of CD3CHO dissociation to CD2H + DCO on a global potential energy surface. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a quasiclassical trajectory study of the photodissociation of CD3CHO based on a global ab initio-based potential energy surface. Calculations are performed at the total energy corresponding to the photolysis wavelength of 280[Formula: see text]nm. In addition to the major radical and molecular products, CD[Formula: see text] and CD3H [Formula: see text] CO, respectively, this paper focuses on the unusual radical channel CD2H [Formula: see text] DCO, which requires a D/H exchange process before the conventional C–C bond cleavage. Five D/H exchange mechanisms are reported, which are related to the isomerizations from acetaldehyde to vinyl alcohol and back, to oxirane and back, and to the intermediate (CD–CHD–OD) and back. These D/H exchange mechanisms are in good agreement with the experimental findings [Heazlewood BR, Maccarone AT, Andrews DU, Osborn DL, Harding LB, Klippenstein SJ, Jordan MJT, Kable SH, Nat Chem 3:443, 2011].
Collapse
Affiliation(s)
- Yong-Chang Han
- Department of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
15
|
Asatryan R, Pal Y, Hachmann J, Ruckenstein E. Roaming-like Mechanism for Dehydration of Diol Radicals. J Phys Chem A 2018; 122:9738-9754. [DOI: 10.1021/acs.jpca.8b08690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yudhajit Pal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Computational and Data-Enabled Science and Engineering Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Johannes Hachmann
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- New York State Center of Excellence in Materials Informatics, Buffalo, New York 14203, United States
- Computational and Data-Enabled Science and Engineering Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
16
|
Roncero O, Zanchet A, Aguado A. Low temperature reaction dynamics for CH 3OH + OH collisions on a new full dimensional potential energy surface. Phys Chem Chem Phys 2018; 20:25951-25958. [PMID: 30294740 PMCID: PMC6290987 DOI: 10.1039/c8cp04970j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Is the rise of the rate constant measured in laval expansion experiments of OH with organic molecules at low temperatures due to the reaction between the reactants or due to the formation of complexes with the buffer gas? This question has importance for understanding the evolution of prebiotic molecules observed in different astrophysical objects. Among these molecules methanol is one of the most widely observed, and its reaction with OH has been studied by several groups showing a fast increase in the rate constant under 100 K. Transition state theory doesn't reproduce this behavior and here dynamical calculations are performed on a new full dimensional potential energy surface developed for this purpose. The calculated classical reactive cross sections show an increase at low collision energies due to a complex forming mechanism. However, the calculated rate constant at temperatures below 100 K remains lower than the observed one. Quantum effects are likely responsible for the measured behavior at low temperatures.
Collapse
Affiliation(s)
- Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, Madrid 28006, Spain.
| | | | | |
Collapse
|
17
|
Lin KC, Tsai PY, Chao MH, Nakamura M, Kasai T, Lombardi A, Palazzetti F, Aquilanti V. Roaming signature in photodissociation of carbonyl compounds. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1488951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (ROC)
| | - Po-Yu Tsai
- Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan (ROC)
| | - Meng-Hsuan Chao
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Masaaki Nakamura
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Toshio Kasai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrea Lombardi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS)2, Perugia, Italy
| | - Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
18
|
Shaw MF, Sztáray B, Whalley LK, Heard DE, Millet DB, Jordan MJT, Osborn DL, Kable SH. Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere. Nat Commun 2018; 9:2584. [PMID: 29968712 PMCID: PMC6030138 DOI: 10.1038/s41467-018-04824-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/24/2018] [Indexed: 11/08/2022] Open
Abstract
Organic acids play a key role in the troposphere, contributing to atmospheric aqueous-phase chemistry, aerosol formation, and precipitation acidity. Atmospheric models currently account for less than half the observed, globally averaged formic acid loading. Here we report that acetaldehyde photo-tautomerizes to vinyl alcohol under atmospherically relevant pressures of nitrogen, in the actinic wavelength range, λ = 300-330 nm, with measured quantum yields of 2-25%. Recent theoretical kinetics studies show hydroxyl-initiated oxidation of vinyl alcohol produces formic acid. Adding these pathways to an atmospheric chemistry box model (Master Chemical Mechanism) demonstrates increased formic acid concentrations by a factor of ~1.7 in the polluted troposphere and a factor of ~3 under pristine conditions. Incorporating this mechanism into the GEOS-Chem 3D global chemical transport model reveals an estimated 7% contribution to worldwide formic acid production, with up to 60% of the total modeled formic acid production over oceans arising from photo-tautomerization.
Collapse
Affiliation(s)
- Miranda F Shaw
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bálint Sztáray
- Department of Chemistry, University of the Pacific, Stockton, CA, 95211, USA
| | - Lisa K Whalley
- School of Chemistry and National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Dwayne E Heard
- School of Chemistry and National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis-Saint Paul, MN, 55108, USA
| | | | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA, 94551, USA.
| | - Scott H Kable
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Tsai PY. A generalized unimolecular impulsive model for curved reaction path. J Chem Phys 2018; 148:234101. [PMID: 29935512 DOI: 10.1063/1.5030488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work aims to introduce a generalized impulsive model for unimolecular dissociation processes. This model allows us to take into account the curvature of the reaction path explicitly. It is a generalization of the previously developed multi-center impulsive model [P.-Y. Tsai and K.-C. Lin, J. Phys. Chem. A 119, 29 (2015)]. Several limitations of conventional impulsive models are eliminated by this study: (1) Unlike conventional impulsive models, in which a single molecular geometry is responsible for the impulse determination, the gradients on the whole dissociation path are taken into account. The model can treat dissociation pathways with large curvatures and loose saddle points. (2) The method can describe the vibrational excitation of polyatomic fragments due to the bond formation by multi-center impulse. (3) The available energy in conventional impulsive models is separated into uncoupled statistical and impulsive energy reservoirs, while the interplay between these reservoirs is allowed in the new model. (4) The quantum state correlation between fragments can be preserved in analysis. Dissociations of several molecular systems including the roaming pathways of formaldehyde, nitrate radical, acetaldehyde, and glyoxal are chosen as benchmarks. The predicted photofragment energy and vector distributions are consistent with the experimental results reported previously. In these examples, the capability of the new model to treat the curved dissociation path, loose saddle points, polyatomic fragments, and multiple-body dissociation is verified. As a cheaper computational tool with respect to ab initio on-the-fly direct dynamic simulations, this model can provide detailed information on the energy disposal, quantum state correlation, and stereodynamics in unimolecular dissociation processes.
Collapse
Affiliation(s)
- Po-Yu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
20
|
Saheb V, Zokaie M. Multichannel Gas-Phase Unimolecular Decomposition of Acetone: Theoretical Kinetic Studies. J Phys Chem A 2018; 122:5895-5904. [DOI: 10.1021/acs.jpca.8b02423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vahid Saheb
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Meymanat Zokaie
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| |
Collapse
|
21
|
Cofer-Shabica DV, Stratt RM. What is special about how roaming chemical reactions traverse their potential surfaces? Differences in geodesic paths between roaming and non-roaming events. J Chem Phys 2018; 146:214303. [PMID: 28595418 DOI: 10.1063/1.4984617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With the notable exception of some illustrative two-degree-of-freedom models whose surprising classical dynamics has been worked out in detail, theories of roaming have largely bypassed the issue of when and why the counterintuitive phenomenon of roaming occurs. We propose that a useful way to begin to address these issues is to look for the geodesic (most efficient) pathways through the potential surfaces of candidate systems. Although roaming manifests itself in an unusual behavior at asymptotic geometries, we found in the case of formaldehyde dissociation that it was the pathways traversing the parts of the potential surface corresponding to highly vibrationally excited reactants that were the most revealing. An examination of the geodesics for roaming pathways in this region finds that they are much less tightly defined than the geodesics in that same region that lead directly to dissociation (whether into closed-shell products or into radical products). Thus, the broader set of options available to the roaming channel gives it an entropic advantage over more conventional reaction channels. These observations suggest that what leads to roaming in other systems may be less the presence of a localized "roaming transition state," than the existence of an entire region of the potential surface conducive to multiple equivalent pathways.
Collapse
Affiliation(s)
| | - Richard M Stratt
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
22
|
Nagy T, Vikár A, Lendvay G. A general formulation of the quasiclassical trajectory method for reduced-dimensionality reaction dynamics calculations. Phys Chem Chem Phys 2018; 20:13224-13240. [PMID: 29722776 DOI: 10.1039/c8cp01600c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimension reduction by freezing the unimportant coordinates is widely used in intramolecular and reaction dynamics calculations when the solution of the accurate full-dimensional nuclear Schrödinger equation is not feasible. In this paper we report on a novel form of the exact classical internal-coordinate Hamiltonian for full and reduced-dimensional vibrational motion of polyatomic molecules with the purpose of using it in quasiclassical trajectory (QCT) calculations. The derivation is based on the internal to body-fixed frame transformation, as in the t-vector formalism, however it does not require the introduction of rotational variables to allow cancellation of non-physical rotations within the body-fixed frame. The formulas needed for QCT calculations: normal mode analysis and state sampling as well as for following the dynamics and normal-mode quantum number assignment at instantaneous states are presented. The procedure is demonstrated on the CH4, CD4, CH3D and CHD3 isotopologs of methane using three reduced-dimensional models, which were previously used in quantum reactive scattering studies of the CH4 + X → CH3 + HX type reactions. The reduced-dimensional QCT methodology formulated this way combined with full-dimensional QCT calculations makes possible the classical validation of reduced-dimensional models that are used in the quantum mechanical description of the nuclear dynamics in reactive systems [A. Vikár et al., J. Phys. Chem. A, 2016, 120, 5083-5093].
Collapse
Affiliation(s)
- Tibor Nagy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary.
| | - Anna Vikár
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary.
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary. and Department of General and Inorganic Chemistry, University of Pannonia, Egyetem u. 10, H-8800 Veszprém, Hungary
| |
Collapse
|
23
|
Christensen PA, Mashhadani ZTAW, Md Ali AHB, Carroll MA, Martin PA. The Production of Methane, Acetone, “Cold” CO and Oxygenated Species from IsoPropyl Alcohol in a Non-Thermal Plasma: An In-Situ FTIR Study. J Phys Chem A 2018; 122:4273-4284. [DOI: 10.1021/acs.jpca.7b12297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul A. Christensen
- School of Engineering, Newcastle University, Bedson Building, Newcastle upon Tyne, U.K., NE1 7RU
| | - Z. T. A. W. Mashhadani
- School of Engineering, Newcastle University, Bedson Building, Newcastle upon Tyne, U.K., NE1 7RU
| | - Abd Halim Bin Md Ali
- School of Engineering, Newcastle University, Bedson Building, Newcastle upon Tyne, U.K., NE1 7RU
| | - Michael A. Carroll
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, U.K., NE1 7RU
| | - Philip A. Martin
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, U.K., M13 9PL
| |
Collapse
|
24
|
Abstract
The phenomenon of roaming in chemical reactions has now become both commonly observed in experiment and extensively supported by theory and simulations. Roaming occurs in highly-excited molecules when the trajectories of atomic motion often bypass the minimum energy pathway and produce reaction in unexpected ways from unlikely geometries. The prototypical example is the unimolecular dissociation of formaldehyde (H2CO), in which the "normal" reaction proceeds through a tight transition state to yield H2 + CO but for which a high fraction of dissociations take place via a "roaming" mechanism in which one H atom moves far from the HCO, almost to dissociation, and then returns to abstract the second H atom. We review below the theories and simulations that have recently been developed to address and understand this new reaction phenomenon.
Collapse
Affiliation(s)
- Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
25
|
Chen WY, Matsui H, Wang NS. A comparative study on the production yield of H atom in the thermal decomposition of i-C4H10 and n-C4H10: Examination of the contribution of the roaming radical channels. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Smith CA, Gillespie BR, Heard GL, Setser DW, Holmes BE. The Unimolecular Reactions of CF 3CHF 2 Studied by Chemical Activation: Assignment of Rate Constants and Threshold Energies to the 1,2-H Atom Transfer, 1,1-HF and 1,2-HF Elimination Reactions, and the Dependence of Threshold Energies on the Number of F-Atom Substituents in the Fluoroethane Molecules. J Phys Chem A 2017; 121:8746-8756. [PMID: 28926250 DOI: 10.1021/acs.jpca.7b06769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recombination of CF3 and CHF2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF3CHF2* molecules with 101 kcal mol-1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF3, CF3(F)C: and C2F4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF3(F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 104, 4.7 × 104, and 1.1 × 104 s-1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E0) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol-1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF3(F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol-1. Hydrogen-bonded complexes between HF and the H atom migration transition state of CH3(F)C: and the F atom migration transition state of CF3(F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.
Collapse
Affiliation(s)
| | | | | | - D W Setser
- Kansas State University , Manhattan, Kansas 66506, United States
| | | |
Collapse
|
27
|
Jones PJ, Riser B, Zhang J. Flash Pyrolysis of t-Butyl Hydroperoxide and Di-t-butyl Peroxide: Evidence of Roaming in the Decomposition of Organic Hydroperoxides. J Phys Chem A 2017; 121:7846-7853. [PMID: 28956925 DOI: 10.1021/acs.jpca.7b07359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal decomposition of t-butyl hydroperoxide and di-t-butyl peroxide was investigated using flash pyrolysis (in a short reaction time of <100 μs) and vacuum-ultraviolet (λ = 118.2 nm) single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) at temperatures up to 1120 K and quantum computational methods. Acetone and methyl radical were detected as the predominant products in the initial decomposition of di-t-butyl peroxide via O-O bond fission. In the initial dissociation of t-butyl hydroperoxide, acetone, methyl radical, isobutylene, and isobutylene oxide products were identified. The novel detection of the unimolecular formation of isobutylene oxide, as supported by the computational study, was found to proceed via a roaming hydroxyl radical facilitated by a hydrogen-bonded intermediate. This new pathway could provide a new class of reactions to consider in the modeling of the low temperature oxidation of alkanes.
Collapse
Affiliation(s)
- Paul J Jones
- Department of Chemistry and ‡Air Pollution Research Center, University of California , Riverside, California 92521, United States
| | - Blake Riser
- Department of Chemistry and ‡Air Pollution Research Center, University of California , Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry and ‡Air Pollution Research Center, University of California , Riverside, California 92521, United States
| |
Collapse
|
28
|
Carpenter BK, Ezra GS, Farantos SC, Kramer ZC, Wiggins S. Empirical Classification of Trajectory Data: An Opportunity for the Use of Machine Learning in Molecular Dynamics. J Phys Chem B 2017; 122:3230-3241. [PMID: 28968092 DOI: 10.1021/acs.jpcb.7b08707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Classical Hamiltonian trajectories are initiated at random points in phase space on a fixed energy shell of a model two degrees of freedom potential, consisting of two interacting minima in an otherwise flat energy plane of infinite extent. Below the energy of the plane, the dynamics are demonstrably chaotic. However, most of the work in this paper involves trajectories at a fixed energy that is 1% above that of the plane, in which regime the dynamics exhibit behavior characteristic of chaotic scattering. The trajectories are analyzed without reference to the potential, as if they had been generated in a typical direct molecular dynamics simulation. The questions addressed are whether one can recover useful information about the structures controlling the dynamics in phase space from the trajectory data alone, and whether, despite the at least partially chaotic nature of the dynamics, one can make statistically meaningful predictions of trajectory outcomes from initial conditions. It is found that key unstable periodic orbits, which can be identified on the analytical potential, appear by simple classification of the trajectories, and that the specific roles of these periodic orbits in controlling the dynamics are also readily discerned from the trajectory data alone. Two different approaches to predicting trajectory outcomes from initial conditions are evaluated, and it is shown that the more successful of them has ∼90% success. The results are compared with those from a simple neural network, which has higher predictive success (97%) but requires the information obtained from the "by-hand" analysis to achieve that level. Finally, the dynamics, which occur partly on the very flat region of the potential, show characteristics of the much-studied phenomenon called "roaming." On this potential, it is found that roaming trajectories are effectively "failed" periodic orbits and that angular momentum can be identified as a key controlling factor, despite the fact that it is not a strictly conserved quantity. It is also noteworthy that roaming on this potential occurs in the absence of a "roaming saddle," which has previously been hypothesized to be a necessary feature for roaming to occur.
Collapse
Affiliation(s)
- Barry K Carpenter
- School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom
| | - Gregory S Ezra
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Stavros C Farantos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, and Department of Chemistry , University of Crete , Iraklion 711 10 , Greece
| | - Zeb C Kramer
- Department of Chemistry and Biochemistry , La Salle University , 1900 West Olney Avenue , Philadelphia , Pennsylvania 19141 , United States
| | - Stephen Wiggins
- School of Mathematics , University of Bristol , Bristol BS8 1TW , United Kingdom
| |
Collapse
|
29
|
|
30
|
Saheb V, Hashemi SR, Hosseini SMA. Theoretical Studies on the Kinetics of Multi-Channel Gas-Phase Unimolecular Decomposition of Acetaldehyde. J Phys Chem A 2017; 121:6887-6895. [PMID: 28825298 DOI: 10.1021/acs.jpca.7b04771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical kinetic studies are performed on the multichannel thermal decomposition of acetaldehyde. The geometries of the stationary points on the potential energy surface of the reaction are optimized at the MP2(full)/6-311++G(2d,2p) level of theory. More accurate energies are obtained by single point energy calculations at the CCSD(T,full)/augh-cc-pVTZ+2df, CBS-Q and G4 levels of theory. Here, by application of steady-state approximation to the thermally activated species CH3CHO* and CH2CHOH* and performance of statistical mechanical manipulations, expressions for the rate constants for different product channels are derived. Special attempts are made to compute accurate energy-specific rate coefficients for different channels by using semiclassical transition state theory. It is found that the isomerization of CH3CHO to the enol-form CH2CHOH plays a significant role in the unimolecular reaction of CH3CHO. The possible products of the reaction are formed via unimolecular decomposition of CH3CHO and CH2CHOH. The computed rate coefficients reveal that the dominant channel at low temperatures and high pressures is the formation of CH2CHOH due to the low barrier height for CH3CHO → CH2CHOH isomerization process. However, at high temperatures, the product channel CH3 + CHO becomes dominant.
Collapse
Affiliation(s)
- Vahid Saheb
- Department of Chemistry, Shahid Bahonar University of Kerman , Kerman 76169, Iran
| | - S Rasoul Hashemi
- Department of Chemistry, Shahid Bahonar University of Kerman , Kerman 76169, Iran
| | | |
Collapse
|
31
|
Houston PL, Wang X, Ghosh A, Bowman JM, Quinn MS, Kable SH. Formaldehyde roaming dynamics: Comparison of quasi-classical trajectory calculations and experiments. J Chem Phys 2017; 147:013936. [DOI: 10.1063/1.4982823] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Paul L. Houston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14852, USA
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Xiaohong Wang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Aryya Ghosh
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Mitchell S. Quinn
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott H. Kable
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Larkin AC, Nestler MJ, Smith CA, Heard GL, Setser DW, Holmes BE. Chemical Activation Study of the Unimolecular Reactions of CD 3CD 2CHCl 2 and CHCl 2CHCl 2 with Analysis of the 1,1-HCl Elimination Pathway. J Phys Chem A 2016; 120:8244-8253. [PMID: 27690445 DOI: 10.1021/acs.jpca.6b07368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD═CHCl and CD3CD═CDCl products. The initial CD3CD2C-Cl carbene product from 1,1-HCl elimination rearranges to CD3CD═CDCl under the conditions of the experiments. The experimental rate constants were 2.7 × 107 and 0.47 × 107 s-1 for 2,1-DCl and 1,1-HCl elimination reactions, respectively, which corresponds to branching fractions of 0.84 and 0.16. The experimental rate constants were compared to calculated statistical rate constants to assign threshold energies of 54 and ≈66 kcal mol-1 for the 1,2-DCl and 1,1-HCl reactions, respectively. The statistical rate constants were obtained from models developed from electronic-structure calculations for the molecule and its transition states. The rate constant (5.3 × 107 s-1) for the unimolecular decomposition of CHCl2CHCl2 molecules formed with 82 kcal mol-1 of vibrational energy by the recombination of CHCl2 radicals also is reported. On the basis of the magnitude of the calculated rate constant, 1,1-HCl elimination must contribute less than 15% to the reaction; 1,2-HCl elimination is the major reaction and the threshold energy is 59 kcal mol-1. Calculations also were done to analyze previously published rate constants for chemically activated CD2ClCHCl2 molecules with 86 kcal mol-1 of energy to obtain a better overall description of the nature of the 1,1-HCl pathway for 1,1-dichloroalkanes. The interplay of the threshold energies for the 2,1-HCl and 1,1-HCl reactions and the available energy determines the product branching fractions for individual molecules. The unusual nature of the transition state for 1,1-HCl elimination is discussed.
Collapse
Affiliation(s)
- Allie C Larkin
- Department of Chemistry, University of North Carolina-Asheville , One University Heights, Asheville, North Carolina 28804-8511, United States
| | - Matthew J Nestler
- Department of Chemistry, University of North Carolina-Asheville , One University Heights, Asheville, North Carolina 28804-8511, United States
| | - Caleb A Smith
- Department of Chemistry, University of North Carolina-Asheville , One University Heights, Asheville, North Carolina 28804-8511, United States
| | - George L Heard
- Department of Chemistry, University of North Carolina-Asheville , One University Heights, Asheville, North Carolina 28804-8511, United States
| | - D W Setser
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| | - Bert E Holmes
- Department of Chemistry, University of North Carolina-Asheville , One University Heights, Asheville, North Carolina 28804-8511, United States
| |
Collapse
|
33
|
Wang S, Davidson DF, Hanson RK. Shock Tube Measurement for the Dissociation Rate Constant of Acetaldehyde Using Sensitive CO Diagnostics. J Phys Chem A 2016; 120:6895-901. [PMID: 27523494 DOI: 10.1021/acs.jpca.6b03647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate constant of acetaldehyde thermal dissociation, CH3CHO = CH3 + HCO, was measured behind reflected shock waves at temperatures of 1273-1618 K and pressures near 1.6 and 0.34 atm. The current measurement utilized sensitive CO diagnostics to track the dissociation of CH3CHO via oxygen atom balance and inferred the title rate constant (k1) from CO time histories obtained in pyrolysis experiments of 1000 and 50 ppm of CH3CHO/Ar mixtures. By using dilute test mixtures, the current study successfully suppressed the interferences from secondary reactions and directly determined the title rate constant as k1(1.6 atm) = 1.1 × 10(14) exp(-36 700 K/T) s(-1) over 1273-1618 K and k1(0.34 atm) = 5.5 × 10(12) exp(-32 900 K/T) s(-1) over 1377-1571 K, with 2σ uncertainties of approximately ±30% for both expressions. Example simulations of existing reaction mechanisms updated with the current values of k1 demonstrated substantial improvements with regards to the acetaldehyde pyrolysis chemistry.
Collapse
Affiliation(s)
- Shengkai Wang
- High Temperature Gasdynamics Laboratory, Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| | - David F Davidson
- High Temperature Gasdynamics Laboratory, Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| | - Ronald K Hanson
- High Temperature Gasdynamics Laboratory, Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
34
|
Roaming mediated nonadiabatic dynamics in molecular hydrogen elimination from propane at 157 nm. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Tucceri ME, Badenes MP, Bracco LLB, Cobos CJ. Thermal Decomposition of 3-Bromopropene. A Theoretical Kinetic Investigation. J Phys Chem A 2016; 120:2285-94. [PMID: 27023718 DOI: 10.1021/acs.jpca.5b12581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide the relevant part of the potential energy surfaces and the molecular properties of the species involved in the CH2═CH-CH2Br → CH2═C═CH2 + HBr (1) and CH2═CH-CH2Br → CH2═CH-CH2 + Br (2) reaction channels. Transition-state theory and unimolecular reaction rate theory calculations show that the simple bond fission reaction ( 2 ) is the predominant decomposition channel and that all reported experimental studies are very close to the high-pressure limit of this process. Over the 500-1400 K range a rate constant for the primary dissociation of k2,∞ = 4.8 × 10(14) exp(-55.0 kcal mol(-1)/RT) s(-1) is predicted at the G4 level. The calculated k1,∞ values lie between 50 to 260 times smaller. A value of 10.6 ± 1.5 kcal mol(-1) for the standard enthalpy of formation of 3-bromopropene at 298 K was estimated from G4 thermochemical calculations.
Collapse
Affiliation(s)
- María E Tucceri
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET , Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina
| | - María P Badenes
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET , Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina
| | - Larisa L B Bracco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET , Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina
| | - Carlos J Cobos
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET , Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina
| |
Collapse
|
36
|
Houston PL, Conte R, Bowman JM. Roaming Under the Microscope: Trajectory Study of Formaldehyde Dissociation. J Phys Chem A 2016; 120:5103-14. [DOI: 10.1021/acs.jpca.6b00488] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul L. Houston
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14852, United States
| | - Riccardo Conte
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
- Dipartimento
di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
37
|
Sivaramakrishnan R, Michael JV, Harding LB, Klippenstein SJ. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde. J Phys Chem A 2015; 119:7724-33. [DOI: 10.1021/acs.jpca.5b01032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raghu Sivaramakrishnan
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Joe V. Michael
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lawrence B. Harding
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Stephen J. Klippenstein
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
38
|
Annesley CJ, Randazzo JB, Klippenstein SJ, Harding LB, Jasper AW, Georgievskii Y, Ruscic B, Tranter RS. Thermal Dissociation and Roaming Isomerization of Nitromethane: Experiment and Theory. J Phys Chem A 2015; 119:7872-93. [DOI: 10.1021/acs.jpca.5b01563] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. Annesley
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - John B. Randazzo
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lawrence B. Harding
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ahren W. Jasper
- Combustion
Research Facility, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Yuri Georgievskii
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Branko Ruscic
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert S. Tranter
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
39
|
Vereecken L, Glowacki DR, Pilling MJ. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem Rev 2015; 115:4063-114. [DOI: 10.1021/cr500488p] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luc Vereecken
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - David R. Glowacki
- PULSE
Institute and Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department
of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom
| | | |
Collapse
|
40
|
Hung WC, Tsai CY, Matsui H, Wang NS, Miyoshi A. Experimental and Theoretical Study on the Thermal Decomposition of C3H6 (Propene). J Phys Chem A 2015; 119:1229-37. [PMID: 25629305 DOI: 10.1021/jp5102169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei-Chung Hung
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh
Road, Hsinchu 30010, Taiwan
| | - Chieh-Ying Tsai
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh
Road, Hsinchu 30010, Taiwan
| | - Hiroyuki Matsui
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh
Road, Hsinchu 30010, Taiwan
| | - Niann-Shiah Wang
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh
Road, Hsinchu 30010, Taiwan
| | - Akira Miyoshi
- Department
of Chemical System Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
41
|
Class CA, Aguilera-Iparraguirre J, Green WH. A kinetic and thermochemical database for organic sulfur and oxygen compounds. Phys Chem Chem Phys 2015; 17:13625-39. [DOI: 10.1039/c4cp05631k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potential energy surfaces and reaction kinetics were calculated for reactions involving sulfur and oxygen, which are potentially relevant in combustion and desulfurization chemistry.
Collapse
Affiliation(s)
- Caleb A. Class
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | | - William H. Green
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
42
|
Tsai PY, Lin KC. Insight into the Photodissociation Dynamical Feature of Conventional Transition State and Roaming Pathways by an Impulsive Model. J Phys Chem A 2014; 119:29-38. [DOI: 10.1021/jp511000t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Po-Yu Tsai
- Department
of Chemistry, National Taiwan University, and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - King-Chuen Lin
- Department
of Chemistry, National Taiwan University, and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
43
|
Prozument K, Suleimanov YV, Buesser B, Oldham JM, Green WH, Suits AG, Field RW. A Signature of Roaming Dynamics in the Thermal Decomposition of Ethyl Nitrite: Chirped-Pulse Rotational Spectroscopy and Kinetic Modeling. J Phys Chem Lett 2014; 5:3641-3648. [PMID: 26278732 DOI: 10.1021/jz501758p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chirped-pulse (CP) Fourier transform rotational spectroscopy is uniquely suited for near-universal quantitative detection and structural characterization of mixtures that contain multiple molecular and radical species. In this work, we employ CP spectroscopy to measure product branching and extract information about the reaction mechanism, guided by kinetic modeling. Pyrolysis of ethyl nitrite, CH3CH2ONO, is studied in a Chen type flash pyrolysis reactor at temperatures of 1000-1800 K. The branching between HNO, CH2O, and CH3CHO products is measured and compared to the kinetic models generated by the Reaction Mechanism Generator software. We find that roaming CH3CH2ONO → CH3CHO + HNO plays an important role in the thermal decomposition of ethyl nitrite, with its rate, at 1000 K, comparable to that of the radical elimination channel CH3CH2ONO → CH3CH2O + NO. HNO is a signature of roaming in this system.
Collapse
Affiliation(s)
| | | | - Beat Buesser
- §IBM Research, Smarter Cities Technology Centre, Dublin 15, Ireland
| | - James M Oldham
- ∥Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Arthur G Suits
- ∥Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
44
|
Zhang ZG, Chen ZC, Zhang CM, Jin YL, Zhang Q, Chen Y, Huang CS, Yang XM. Ion-Velocity Map Imaging Study of Photodissociation Dynamics of Acetaldehyde. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/03/249-255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
45
|
Dames EE. Master Equation Modeling of the Unimolecular Decompositions of α-Hydroxyethyl (CH3
CHOH) and Ethoxy (CH3
CH2
O) Radicals. INT J CHEM KINET 2014. [DOI: 10.1002/kin.20844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Enoch E. Dames
- High-Temperature Gasdynamics Laboratory; Department of Mechanical Engineering; Stanford University Stanford CA 94305
| |
Collapse
|
46
|
Klippenstein SJ, Pande VS, Truhlar DG. Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances. J Am Chem Soc 2014; 136:528-46. [DOI: 10.1021/ja408723a] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Vijay S. Pande
- Department
of Chemistry and Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
47
|
Kasai T, Che DC, Okada M, Tsai PY, Lin KC, Palazzetti F, Aquilanti V. Directions of chemical change: experimental characterization of the stereodynamics of photodissociation and reactive processes. Phys Chem Chem Phys 2014; 16:9776-90. [DOI: 10.1039/c4cp00464g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Zhang P, Klippenstein SJ, Harding LB, Sun H, Law CK. Secondary channels in the thermal decomposition of monomethylhydrazine (CH3NHNH2). RSC Adv 2014. [DOI: 10.1039/c4ra13131b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The possible role of molecular decomposition channels in MMH is explored through additional investigations on triplet channels, roaming radical channels, and previously unexplored pathways on the potential energy surface.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Mechanical Engineering
- The Hong Kong Polytechnic University
- Hong Kong
| | | | - Lawrence B. Harding
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne, USA
| | - Hongyan Sun
- Department of Mechanical and Aerospace Engineering
- Princeton University
- Princeton, USA
| | - Chung K. Law
- Department of Mechanical and Aerospace Engineering
- Princeton University
- Princeton, USA
| |
Collapse
|
49
|
Mauguière FA, Collins P, Ezra GS, Farantos SC, Wiggins S. Multiple transition states and roaming in ion–molecule reactions: A phase space perspective. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Lee KLK, Quinn MS, Maccarone AT, Nauta K, Houston PL, Reid SA, Jordan MJT, Kable SH. Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chem Sci 2014. [DOI: 10.1039/c4sc02266a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We attribute the two product-state distributions previously seen in CH3CHO photodissociation to CH3-roaming and H-roaming, unifying all previous experimental results.
Collapse
Affiliation(s)
- Kin Long K. Lee
- School of Chemistry
- University of New South Wales
- Kensington, Australia
| | - Mitchell S. Quinn
- School of Chemistry
- University of New South Wales
- Kensington, Australia
| | | | - Klaas Nauta
- School of Chemistry
- University of New South Wales
- Kensington, Australia
| | - Paul L. Houston
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta, USA
| | - Scott A. Reid
- School of Chemistry
- University of Sydney
- Sydney, Australia
| | | | - Scott H. Kable
- School of Chemistry
- University of New South Wales
- Kensington, Australia
| |
Collapse
|