1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Eaves JD. Multielectron Dynamics in the Condensed Phase: Quantum Structure-Function Relationships. Annu Rev Phys Chem 2024; 75:437-456. [PMID: 38941526 DOI: 10.1146/annurev-physchem-042018-052515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.
Collapse
Affiliation(s)
- Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA;
| |
Collapse
|
3
|
Reddy SR, Coto PB, Thoss M. Intramolecular singlet fission: Quantum dynamical simulations including the effect of the laser field. J Chem Phys 2024; 160:194306. [PMID: 38767260 DOI: 10.1063/5.0209546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
In the previous work [Reddy et al., J. Chem. Phys. 151, 044307 (2019)], we have analyzed the dynamics of the intramolecular singlet fission process in a series of prototypical pentacene-based dimers, where the pentacene monomers are covalently bonded to a phenylene linker in ortho, meta, and para positions. The results obtained were qualitatively consistent with the experimental data available, showing an ultrafast population of the multiexcitonic state that mainly takes place via a mediated (superexchange-like) mechanism involving charge transfer and doubly excited states. Our results also highlighted the instrumental role of molecular vibrations in the process as a sizable population of the multiexcitonic state could only be obtained through vibronic coupling. Here, we extend these studies and investigate the effect of the laser field on the dynamics of intramolecular singlet fission by explicitly including the coupling to the laser field in our model. In this manner, and by selectively tuning the laser field to the different low-lying absorption bands of the systems investigated, we analyze the wavelength dependence of the intramolecular singlet fission process. In addition, we have also analyzed how the nature of the initially photoexcited electronic state (either localized or delocalized) affects its dynamics. Altogether, our results provide new insights into the design of intramolecular singlet fission-active molecules.
Collapse
Affiliation(s)
- S Rajagopala Reddy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Pedro B Coto
- Materials Physics Center (CFM), Spanish National Research Council (CSIC) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Michael Thoss
- Institute of Physics, Albert-Ludwigs University Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Unger F, Lepple D, Asbach M, Craciunescu L, Zeiser C, Kandolf AF, Fišer Z, Hagara J, Hagenlocher J, Hiller S, Haug S, Deutsch M, Grüninger P, Novák J, Bettinger HF, Broch K, Engels B, Schreiber F. Optical Absorption Properties in Pentacene/Tetracene Solid Solutions. J Phys Chem A 2024; 128:747-760. [PMID: 38232326 DOI: 10.1021/acs.jpca.3c06737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking. Here, we report a study of the optical absorption properties in solid solutions of pentacene and tetracene, two prototypical organic semiconductors. In the mixtures, the optical properties can be continuously modified by statistical mixing at the molecular level. Comparison with time-dependent density functional theory calculations on occupationally disordered clusters unravels the electronic origin of the low energy optical transitions. The disorder partially relaxes the selection rules, leading to additional optical transitions that manifest as optical broadening. Furthermore, the contribution of diabatic charge-transfer states is modified in the mixtures, reducing the observed splitting in the 0-0 vibronic transition. Additional comparisons with other blended systems generalize our results and indicate that changes in the polarizability of the molecular environment in organic thin-film blends induce shifts in the absorption spectrum.
Collapse
Affiliation(s)
- Frederik Unger
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Daniel Lepple
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Maximilian Asbach
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luca Craciunescu
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, U.K
| | - Clemens Zeiser
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Andreas F Kandolf
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Zbyněk Fišer
- Department of Condensed Matter Physics (UFKL), Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jakub Hagara
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Jan Hagenlocher
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Stefan Hiller
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Sara Haug
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Marian Deutsch
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Grüninger
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Jiří Novák
- Department of Condensed Matter Physics (UFKL), Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Holger F Bettinger
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Katharina Broch
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Bernd Engels
- Julius-Maximilian University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Lin LC, Smith T, Ai Q, Rugg BK, Risko C, Anthony JE, Damrauer NH, Johnson JC. Multiexciton quintet state populations in a rigid pyrene-bridged parallel tetracene dimer. Chem Sci 2023; 14:11554-11565. [PMID: 37886089 PMCID: PMC10599476 DOI: 10.1039/d3sc03153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
The multiexciton quintet state, 5TT, generated as a singlet fission intermediate in pairs of molecular chromophores, is a promising candidate as a qubit or qudit in future quantum information science schemes. In this work, we synthesize a pyrene-bridged parallel tetracene dimer, TPT, with an optimized interchromophore coupling strength to prevent the dissociation of 5TT to two decorrelated triplet (T1) states, which would contaminate the spin-state mixture. Long-lived and strongly spin-polarized pure 5TT state population is observed via transient absorption spectroscopy and transient/pulsed electron paramagnetic resonance spectroscopy, and its lifetime is estimated to be >35 µs, with the dephasing time (T2) for the 5TT-based qubit measured to be 726 ns at 10 K. Direct relaxation from 1TT to the ground state does diminish the overall excited state population, but the exclusive 5TT population at large enough persistent density for pulsed echo determination of spin coherence time is consistent with recent theoretical models that predict such behavior for strict parallel chromophore alignment and large exchange coupling.
Collapse
Affiliation(s)
- Liang-Chun Lin
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
| | - Tanner Smith
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Qianxiang Ai
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Brandon K Rugg
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - John E Anthony
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| | - Justin C Johnson
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| |
Collapse
|
6
|
López X, Straatsma TP, Sánchez-Mansilla A, de Graaf C. Non-orthogonal Configuration Interaction Study on the Effect of Thermal Distortions on the Singlet Fission Process in Photoexcited Pure and B,N-Doped Pentacene Crystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16249-16258. [PMID: 37811311 PMCID: PMC10552079 DOI: 10.1021/acs.jpcc.3c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/29/2023] [Indexed: 10/10/2023]
Abstract
The present computational work analyzes singlet fission (SF) as a pathway for multiplication of photogenerated excitons in crystalline polyacenes. Our study explores the well-known crystalline pentacene (C22H14) and the prospective and potentially interesting doped B,N-pentacene (BC20NH14). At the molecular level, the singlet fission process involves a pair of neighboring molecules and is based on the coupling between an excited singlet state (S1S0) and two singlet-coupled triplets (1T1T1), which, typically, is influenced by an intermolecular charge transfer state. Taking data from periodic density functional theory and ab initio wave function calculations, we applied the non-orthogonal configuration interaction method to determine electronic coupling parameters. The comparison of the results for both equilibrium structures reveal smaller SF coupling for pentacene than for B,N-pentacene by a factor of ∼5. Introduction of the dynamic behavior to the crystals (vibrations, thermal motion) provides a more realistic picture of the effect of the disorder at the molecular level on the SF efficiency. The coupling values associated to out-of-equilibrium structures show that most of the S1S0/1T1T1 couplings remain virtually constant or slightly increase for pentacene when molecular disorder is introduced. Homologous calculations on B,N-pentacene show a generalized decrease in the coupling values, notably if large phonon displacements are considered. A few of the structures analyzed feature much larger SF coupling if some distortion results in (nearly) degenerate charge transfer and excited singlet and triplet states. For these particular situations, an acceleration of the SF process could occur although in competition with electron-hole separation as an alternative pathway.
Collapse
Affiliation(s)
- Xavier López
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Tjerk P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States of America
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States of America
| | - Aitor Sánchez-Mansilla
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Coen de Graaf
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Tonami T, Nakano M, Kishi R, Kitagawa Y. Effects of introducing nitrogen atoms into oligoacene skeleton on vibronic coupling and singlet fission dynamics. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Mattos RS, Burghardt I, Aquino AJA, Cardozo TM, Lischka H. On the Cooperative Origin of Solvent-Enhanced Symmetry-Breaking Charge Transfer in a Covalently Bound Tetracene Dimer Leading to Singlet Fission. J Am Chem Soc 2022; 144:23492-23504. [PMID: 36534052 DOI: 10.1021/jacs.2c10129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Singlet fission in covalently bound acene dimers in solution is driven by the interplay of excitonic and singlet correlated triplet 1(TT) states with intermediate charge-transfer states, a process which depends sensitively on the solvent environment. We use high-level electronic structure methods to explore this singlet fission process in a linked tetracene dimer, with emphasis on the symmetry-breaking mechanism for the charge-transfer (CT) states induced by low-frequency antisymmetric vibrations and polar/polarizable solvents. A combination of the second-order algebraic diagrammatic construction (ADC(2)) and density functional theory/multireference configuration interaction (DFT/MRCI) methods are employed, along with a state-specific conductor-like screening model (COSMO) solvation model in the former case. This work quantifies, for the first time, an earlier mechanistic proposal [Alvertis et al., J. Am. Chem. Soc. 2019, 141, 17558] according to which solvent-induced symmetry breaking leads to a high-energy CT state which interacts with the correlated triplet state, resulting in singlet fission. An approximate assessment of the nonadiabatic interactions between the different electronic states underscores that the CT states are essential in facilitating the transition from the bright excitonic state to the 1(TT) state leading to singlet fission. We show that several types of symmetry-breaking inter- and intra-fragment vibrations play a crucial role in a concerted mechanism with the solvent environment and with the symmetric inter-fragment torsion, which tunes the admixture of excitonic and CT states. This offers a new perspective on how solvent-induced symmetry-breaking CT can be understood and how it cooperates with intramolecular mechanisms in singlet fission.
Collapse
Affiliation(s)
- Rafael S Mattos
- Aix Marseille University, CNRS, ICR, Marseille 13013, France.,Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Thiago M Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
9
|
Influence of core-twisted structure on singlet fission in perylenediimide film. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Unger F, Moretti L, Hausch J, Bredehoeft J, Zeiser C, Haug S, Tempelaar R, Hestand NJ, Cerullo G, Broch K. Modulating Singlet Fission by Scanning through Vibronic Resonances in Pentacene-Based Blends. J Am Chem Soc 2022; 144:20610-20619. [DOI: 10.1021/jacs.2c07237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Frederik Unger
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Julian Hausch
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Jona Bredehoeft
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Clemens Zeiser
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Sara Haug
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas J. Hestand
- Department of Natural and Applied Sciences, Evangel University, 1111 North Glenstone Avenue, Springfield, Missouri 65802, United States
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Katharina Broch
- Institute for Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, Tuebingen, 72076, Germany
| |
Collapse
|
11
|
Zhou J, Liu H, Liu S, Su P, Wang W, Li Z, Liu Z, Chen Y, Dong Y, Li X. Singlet Fission in Colloidal Nanoparticles of Amphipathic Diketopyrrolopyrrole Derivatives: Probing the Role of the Charge Transfer State. J Phys Chem B 2022; 126:6483-6492. [PMID: 35979942 DOI: 10.1021/acs.jpcb.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the role of the charge transfer (CT) state in the singlet fission (SF) process, we prepared three 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) derivatives with zero (Ph2TDPP), one (Ph2TDPP-COOH), and two (Ph2TDPP-(COOH)2) carboxylic groups, respectively. Their colloidal nanoparticles were also prepared by a simple precipitation method. The SF dynamics and mechanism in these colloid nanoparticles were investigated by using steady-state/transient absorption and fluorescence spectroscopy. Steady-state absorption spectra reveal that the strength of the CT resonance interactions between the adjacent DPP units is increased gradually from Ph2TDPP to Ph2TDPP-COOH and then to Ph2TDPP-(COOH)2. Fluorescence and transient absorption spectra demonstrate that SF is proceeded via a CT-assisted superexchange mechanism in these three nanoparticles. Furthermore, SF rate and yield are enhanced gradually with the increase of the number of the carboxylic group, which may be attributed to the enhancement of the CT coupling strength. The result of this work not only provides a better understanding of the SF mechanism especially for the role of the CT state but also gives some new insights for the design of efficient SF materials based on DPP derivatives.
Collapse
Affiliation(s)
- Jun Zhou
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Shanshan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Pengkun Su
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weijie Wang
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhi Li
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Zhaobin Liu
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Yanli Chen
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yunqin Dong
- College of Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xiyou Li
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
12
|
Sun J, Huang C, Cheng Y. Simple Evaluation of Singlet Fission Couplings for Interacting Dimer Systems. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Sun
- Department of Chemistry National Taiwan University Taiwan
| | | | - Yuan‐Chung Cheng
- Department of Chemistry and Center for Quantum Science and Engineering National Taiwan University Taiwan
- Physics Division National Center for Theoretical Sciences Taipei City Taiwan
| |
Collapse
|
13
|
Silori Y, Yadav A, Chawla S, De AK. Effect of nanoscale confinement on ultrafast dynamics of singlet fission in TIPS-pentacene. Chemphyschem 2022; 23:e202200454. [PMID: 35830606 DOI: 10.1002/cphc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission (SF) is a phenomenon for the generation of a pair of triplet excitons from a singlet excited molecule interacting with another adjacent molecule in its ground electronic state. By increasing the effective number of charge carriers and reducing thermal dissipation of excess energy, SF is promised to enhance light-harvesting efficiency for photovoltaic applications. While SF has been extensively studied in thin films and crystals, the same has not been explored much within a confined medium. Here, we report the ultrafast SF dynamics of triisopropylsilylethynyl pentacene (TIPS-Pn) in micellar nanocavity of varying sizes (prepared from TX-100, CTAB, and SDS surfactants). The nanoparticle with a smaller size contains weakly coupled chromophores and is shown to be more efficient for SF followed by triplet generation as compared to the nanoparticles of larger size which contain strongly coupled chromophores and are less efficient due to the presence of singlet exciton traps. Through these studies, we delineate how a subtle interplay between short-range and long-range interaction among chromophores confined within nanoparticles, fine-tuned by the curvature of the micellar interface but irrespective of the nature of the micelle (cationic or anionic or neutral), play a crucial role in SF through and generation of triplets.
Collapse
Affiliation(s)
- Yogita Silori
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Anita Yadav
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Sakshi Chawla
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Arijit Kumar De
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, Knowledge City, Sector 81, 140306, SAS Nagar,, INDIA
| |
Collapse
|
14
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
15
|
Manjanath A, Yang CH, Kue K, Wang CI, Claudio GC, Hsu CP. Enhancing Singlet Fission Coupling with Nonbonding Orbitals. J Chem Theory Comput 2022; 18:1017-1029. [PMID: 34982933 DOI: 10.1021/acs.jctc.1c00868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF) is a process where a singlet exciton is split into a pair of triplet excitons. The increase in the excitonic generation can be exploited to enhance the efficiency of solar cells. Molecules with conjugated π bonds are commonly developed for optoelectronic applications including SF, due to their low energy gaps. The electronic coupling for SF in such well-stacked π-conjugated molecule pairs can be rather limited due to the orthogonal π and π* orbital overlaps that are involved in the coupling elements, leading to a large cancellation in the coupling. In the present work, we show that such limits can be removed by involving triplet states of different origins, such as those with nonbonding n orbitals. We demonstrate such an effect for formaldehyde and methylenimine dimers, with a low-lying n-π* triplet state (T1) in addition to the π-π* triplet (T2). We show that the coupling can be enhanced by 40 times or more for the formaldehyde dimer, and 15 times or more for the methylenimine dimer, with the T1-T2 state as the end product of SF. With 1759 randomly oriented pairs of formaldehyde derived from a molecular dynamics simulation, the coupling from a singlet exciton to this T1-T2 state is, on an average, almost two times larger than that for a regular T1-T1 state. We investigated a few families that have been shown to be prospective candidates for SF, using our proposed strategy. However, our unfavorable results indicate that there are clear difficulties in fulfilling the ES1 ≳ ET1 + ET2 energy criterion. Nevertheless, our results provide a new molecular design concept for better SF (and triplet-triplet annihilation, TTA) materials that allows future development.
Collapse
Affiliation(s)
- Aaditya Manjanath
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan
| | - Chou-Hsun Yang
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan
| | - Karl Kue
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan.,Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Chun-I Wang
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan
| | - Gil C Claudio
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan.,National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| |
Collapse
|
16
|
Ulman K, Quek SY. Organic-2D Material Heterostructures: A Promising Platform for Exciton Condensation and Multiplication. NANO LETTERS 2021; 21:8888-8894. [PMID: 34661417 DOI: 10.1021/acs.nanolett.1c03435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We predict that high temperature Bose-Einstein condensation of charge transfer excitons can be achieved in organic-two-dimensional (2D) material heterostructures, at ∼50-100 K. Unlike 2D bilayers that can be angle-misaligned, organic-2D systems generally have momentum-direct low-energy excitons, thus favoring condensation. Our predictions are obtained for ZnPc-MoS2 using state-of-the-art first-principles calculations with the GW-BSE approach. The exciton energies we predict are in excellent agreement with recent experiments. The lowest energy charge transfer excitons in ZnPc-MoS2 are strongly bound with a spatial extent of ∼1-2 nm and long lifetimes (τ0 ∼ 1 ns), making them ideal for exciton condensation. We also predict the emergence of inter-ZnPc excitons that are stabilized by the interaction of the molecules with the 2D substrate. This novel way of stabilizing intermolecular excitons by indirect substrate mediation suggests design strategies for singlet fission and exciton multiplication, which are important to overcome the Shockley-Queisser efficiency limit in solar cells.
Collapse
Affiliation(s)
- Kanchan Ulman
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
| | - Su Ying Quek
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 117456
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| |
Collapse
|
17
|
Janesko BG. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev 2021; 50:8470-8495. [PMID: 34060549 DOI: 10.1039/d0cs01074j] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory (DFT) is the most widely-used electronic structure approximation across chemistry, physics, and materials science. Every year, thousands of papers report hybrid DFT simulations of chemical structures, mechanisms, and spectra. Unfortunately, hybrid DFT's accuracy is ultimately limited by tradeoffs between over-delocalization and under-binding. This review summarizes these tradeoffs, and introduces six modern attempts to go beyond them while maintaining hybrid DFT's relatively low computational cost: DFT+U, self-interaction corrections, localized orbital scaling corrections, local hybrid functionals, real-space nondynamical correlation, and our rung-3.5 approach. The review concludes with practical suggestions for DFT users to identify and mitigate these tradeoffs' impact on their simulations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Dr, Fort Worth, TX 76129, USA.
| |
Collapse
|
18
|
Muthike AK, Carlotti B, Madu IK, Jiang H, Kim H, Wu Q, Yu L, Zimmerman PM, Goodson T. The Role of the Core Attachment Positioning in Triggering Intramolecular Singlet Exciton Fission in Perylene Diimide Tetramers. J Phys Chem B 2021; 125:5114-5131. [PMID: 33961426 DOI: 10.1021/acs.jpcb.1c02534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have proposed that the presence of a flexible π-bridge linker is crucial in activating intramolecular singlet exciton fission (iSEF) in multichromophoric systems. In this study, we report the photophysical properties of three analogous perylene diimide (PDI) dendritic tetramers showing flexible/twisted π-bridged structures with α- and β-substitutions and a rigid/planar structure with a β-fused ring (βC) connection to a benzodithiophene-thiophene (BDT-Th) core. The rigidity and enhanced planarity of βC lead to significant intramolecular charge transfer and triplet formation via an intersystem crossing pathway. Steady-state spectroscopic measurements reveal similar absorption and emission spectra for the α-tetramer and the parent PDI monomer. However, their fluorescence quantum yield is significantly different. The negligible fluorescence yield of the α-tetramer (0.04%) is associated with a competitive nonradiative decay pathway. Indeed, for this twisted compound in a high polar environment, a fast and efficient iSEF with a triplet quantum yield of 124% is observed. Our results show that the α-single-bond connections in the α compound are capable of interrupting the coupling among the PDI units, favoring iSEF. We propose that the formation of the double triplet (1[TT]) state is through a superposition of singlet states known as [S1S0][TT]CT, which has been suggested previously for pentacene derivatives. Using steady-state and time-resolved spectroscopic experiments, we demonstrate that the conformational flexibility of the linker itself is necessary but not sufficient to allow iSEF. For the case of the other twisted tetramer, β, the strong π-π co-facial interactions between the adjacent PDI units in its structure lead to excimer formation. These excimer states trap the singlet excitons preventing the formation of the 1[TT] state, thus inhibiting iSEF.
Collapse
Affiliation(s)
- Angelar K Muthike
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benedetta Carlotti
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto n.8, 06123 Perugia, Italy
| | - Ifeanyi K Madu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyungjun Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Qinghe Wu
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Luping Yu
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
20
|
Hong Y, Kim J, Kim D, Kim H. Theoretical Engineering of Singlet Fission Kinetics in Perylene Bisimide Dimer with Chromophore Rotation. J Phys Chem A 2021; 125:875-884. [DOI: 10.1021/acs.jpca.0c08706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Republic of Korea
| | - Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Republic of Korea
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Quantum Chemistry Laboratory, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
21
|
Saes BW, Lutz M, Wienk MM, Meskers SCJ, Janssen RAJ. Tuning the Optical Characteristics of Diketopyrrolopyrrole Molecules in the Solid State by Alkyl Side Chains. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:25229-25238. [PMID: 33244323 PMCID: PMC7682139 DOI: 10.1021/acs.jpcc.0c07334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The optical properties of two sets of donor-acceptor-donor molecules with terminal bithiophene donor units and a central diketopyrrolopyrrole (DPP) acceptor unit are studied. The two sets differ in the alkyl chains on the DPP, which are either branched at the α-carbon (3-pentyl) (1-4) or linear (n-hexyl) (5-8). Within each set, the molecules differ by the absence or presence of n-hexyl chains on the terminal thiophene rings in the 3', 4', or 5' positions. While in solution, the optical spectra differ only subtly; they differ dramatically in the solid state. In contrast to 5-8, 1-4 are nonplanar as a consequence of the sterically demanding 3-pentyl groups, which inhibit π-stacking of the DPP units. Using the crystal structures of 2 (brick layer stacking) and 6 (slipped stacking), we quantitatively explain the solid state absorption spectra. By computing the molecular transition charge density and solving the dispersion relation, the optical absorption of the molecules in the crystal is predicted and in agreement with experiments. For 2, a single resonance frequency is obtained, while for 6 two transitions are seen, with the lower-energy transition being less intense. The results demonstrate how subtle changes in substitution exert large effects in optical properties.
Collapse
Affiliation(s)
- Bart W.
H. Saes
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin Lutz
- Utrecht
University, Crystal and Structural
Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, 3584 CH Utrecht, The Netherlands
| | - Martijn M. Wienk
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Stefan C. J. Meskers
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - René A. J. Janssen
- Molecular
Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Dutch
Institute for Fundamental Energy Research, 5612 AJ Eindhoven, The Netherlands
| |
Collapse
|
22
|
Shizu K, Adachi C, Kaji H. Visual Understanding of Vibronic Coupling and Quantitative Rate Expression for Singlet Fission in Molecular Aggregates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
23
|
Optical Projection and Spatial Separation of Spin-Entangled Triplet Pairs from the S1 (21 Ag–) State of Pi-Conjugated Systems. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Young RM, Wasielewski MR. Mixed Electronic States in Molecular Dimers: Connecting Singlet Fission, Excimer Formation, and Symmetry-Breaking Charge Transfer. Acc Chem Res 2020; 53:1957-1968. [PMID: 32786248 DOI: 10.1021/acs.accounts.0c00397] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ConspectusChromophore aggregates are capable of a wide variety of excited-state dynamics that are potentially of great use in optoelectronic devices based on organic molecules. For example, singlet fission, the process by which a singlet exciton is down converted into two triplet excitons, holds promise for extending the efficiency of solar cells, while other processes, such as excimer formation, are commonly regarded as parasitic pathways or traps. Other processes, such as symmetry-breaking charge transfer, where the excited dimer charge separates into a radical ion pair, can be both a trap and potentially useful in devices, depending on the context. Thus, an understanding of the precise mechanisms of each of these processes is vital to designing tailor-made organic chromophores for molecular optoelectronics.These excited-state phenomena have each been well-studied in recent years and show tantalizing connections as the molecular systems and environments are subtly changed. These seemingly disparate phenomena can be described within the same unifying framework, where each case can be represented as one point in continuum of mixed states. The coherent mixed state is observed experimentally, and it collapses to each of the limiting cases under well-defined conditions. This framework is especially useful in demonstrating the connections between these different states so that we can determine the factors that control their evolution and may ultimately guide the state mixtures to the product state of choice. The emerging picture shows that tuning the electronic coupling through proper arrangement of the chromophores must accompany environmental tuning of the chromophore energies to produce a fully mixed state. Changes in either of these quantities leads to evolution of the admixture and ultimately collapsing the superposition onto a given state, producing one of the photophysical pathways discussed above.In our laboratory, we are utilizing covalent dimers to precisely arrange the chromophores in rigid, well-defined geometries to systematically study the factors that determine the degree of state mixing and its fate. We interrogate these dynamics with transient absorption spectroscopy from the UV continuously into the mid-infrared, along with time-resolved Raman and emission and magnetic resonance spectroscopies to build a complete and detailed molecular level picture of the dynamics of these dimers. The knowledge gained from dimer studies can also be applied to the understanding the dynamics in extended molecular solids. The insight afforded by these studies will help guide the creation of new designer chromophores with control over the fate of the excited state.
Collapse
Affiliation(s)
- Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
25
|
The Effect of Magnetic Fields on Singlet Fission in Organic Semiconductors: its Understanding and Applications. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Cassabaum AA, Bera K, Rich CC, Nebgen BR, Kwang SY, Clapham ML, Frontiera RR. Femtosecond stimulated Raman spectro-microscopy for probing chemical reaction dynamics in solid-state materials. J Chem Phys 2020; 153:030901. [DOI: 10.1063/5.0009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alyssa A. Cassabaum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kajari Bera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Christopher C. Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bailey R. Nebgen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Margaret L. Clapham
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
27
|
Miyamoto H, Nakano M. Theoretical Study on Singlet Fission Dynamics in Pentacene Ring‐Shaped Aggregate Models with Different Configurations. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hajime Miyamoto
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Spintronics Research Network (CSRN) Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB) Institute for Open and Transdisciplinary Research Initiatives Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
28
|
Tao G, Tan Y. Modular Tensor Diagram Approach for the Construction of Spin Eigenfunctions: The Case Study of Exciton Pair States. J Phys Chem A 2020; 124:5435-5443. [PMID: 32551608 DOI: 10.1021/acs.jpca.0c00263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mapping out the high-dimensional state space would be valuable for better understanding the multistate quantum systems. Here, we demonstrate that high-dimensional spin state space can be mapped onto a tensor diagram in full dimension or self-similarly onto the reduced base state space. Based on the tensor diagram, a modular approach is proposed to construct spin eigenfunctions taking the basis of the lower-dimensional space as modules. The implementation of the approach on exciton pair states results in 16 spin eigenstates including 2 singlet states, 3 triplet states, and 1 quintet state with proper symmetry, in contrast to the ones generated using the conventional branching diagram method. The corresponding state energies obtained show the order of spin eigenstates reverses with respect to spin multiplicity. Interestingly, the state space can be decomposed into three subspaces corresponding to the singlet-singlet pair, singlet-triplet pair, and triplet-triplet pair, resulting in a modular structure that is invariant as intermolecular interactions diminish. The proposed approach offers a new perspective on the state space structure of multiple spin states, featuring a hierarchical symmetry, which could be extended to general high-dimensional quantum multistate systems.
Collapse
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| | - Yunshu Tan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| |
Collapse
|
29
|
Papadopoulos I, Gutiérrez-Moreno D, McCosker PM, Casillas R, Keller PA, Sastre-Santos Á, Clark T, Fernández-Lázaro F, Guldi DM. Perylene-Monoimides: Singlet Fission Down-Conversion Competes with Up-Conversion by Geminate Triplet–Triplet Recombination. J Phys Chem A 2020; 124:5727-5736. [DOI: 10.1021/acs.jpca.0c04091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - David Gutiérrez-Moreno
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avdade la Universidad s/n, Elche E-03202, Spain
| | - Patrick M. McCosker
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Rubén Casillas
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Paul A. Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avdade la Universidad s/n, Elche E-03202, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avdade la Universidad s/n, Elche E-03202, Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
30
|
The Photophysical Properties of Triisopropylsilyl-ethynylpentacene—A Molecule with an Unusually Large Singlet-Triplet Energy Gap—In Solution and Solid Phases. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The process of singlet-exciton fission (SEF) has attracted much attention of late. One of the most popular SEF compounds is TIPS-pentacene (TIPS-P, where TIPS = triisopropylsilylethynyl) but, despite its extensive use as both a reference and building block, its photophysical properties are not so well established. In particular, the triplet state excitation energy remains uncertain. Here, we report quantitative data and spectral characterization for excited-singlet and -triplet states in dilute solution. The triplet energy is determined to be 7940 ± 1200 cm−1 on the basis of sensitization studies using time-resolved photoacoustic calorimetry. The triplet quantum yield at the limit of low concentration and low laser intensity is only ca. 1%. Self-quenching occurs at high solute concentration where the fluorescence yield and lifetime decrease markedly relative to dilute solution but we were unable to detect excimer emission by steady-state spectroscopy. Short-lived fluorescence, free from excimer emission or phosphorescence, occurs for crystals of TIPS-P, most likely from amorphous domains.
Collapse
|
31
|
Hong Y, Kim J, Kim W, Kaufmann C, Kim H, Würthner F, Kim D. Efficient Multiexciton State Generation in Charge-Transfer-Coupled Perylene Bisimide Dimers via Structural Control. J Am Chem Soc 2020; 142:7845-7857. [DOI: 10.1021/jacs.0c00870] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Juno Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Woojae Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Christina Kaufmann
- Universitat Würzburg, Institut für Organische Chemie & Center for Nanosystems Chemistry, Am Hubland, Würzburg 97074, Germany
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| | - Frank Würthner
- Universitat Würzburg, Institut für Organische Chemie & Center for Nanosystems Chemistry, Am Hubland, Würzburg 97074, Germany
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
Tao G. Topology of quantum coherence in singlet fission: Mapping out spin micro-states in quasi-classical nonadiabatic simulations. J Chem Phys 2020; 152:074305. [DOI: 10.1063/1.5139538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| |
Collapse
|
33
|
Han J, Xie Q, Luo J, Deng GH, Qian Y, Sun D, Harutyunyan AR, Chen G, Rao Y. Anisotropic Geminate and Non-Geminate Recombination of Triplet Excitons in Singlet Fission of Single Crystalline Hexacene. J Phys Chem Lett 2020; 11:1261-1267. [PMID: 31971388 DOI: 10.1021/acs.jpclett.9b03800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Singlet fission is believed to improve the efficiency of solar energy conversion by breaking up the Shockley-Queisser thermodynamic limit. Understanding of triplet excitons generated by singlet fission is essential for solar energy exploitation. Here we employed transient absorption microscopy to examine dynamical behaviors of triplet excitons. We observed anisotropic recombination of triplet excitons in hexacene single crystals. The triplet exciton relaxations from singlet fission proceed in both geminate and non-geminate recombination. For the geminate recombination, the different rates were attributed to the significant difference in their related energy change based on the Redfield quantum dissipation theory. The process is mainly governed by the electron-phonon interaction in hexacene. On the other hand, the non-geminate recombination is of bimolecular origin through energy transfer. In the triplet-triplet bimolecular process, the rates along the two different optical axes in the a-b crystalline plane differ by a factor of 4. This anisotropy in the triplet-triplet recombination rates was attributed to the interference in the coupling probability of dipole-dipole interactions in the different geometric configurations of hexacene single crystals. Our experimental findings provide new insight into future design of singlet fission materials with desirable triplet exciton exploitations.
Collapse
Affiliation(s)
- Jian Han
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Qing Xie
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Jun Luo
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Dezheng Sun
- Department of Physics , Columbia University , New York , New York 10027 , United States
| | - Avetik R Harutyunyan
- Honda Research Institute, USA, Inc. , San Jose , California 95134 , United States
| | - Gugang Chen
- Honda Research Institute, USA, Inc. , San Jose , California 95134 , United States
| | - Yi Rao
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| |
Collapse
|
34
|
Korovina NV, Pompetti NF, Johnson JC. Lessons from intramolecular singlet fission with covalently bound chromophores. J Chem Phys 2020; 152:040904. [PMID: 32007061 DOI: 10.1063/1.5135307] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Molecular dimers, oligomers, and polymers are versatile components in photophysical and optoelectronic architectures that could impact a variety of applications. We present a perspective on such systems in the field of singlet fission, which effectively multiplies excitons and produces a unique excited state species, the triplet pair. The choice of chromophore and the nature of the attachment between units, both geometrical and chemical, play a defining role in the dynamical scheme that evolves upon photoexcitation. Specific final outcomes (e.g., separated and uncorrelated triplet pairs) are being sought through rational design of covalently bound chromophore architectures built with guidance from recent fundamental studies that correlate structure with excited state population flow kinetics.
Collapse
Affiliation(s)
- Nadezhda V Korovina
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Nicholas F Pompetti
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Justin C Johnson
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| |
Collapse
|
35
|
Tao G. Topology of quantum coherence networks in singlet fission: mapping exciton states into real space and the dislocation induced three dimensional manifolds. Phys Chem Chem Phys 2020; 22:1258-1267. [PMID: 31850461 DOI: 10.1039/c9cp05102c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An understanding of the global structure of quantum coherence networks in coupled multistate systems is of great importance for the development of emerging quantum technologies such as quantum control and quantum materials design. Here, we study the topology of a quantum coherence network of a typical singlet exciton fission system by mapping the exciton states into crystal structures in real space. The defects in crystals could lead to changes in the topological structures, and also fission dynamics. In particular, we demonstrate that the dislocation induced three dimensional manifold, which differs from its lower dimensional counterparts globally, could generate exotic global structures, such as chiral spirals, and modulate singlet fission substantially. The findings may shed light on the new possibilities of engineering effective structures for fission materials.
Collapse
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen, 518055, China
| |
Collapse
|
36
|
Luo X, Han Y, Chen Z, Li Y, Liang G, Liu X, Ding T, Nie C, Wang M, Castellano FN, Wu K. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface. Nat Commun 2020; 11:28. [PMID: 31911606 PMCID: PMC6946700 DOI: 10.1038/s41467-019-13951-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
The mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface remain poorly understood. Many seemingly contradictory results have been reported, mainly because of the complicated trap states characteristic of inorganic semiconductors and the ill-defined relative energetics between semiconductors and molecules used in these studies. Here we clarify the transfer mechanisms by performing combined transient absorption and photoluminescence measurements, both with sub-picosecond time resolution, on model systems comprising lead halide perovskite nanocrystals with very low surface trap densities as the triplet donor and polyacenes which either favour or prohibit charge transfer as the triplet acceptors. Hole transfer from nanocrystals to tetracene is energetically favoured, and hence triplet transfer proceeds via a charge separated state. In contrast, charge transfer to naphthalene is energetically unfavourable and spectroscopy shows direct triplet transfer from nanocrystals to naphthalene; nonetheless, this "direct" process could also be mediated by a high-energy, virtual charge-transfer state.
Collapse
Affiliation(s)
- Xiao Luo
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Yaoyao Han
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongwei Chen
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Yulu Li
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China
| | - Xue Liu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Tao Ding
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Chengming Nie
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| |
Collapse
|
37
|
Alagna N, Pérez Lustres JL, Wollscheid N, Luo Q, Han J, Dreuw A, Geyer FL, Brosius V, Bunz UHF, Buckup T, Motzkus M. Singlet Fission in Tetraaza-TIPS-Pentacene Oligomers: From fs Excitation to μs Triplet Decay via the Biexcitonic State. J Phys Chem B 2019; 123:10780-10793. [DOI: 10.1021/acs.jpcb.9b08031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolò Alagna
- Centre for Advanced Materials, University of Heidelberg, D-69120 Heidelberg, Germany
| | - J. Luis Pérez Lustres
- Centre for Advanced Materials, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Centre for Advanced Materials, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | - Andreas Dreuw
- Centre for Advanced Materials, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | - Uwe H. F. Bunz
- Centre for Advanced Materials, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Centre for Advanced Materials, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Marcus Motzkus
- Centre for Advanced Materials, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
38
|
Kim VO, Broch K, Belova V, Chen YS, Gerlach A, Schreiber F, Tamura H, Della Valle RG, D'Avino G, Salzmann I, Beljonne D, Rao A, Friend R. Singlet exciton fission via an intermolecular charge transfer state in coevaporated pentacene-perfluoropentacene thin films. J Chem Phys 2019; 151:164706. [PMID: 31675857 DOI: 10.1063/1.5130400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Singlet exciton fission is a spin-allowed process in organic semiconductors by which one absorbed photon generates two triplet excitons. Theory predicts that singlet fission is mediated by intermolecular charge-transfer states in solid-state materials with appropriate singlet-triplet energy spacing, but direct evidence for the involvement of such states in the process has not been provided yet. Here, we report on the observation of subpicosecond singlet fission in mixed films of pentacene and perfluoropentacene. By combining transient spectroscopy measurements to nonadiabatic quantum-dynamics simulations, we show that direct excitation in the charge-transfer absorption band of the mixed films leads to the formation of triplet excitons, unambiguously proving that they act as intermediate states in the fission process.
Collapse
Affiliation(s)
- Vincent O Kim
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Katharina Broch
- Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Faradayweg, 4-614195 Berlin, Germany
| | - Valentina Belova
- Eberhard-Karls Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Y S Chen
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Alexander Gerlach
- Eberhard-Karls Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Frank Schreiber
- Eberhard-Karls Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hiroyuki Tamura
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Raffaele Guido Della Valle
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna and INSTM-UdR Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Gabriele D'Avino
- Institut Néel, CNRS and Grenoble Alpes University, F-38042 Grenoble, France
| | - Ingo Salzmann
- Department of Physics, Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Centre for NanoScience Research (CeNSR), Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Department of Chemistry, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Akshay Rao
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Richard Friend
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
39
|
Zaykov A, Felkel P, Buchanan EA, Jovanovic M, Havenith RWA, Kathir RK, Broer R, Havlas Z, Michl J. Singlet Fission Rate: Optimized Packing of a Molecular Pair. Ethylene as a Model. J Am Chem Soc 2019; 141:17729-17743. [PMID: 31509712 DOI: 10.1021/jacs.9b08173] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A procedure is described for unbiased identification of all π-electron chromophore pair geometry choices that locally maximize the rate of conversion of a singlet exciton into a singlet biexciton (triplet pair), using a simplified version of the diabatic frontier orbital model of singlet fission (SF). The resulting approximate optimal geometries provide insight and are expected to represent useful starting points for searches by more advanced methods. The general procedure is illustrated on a pair of ethylenes as the simplest model of a π-electron system, but it is applicable to pairs of much larger molecules, with dozens of non-hydrogen atoms, and not necessarily planar. We first examine the value of |TA|2, the square of the electronic matrix element for SF with initial excitation fully localized on partner A, on a grid of several billion geometries within the six-dimensional space of physically realizable possibilities. Several of the optimized pair geometries are somewhat unexpected, but all are found to follow the qualitative guidance proposed earlier. In the neighborhood of each local maximum of |TA|2, consideration of mixing with charge-transfer configurations and of excitonic interaction between partners A and B determines the SF energy balance and yields squared matrix elements |T*|2 and |T**|2 for the lower and upper excitonic states S* and S**, respectively. Assuming Boltzmann populations of these states, the geometry is further optimized to maximize k, the sum of the SF rates obtained from Marcus theory, and this reorders the suitable geometries substantially. At 87 pair geometries, the |T*|2 and |T**|2 values are compared with those obtained from high-level ab initio nonorthogonal configuration interaction calculations and found to follow the same trend. Finally, the biexciton binding energy at the optimized geometries is calculated. Altogether, 13 significant local maxima of SF rate for a pair of ethylenes are identified in the physically relevant part of space that avoids molecular interpenetration in the hard-sphere approximation. The three best geometries are twist-stacked, slip-stacked, and L-shaped. The maxima occur at the (five-dimensional) surfaces of seven six-dimensional "parent" regions of space centered at physically inaccessible geometries at which the calculated SF rate is very large but the two ethylenes interpenetrate. The results are displayed in interactive graphics. The computer code ("Simple") written for these calculations is flexible in that it permits a choice of performing the search for local maxima in six dimensions on |TA|2, |T*|2, or k. It is available as freeware at https://cloud.uochb.cas.cz/simple .
Collapse
Affiliation(s)
- Alexandr Zaykov
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 16610 Prague 6, Czech Republic.,Department of Physical Chemistry , University of Chemistry and Technology , 16628 Prague 6, Czech Republic
| | - Petr Felkel
- Faculty of Electrical Engineering , Czech Technical University in Prague , 16627 Prague 6, Czech Republic
| | - Eric A Buchanan
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Milena Jovanovic
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Remco W A Havenith
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands.,Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands.,Department of Inorganic and Physical Chemistry , Ghent University , Krijgslaan 281 (S3) , B-9000 Gent , Belgium
| | - R K Kathir
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands
| | - Ria Broer
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4, 9747 AG Groningen , The Netherlands
| | - Zdeněk Havlas
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 16610 Prague 6, Czech Republic
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 16610 Prague 6, Czech Republic.,Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| |
Collapse
|
40
|
Alvertis AM, Lukman S, Hele TJH, Fuemmeler EG, Feng J, Wu J, Greenham NC, Chin AW, Musser AJ. Switching between Coherent and Incoherent Singlet Fission via Solvent-Induced Symmetry Breaking. J Am Chem Soc 2019; 141:17558-17570. [DOI: 10.1021/jacs.9b05561] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Antonios M. Alvertis
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Steven Lukman
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Timothy J. H. Hele
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Eric G. Fuemmeler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiaqi Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Neil C. Greenham
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alex W. Chin
- CNRS & Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu boite courrier 840, 75252 Paris Cedex 05, France
| | - Andrew J. Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K
| |
Collapse
|
41
|
Sun K, Huang Z, Gelin MF, Chen L, Zhao Y. Monitoring of singlet fission via two-dimensional photon-echo and transient-absorption spectroscopy: Simulations by multiple Davydov trial states. J Chem Phys 2019; 151:114102. [DOI: 10.1063/1.5109251] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhongkai Huang
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
42
|
Tao G. Nonadiabatic simulation of singlet fission dynamics in tetracene clusters: The topology of quantum coherence in a global view. J Chem Phys 2019. [DOI: 10.1063/1.5100196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| |
Collapse
|
43
|
Deng GH, Wei Q, Han J, Qian Y, Luo J, Harutyunyan AR, Chen G, Bian H, Chen H, Rao Y. Vibronic fingerprint of singlet fission in hexacene. J Chem Phys 2019. [DOI: 10.1063/1.5110263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Gang-Hua Deng
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Qianshun Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jian Han
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jun Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | | | - Gugang Chen
- Honda Research Institute USA, Inc., San Jose, California 95134, USA
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Hanning Chen
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
44
|
Charge-transfer excitons of metal intercalated pentacene dimers. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Reddy SR, Coto PB, Thoss M. Quantum dynamical simulation of intramolecular singlet fission in covalently coupled pentacene dimers. J Chem Phys 2019; 151:044307. [DOI: 10.1063/1.5109897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. Rajagopala Reddy
- Institute of Physics, Albert-Ludwigs University Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Pedro B. Coto
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Michael Thoss
- Institute of Physics, Albert-Ludwigs University Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
46
|
Nakano M. Quantum master equation approach to singlet fission dynamics in pentacene ring-shaped aggregate models. J Chem Phys 2019; 150:234305. [PMID: 31228908 DOI: 10.1063/1.5100116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The quantum master equation approach is applied to the singlet fission (SF) dynamics of pentacene ring-shaped aggregate models to clarify the Frenkel excitonic (FE) coupling effects on the SF rate and correlated-triplet pair (TT) yield as well as their dependences on the aggregate structure and size. Interestingly, the smallest ring model, a ring-shaped trimer, is found to exhibit a significantly smaller SF rate and a slightly smaller TT yield than those of the dimer model with the same intermonomer interaction and to show remarkable variations in the SF dynamics with increasing the FE coupling. With increasing the size of the aggregates with FE coupling, it is found that the SF rate rapidly increases, attains the maximum at 17-mer (∼3 times enhancement compared to the non-FE-coupling case), and then decreases, approaching a stationary value around 25-mer, while the almost stationary TT yield at 25-mer remains 16% smaller than that in the non-FE-coupling case. These features are found to be in qualitative agreement with those in the corresponding linear aggregates, although the aggregate size gives a maximum SF rate, and the values of the maximum SF rate as well as of the converged TT yield are different between the ring-shaped and linear aggregates. These results are interpreted based on the relative relaxation factors between the adiabatic exciton states as well as on the vibronic coupling effects. The present results contribute to a deeper understanding of the aggregate structure and size dependences of SF dynamics and to constructing the design guidelines for highly efficient SF aggregates.
Collapse
Affiliation(s)
- Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan; and Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
47
|
Aggarwal N, Patnaik A. Dimeric conformation sensitive electronic excited states of tetracene congeners and their unconventional non-fluorescent behaviour. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1626-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
48
|
Li Q, Kan Y, Wu X, Su Z, Xu H. Searching for Diradicaloid Chromophores with Efficient Singlet Fission: Cyano‐Group Substitution of Difuropyrene Systems. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qing Li
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials School of Chemistry and Chemical EngineeringHuaiyin Normal University Huai'an 223300 China
- Institute of Functional Material Chemistry Faculty of ChemistryNortheast Normal University Changchun 130024 China
- Department of Chemistry, Faculty of ScienceYanbian University Yanji 133002 China
| | - Yu‐He Kan
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials School of Chemistry and Chemical EngineeringHuaiyin Normal University Huai'an 223300 China
- Institute of Functional Material Chemistry Faculty of ChemistryNortheast Normal University Changchun 130024 China
| | - Xue Wu
- Department of Chemistry, Faculty of ScienceYanbian University Yanji 133002 China
| | - Zhong‐Min Su
- Institute of Functional Material Chemistry Faculty of ChemistryNortheast Normal University Changchun 130024 China
- Department of Chemistry and Chemical EngineeringChangchun University of Science and Technology Changchun 130024 China
- Department of Chemistry, Faculty of ScienceYanbian University Yanji 133002 China
| | - Hong‐Liang Xu
- Institute of Functional Material Chemistry Faculty of ChemistryNortheast Normal University Changchun 130024 China
| |
Collapse
|
49
|
Alagna N, Han J, Wollscheid N, Perez Lustres JL, Herz J, Hahn S, Koser S, Paulus F, Bunz UHF, Dreuw A, Buckup T, Motzkus M. Tailoring Ultrafast Singlet Fission by the Chemical Modification of Phenazinothiadiazoles. J Am Chem Soc 2019; 141:8834-8845. [DOI: 10.1021/jacs.9b01079] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolò Alagna
- Centre for Advanced Materials
, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | | | - Nikolaus Wollscheid
- Centre for Advanced Materials
, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - J. Luis Perez Lustres
- Centre for Advanced Materials
, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | | | | | | | | | - Uwe H. F. Bunz
- Centre for Advanced Materials
, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Centre for Advanced Materials
, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Centre for Advanced Materials
, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Marcus Motzkus
- Centre for Advanced Materials
, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| |
Collapse
|
50
|
Chakraborty S, Kayastha P, Ramakrishnan R. The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling. J Chem Phys 2019; 150:114106. [PMID: 30902009 DOI: 10.1063/1.5088083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Combinatorial introduction of heteroatoms in the two-dimensional framework of aromatic hydrocarbons opens up possibilities to design compound libraries exhibiting desirable photovoltaic and photochemical properties. Exhaustive enumeration and first-principles characterization of this chemical space provide indispensable insights for rational compound design strategies. Here, for the smallest seventy-seven Kekulean-benzenoid polycyclic systems, we reveal combinatorial substitution of C atom pairs with the isosteric and isoelectronic B, N pairs to result in 7 453 041 547 842 (7.4 tera) unique molecules. We present comprehensive frequency distributions of this chemical space, analyze trends, and discuss a symmetry-controlled selectivity manifestable in synthesis product yield. Furthermore, by performing high-throughput ab initio density functional theory calculations of over thirty-three thousand (33k) representative molecules, we discuss quantitative trends in the structural stability and inter-property relationships across heteroarenes. Our results indicate a significant fraction of the 33k molecules to be electronically active in the 1.5-2.5 eV region, encompassing the most intense region of the solar spectrum, indicating their suitability as potential light-harvesting molecular components in photo-catalyzed solar cells.
Collapse
Affiliation(s)
- Sabyasachi Chakraborty
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Prakriti Kayastha
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Raghunathan Ramakrishnan
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|