1
|
Stitch M, Sanders R, Sazanovich IV, Towrie M, Botchway SW, Quinn SJ. Contrasting Photosensitized Processes of Ru(II) Polypyridyl Structural Isomers Containing Linear and Hooked Intercalating Ligands Bound to Guanine-Rich DNA. J Phys Chem B 2024; 128:7803-7812. [PMID: 39106822 PMCID: PMC11331526 DOI: 10.1021/acs.jpcb.4c04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn (1) or a hooked bdppz (2) benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of 1 yields a dppn-based metal-to-ligand charge-transfer (MLCT) state, which in turn populates a dppn intraligand (3IL) state. In contrast, photoexcitation of 2 results in an MLCT state on the TAP ligand and not the intercalating bdppz ligand. Both 1 and 2 bind strongly to double-stranded guanine-rich DNA with a loss of emission. Combined TrA and time-resolved infrared (TRIR) spectroscopy confirms formation of the guanine radical cation when 2 is bound to the d(G5C5)2 duplex, which is not the case when 1 is bound to the same duplex and indicates a different mechanism of action in DNA. Utilizing the long-lived triplet excited lifetime, we show good uptake and localization of 2 in live cells as well as isolated chromosomes. The observed shortening of the excited-state lifetime of 2 when internalized in cell chromosomes is consistent with DNA binding and luminescent quenching due to guanine photo-oxidation.
Collapse
Affiliation(s)
- Mark Stitch
- School
of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rosie Sanders
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Stanley W. Botchway
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Susan J. Quinn
- School
of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
2
|
Martínez-Fernández L, Green JA, Esposito L, Jouybari MY, Zhang Y, Santoro F, Kohler B, Improta R. The photoactivated dynamics of dGpdC and dCpdG sequences in DNA: a comprehensive quantum mechanical study. Chem Sci 2024; 15:9676-9693. [PMID: 38939156 PMCID: PMC11206432 DOI: 10.1039/d4sc00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/04/2024] [Indexed: 06/29/2024] Open
Abstract
Study of alternating DNA GC sequences by different time-resolved spectroscopies has provided fundamental information on the interaction between UV light and DNA, a process of great biological importance. Multiple decay paths have been identified, but their interplay is still poorly understood. Here, we characterize the photophysics of GC-DNA by integrating different computational approaches, to study molecular models including up to 6 bases described at a full quantum mechanical level. Quantum dynamical simulations, exploiting a nonadiabatic linear vibronic coupling (LVC) model, coupled with molecular dynamics sampling of the initial structures of a (GC)5 DNA duplex, provide new insights into the photophysics in the sub-picosecond time-regime. They indicate a substantial population transfer, within 50 fs, from the spectroscopic states towards G → C charge transfer states involving two stacked bases (CTintra), thus explaining the ultrafast disappearance of fluorescence. This picture is consistent with that provided by quantum mechanical geometry optimizations, using time dependent-density functional theory and a polarizable continuum model, which we use to parametrize the LVC model and to map the main excited state deactivation pathways. For the first time, the infrared and excited state absorption signatures of the various states along these pathways are comprehensively mapped. The computational models suggest that the main deactivation pathways, which, according to experiment, lead to ground state recovery on the 10-50 ps time scale, involve CTintra followed by interstrand proton transfer from the neutral G to C-. Our calculations indicate that CTintra is populated to a larger extent and more rapidly in GC than in CG steps and suggest the likely involvement of monomer-like and interstrand charge transfer decay routes for isolated and less stacked CG steps. These findings underscore the importance of the DNA sequence and thermal fluctuations for the dynamics. They will also aid the interpretation of experimental results on other sequences.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC 28006 Madrid Spain
| | - James Alexander Green
- Institut für Physikalische Theoretische Chemie, Goethe-Universität Frankfurt am Main Frankfurt am Main Germany
| | - Luciana Esposito
- Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR) Via De Amicis 95 I-80145 Napoli Italy
| | - Martha Yaghoubi Jouybari
- Department of Chemistry and Biomolecular Sciences, University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
- National Research Council of Canada 100 Sussex Drive Ottawa Ontario K1A 0R6 Canada
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Area della Ricerca del CNR, Via Moruzzi 1 I-56124 Pisa Italy
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Area della Ricerca del CNR, Via Moruzzi 1 I-56124 Pisa Italy
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR) Via De Amicis 95 I-80145 Napoli Italy
| |
Collapse
|
3
|
Gong J, Li J, Liu C, Wei F, Yin J, Li W, Xiao L, Wang G, Lu J, Zhuang L. Guanine-regulated proton transfer enhances CO2-to-CH4 selectivity over copper electrode. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Moe MM, Saito T, Tsai M, Liu J. Singlet O 2 Oxidation of the Radical Cation versus the Dehydrogenated Neutral Radical of 9-Methylguanine in a Watson-Crick Base Pair. Consequences of Structural Context. J Phys Chem B 2022; 126:5458-5472. [PMID: 35849846 DOI: 10.1021/acs.jpcb.2c03748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In DNA, guanine is the most susceptible to oxidative damage by exogenously and endogenously produced electronically excited singlet oxygen (1O2). The reaction mechanism and the product outcome strongly depend on the nucleobase ionization state and structural context. Previously, exposure of a monomeric 9-methylguanine radical cation (9MG•+, a model guanosine compound) to 1O2 was found to result in the formation of an 8-peroxide as the initial product. The present work explores the 1O2 oxidation of 9MG•+ and its dehydrogenated neutral form [9MG - H]• within a Watson-Crick base pair consisting of one-electron-oxidized 9-methylguanine-1-methylcytosine [9MG·1MC]•+. Emphasis is placed on entangling the base pair structural context and intra-base pair proton transfer with and consequences thereof on the singlet oxygenation of guanine radical species. Electrospray ionization coupled with guided-ion beam tandem mass spectrometry was used to study the formation and reaction of guanine radical species in the gas phase. The 1O2 oxidation of both 9MG•+ and [9MG - H]• is exothermic and proceeds barrierlessly either in an isolated monomer or within a base pair. Single- and multi-referential theories were tested for treating spin contaminations and multi-configurations occurring in radical-1O2 interactions, and reaction potential energy surfaces were mapped out to support experimental findings. The work provides a comprehensive profile for the singlet oxygenation of guanine radicals in different charge states and in the absence and the presence of base pairing. All results point to an 8-peroxide as the major oxidation product in the experiment, and the oxidation becomes slightly more favorable in a neutral radical form. On the basis of a variety of reaction pathways and product profiles observed in the present and previous studies, the interplay between guanine structure, base pairing, and singlet oxygenation and its biological implications are discussed.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| | - Toru Saito
- Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, 731-3194 Hiroshima, Japan
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
5
|
Moe MM, Benny J, Liu J. Collision-induced dissociation of homodimeric and heterodimeric radical cations of 9-methylguanine and 9-methyl-8-oxoguanine: correlation between intra-base pair proton transfer originating from the N1-H at a Watson-Crick edge and non-statistical dissociation. Phys Chem Chem Phys 2022; 24:9263-9276. [PMID: 35403654 DOI: 10.1039/d2cp00312k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been shown previously in protonated, deprotonated and ionized guanine-cytosine base pairs that intra-base pair proton transfer from the N1-H at the Watson-Crick edge of guanine to the complementary nucleobase prompts non-statistical dissociation of the base-pair system, and the dissociation of a proton-transferred base-pair structure is kinetically more favored than that of the starting, conventional base-pair structure. However, the fundamental chemistry underlying this anomalous and intriguing kinetics has not been completely revealed, which warrants the examination of more base-pair systems in different structural contexts in order to derive a generalized base-pair structure-kinetics correlation. The purpose of the present work is to expand the investigation to the non-canonical homodimeric and heterodimeric radical cations of 9-methylguanine (9MG) and 9-methyl-8-oxoguanine (9MOG), i.e., [9MG·9MG]˙+, [9MOG·9MG]˙+ and [9MOG·9MOG]˙+. Experimentally, collision-induced dissociation tandem mass spectrometry coupled with an electrospray ionization (ESI) source was used for the formation of base-pair radical cations, followed by detection of dissociation product ions and cross sections in the collisions with Xe gas under single ion-molecule collision conditions and as a function of the center-of-mass collision energy. Computationally, density functional theory and coupled cluster theory were used to calculate and identify probable base-pair structures and intra-base pair proton transfer and hydrogen transfer reactions, followed by kinetics modeling to explore the properties of dissociation transition states and kinetic factors. The significance of this work is twofold: it provides insight into base-pair opening kinetics in three biologically-important, non-canonical systems upon oxidative and ionization damage; and it links non-statistical dissociation to intra-base pair proton-transfer originating from the N1-H at the Watson-Crick edge of 8-oxoguanine, enhancing understanding towards the base-pair fragmentation assisted by proton transfer.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
6
|
Baptista FA, Krizsan D, Stitch M, Sazanovich IV, Clark IP, Towrie M, Long C, Martinez-Fernandez L, Improta R, Kane-Maguire NAP, Kelly JM, Quinn SJ. Adenine Radical Cation Formation by a Ligand-Centered Excited State of an Intercalated Chromium Polypyridyl Complex Leads to Enhanced DNA Photo-oxidation. J Am Chem Soc 2021; 143:14766-14779. [PMID: 34464120 PMCID: PMC8447253 DOI: 10.1021/jacs.1c06658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Assessment of the
DNA photo-oxidation and synthetic photocatalytic
activity of chromium polypyridyl complexes is dominated by consideration
of their long-lived metal-centered excited states. Here we report
the participation of the excited states of [Cr(TMP)2dppz]3+ (1) (TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline;
dppz = dipyrido[3,2-a:2′,3′-c]phenazine) in DNA photoreactions. The interactions of
enantiomers of 1 with natural DNA or with oligodeoxynucleotides
with varying AT content (0–100%) have been studied by steady
state UV/visible absorption and luminescence spectroscopic methods,
and the emission of 1 is found to be quenched in all
systems. The time-resolved infrared (TRIR) and visible absorption
spectra (TA) of 1 following excitation in the region
between 350 to 400 nm reveal the presence of relatively long-lived
dppz-centered states which eventually yield the emissive metal-centered
state. The dppz-localized states are fully quenched when bound by
GC base pairs and partially so in the presence of an AT base-pair
system to generate purine radical cations. The sensitized formation
of the adenine radical cation species (A•+T) is identified by assigning the TRIR spectra with help of
DFT calculations. In natural DNA and oligodeoxynucleotides containing
a mixture of AT and GC of base pairs, the observed time-resolved spectra
are consistent with eventual photo-oxidation occurring predominantly
at guanine through hole migration between base pairs. The combined
targeting of purines leads to enhanced photo-oxidation of guanine.
These results show that DNA photo-oxidation by the intercalated 1, which locates the dppz in contact with the target purines,
is dominated by the LC centered excited state. This work has implications
for future phototherapeutics and photocatalysis.
Collapse
Affiliation(s)
| | - Dorottya Krizsan
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Mark Stitch
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Igor V Sazanovich
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Conor Long
- The School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry(IADCHEM) Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80136 Naples, Italy
| | - Noel A P Kane-Maguire
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613-1120, United States
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
7
|
Wang X, Martínez-Fernández L, Zhang Y, Zhang K, Improta R, Kohler B, Xu J, Chen J. Solvent-Dependent Stabilization of a Charge Transfer State is the Key to Ultrafast Triplet State Formation in an Epigenetic DNA Nucleoside. Chemistry 2021; 27:10932-10940. [PMID: 33860588 DOI: 10.1002/chem.202100787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/10/2022]
Abstract
2'-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1 nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco, 28049, Madrid, Spain
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Kun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| |
Collapse
|
8
|
Bull GD, Thompson KC. The oxidation of guanine by photoionized 2-aminopurine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Moe MM, Benny J, Sun Y, Liu J. Experimental and theoretical assessment of protonated Hoogsteen 9-methylguanine-1-methylcytosine base-pair dissociation: kinetics within a statistical reaction framework. Phys Chem Chem Phys 2021; 23:9365-9380. [PMID: 33885080 DOI: 10.1039/d0cp06682f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine-1-methylcytosine base pair (HG-[9MG·1MC + H]+), which aims to address the mystery of the literature reported "anomaly" in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H]+ (reported recently by Sun et al.; Phys. Chem. Chem. Phys., 2020, 22, 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice-Ramsperger-Kassel-Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H]+ over [9MG + H]+ in the fragment ions of HG-[9MG·1MC + H]+. The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointed the origin of the statistical kinetics of HG-[9MG·1MC + H]+vs. the non-statistical behavior of WC-[9MG·1MC + H]+ in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3' of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e., HG-[9MG·1MC + H]+·H2O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H]+, secondary methanol elimination was observed via the SN2 reaction of water with nucleobase methyl groups.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA.
| | | | | | | |
Collapse
|
10
|
Kufner CL, Zinth W, Bucher DB. UV-Induced Charge-Transfer States in Short Guanosine-Containing DNA Oligonucleotides. Chembiochem 2020; 21:2306-2310. [PMID: 32239789 PMCID: PMC7496882 DOI: 10.1002/cbic.202000103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 11/24/2022]
Abstract
Charge transfer has proven to be an important mechanism in DNA photochemistry. In particular, guanine (dG) plays a major role as an electron donor, but the photophysical dynamics of dG-containing charge-transfer states have not been extensively investigated so far. Here, we use UV pump (266 nm) and picosecond IR probe (∼5-7 μm) spectroscopy to study ultrafast dynamics in dG-containing short oligonucleotides as a function of sequence and length. For the pure purine oligomers, we observed lifetimes for the charge-transfer states of the order of several hundreds of picoseconds, regardless of the oligonucleotide length. In contrast, pyrimidine-containing dinucleotides d(GT) and d(GC) show much faster relaxation dynamics in the 10 to 30 ps range. In all studied nucleotides, the charge-transfer states are formed with an efficiency of the order of ∼50 %. These photophysical characteristics will lead to an improved understanding of DNA damage and repair processes.
Collapse
Affiliation(s)
- Corinna L. Kufner
- Biomolecular Optics and Center for Integrated Protein ScienceLudwig-Maximilians-University MunichOettingenstr. 6780538MunichGermany
- present affiliation: Harvard-Smithsonian Center for Astrophysics Department of AstronomyHarvard University60 Garden StreetCambridgeMA 02138USA
| | - Wolfgang Zinth
- Biomolecular Optics and Center for Integrated Protein ScienceLudwig-Maximilians-University MunichOettingenstr. 6780538MunichGermany
| | - Dominik B. Bucher
- Biomolecular Optics and Center for Integrated Protein ScienceLudwig-Maximilians-University MunichOettingenstr. 6780538MunichGermany
- present affiliation: Department of ChemistryTechnical University of MunichLichtenbergstr. 485748MunichGermany
| |
Collapse
|
11
|
Keane PM, O'Sullivan K, Poynton FE, Poulsen BC, Sazanovich IV, Towrie M, Cardin CJ, Sun XZ, George MW, Gunnlaugsson T, Quinn SJ, Kelly JM. Understanding the factors controlling the photo-oxidation of natural DNA by enantiomerically pure intercalating ruthenium polypyridyl complexes through TA/TRIR studies with polydeoxynucleotides and mixed sequence oligodeoxynucleotides. Chem Sci 2020; 11:8600-8609. [PMID: 34123120 PMCID: PMC8163394 DOI: 10.1039/d0sc02413a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ruthenium polypyridyl complexes which can sensitise the photo-oxidation of nucleic acids and other biological molecules show potential for photo-therapeutic applications. In this article a combination of transient visible absorption (TrA) and time-resolved infra-red (TRIR) spectroscopy are used to compare the photo-oxidation of guanine by the enantiomers of [Ru(TAP)2(dppz)]2+ in both polymeric {poly(dG-dC), poly(dA-dT) and natural DNA} and small mixed-sequence duplex-forming oligodeoxynucleotides. The products of electron transfer are readily monitored by the appearance of a characteristic TRIR band centred at ca. 1700 cm−1 for the guanine radical cation and a band centered at ca. 515 nm in the TrA for the reduced ruthenium complex. It is found that efficient electron transfer requires that the complex be intercalated at a G-C base-pair containing site. Significantly, changes in the nucleobase vibrations of the TRIR spectra induced by the bound excited state before electron transfer takes place are used to identify preferred intercalation sites in mixed-sequence oligodeoxynucleotides and natural DNA. Interestingly, with natural DNA, while it is found that quenching is inefficient in the picosecond range, a slower electron transfer process occurs, which is not found with the mixed-sequence duplex-forming oligodeoxynucleotides studied. Efficient electron transfer requires the complex to be intercalated at a G-C base-pair. Identification of preferred intercalation sites is achieved by TRIR monitoring of the nucleobase vibrations before electron transfer.![]()
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,School of Chemistry, University of Reading RG6 6AD UK
| | - Kyra O'Sullivan
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Fergus E Poynton
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,Trinity Biomedical Sciences Institute, The University of Dublin Pearse St. Dublin 2 Ireland
| | - Bjørn C Poulsen
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,Trinity Biomedical Sciences Institute, The University of Dublin Pearse St. Dublin 2 Ireland
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratories OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratories OX11 0QX UK
| | | | - Xue-Zhong Sun
- School of Chemistry, University of Nottingham NG7 2RD UK
| | - Michael W George
- School of Chemistry, University of Nottingham NG7 2RD UK.,Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China 199 Taikang East Road Ningbo 315100 China
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland .,Trinity Biomedical Sciences Institute, The University of Dublin Pearse St. Dublin 2 Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin Dublin 4 Ireland
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| |
Collapse
|
12
|
Sun Y, Moe MM, Liu J. Is non-statistical dissociation a general feature of guanine–cytosine base-pair ions? Collision-induced dissociation of a protonated 9-methylguanine–1-methylcytosine Watson–Crick base pair, and comparison with its deprotonated and radical cation analogues. Phys Chem Chem Phys 2020; 22:24986-25000. [DOI: 10.1039/d0cp04243a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-statistical dissociation of a protonated guanine–cytosine Watson–Crick base pair.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
13
|
Sun Y, Moe MM, Liu J. Mass spectrometry and computational study of collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation: intra-base-pair proton transfer and hydrogen transfer, non-statistical dissociation, and reaction with a water ligand. Phys Chem Chem Phys 2020; 22:14875-14888. [DOI: 10.1039/d0cp01788d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and theoretical study is presented on the collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation ([9MG·1MC]˙+) and its monohydrate ([9MG·1MC]˙+·H2O) with Xe and Ar gases.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
14
|
Castelletto V, Edwards-Gayle CJC, Hamley IW, Barrett G, Seitsonen J, Ruokolainen J, de Mello LR, da Silva ER. Model self-assembling arginine-based tripeptides show selective activity against Pseudomonas bacteria. Chem Commun (Camb) 2020; 56:615-618. [DOI: 10.1039/c9cc07257h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three model arginine-rich tripeptides RXR (X = W, F or non-natural residue 2-napthylalanine) were investigated as antimicrobial agents, with a specific focus to target Pseudomonas aeruginosa through membrane lysis.
Collapse
Affiliation(s)
| | | | - Ian W. Hamley
- Department of Chemistry
- University of Reading
- Reading RG6 6AD
- UK
| | - Glyn Barrett
- School of Biological Sciences
- University of Reading
- Reading RG6 6UR
- UK
| | - Jani Seitsonen
- Nanomicroscopy Center
- Aalto University
- FIN-02150 Espoo
- Finland
| | | | | | | |
Collapse
|
15
|
Duchi M, O'Hagan MP, Kumar R, Bennie SJ, Galan MC, Curchod BFE, Oliver TAA. Exploring ultraviolet photoinduced charge-transfer dynamics in a model dinucleotide of guanine and thymine. Phys Chem Chem Phys 2019; 21:14407-14417. [PMID: 30869082 DOI: 10.1039/c8cp07864e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An understanding of the initial photoexcited states of DNA is essential to unravelling deleterious photoinduced chemical reactions and the intrinsic ultrafast photoprotection of the genetic code for all life. In our combined experimental and theoretical study, we have elucidated the primary non-radiative relaxation dynamics of a model nucleotide of guanine and thymine (2'-deoxyguanosine 3'-monophosphate 5'-thymidine, d(GpT)) in buffered aqueous solution. Experimentally, we unequivocally demonstrate that the Franck-Condon excited states of d(GpT) are significantly delocalised across both nucleobases, and mediate d(G+pT-) exciplex product formation on an ultrafast (<350 fs) timescale. Theoretical studies show that the nature of the vertical excited states is very dependent on the specific geometry of the dinucleotide, and dictate the degree of delocalised, charge-transfer or localised character. Our mechanism for prompt exciplex formation involves a rapid change in electronic structure and includes a diabatic surface crossing very close to the Franck-Condon region mediating fast d(G+pT-) formation. Exciplexes are quickly converted back to neutral ground state molecules on a ∼10 ps timescale with a high quantum yield, ensuring the photostability of the nucleotide sequence.
Collapse
Affiliation(s)
- Marta Duchi
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Michael P O'Hagan
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Rhea Kumar
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Simon J Bennie
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - M Carmen Galan
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Thomas A A Oliver
- School of Chemistry, Cantock's University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
16
|
Keane PM, Kelly JM. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Morozova OB, Fishman NN, Yurkovskaya AV. Indirect NMR detection of transient guanosyl radical protonation in neutral aqueous solution. Phys Chem Chem Phys 2018; 19:21262-21266. [PMID: 28759067 DOI: 10.1039/c7cp03797j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the time-resolved chemically induced dynamic nuclear polarization technique, we show that the neutral guanosyl radical, G(-H)˙, formed in the reaction of guanosine-5'-monophosphate with a triplet-excited 3,3',4,4'-tetracarboxy benzophenone in neutral aqueous solution, protonates readily at the N7 position with the formation of a new guanosyl cation radical (G˙+)'.
Collapse
Affiliation(s)
- O B Morozova
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia. and Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - N N Fishman
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia. and Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - A V Yurkovskaya
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia. and Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Sun Y, Zhou W, Moe MM, Liu J. Reactions of water with radical cations of guanine, 9-methylguanine, 2′-deoxyguanosine and guanosine: keto–enol isomerization, C8-hydroxylation, and effects of N9-substitution. Phys Chem Chem Phys 2018; 20:27510-27522. [DOI: 10.1039/c8cp05453c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of D2O with guanine radical cations in nucleobases and nucleosides were studied in the gas phase using the guided-ion-beam experiment and computational modeling.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
19
|
Keane PM, Hall JP, Poynton FE, Poulsen BC, Gurung SP, Clark IP, Sazanovich IV, Towrie M, Gunnlaugsson T, Quinn SJ, Cardin CJ, Kelly JM. Inosine Can Increase DNA′s Susceptibility to Photo‐oxidation by a RuIIComplex due to Structural Change in the Minor Groove. Chemistry 2017; 23:10344-10351. [DOI: 10.1002/chem.201701447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Páraic M. Keane
- Department of ChemistryUniversity of Reading, Whiteknights Reading RG6 6AD UK
- School of ChemistryTrinity College Dublin Dublin 2 Ireland
| | - James P. Hall
- Department of ChemistryUniversity of Reading, Whiteknights Reading RG6 6AD UK
- Diamond Light Source, Harwell Science and Innovation CampusDidcot Oxfordshire OX11 0DE UK
| | - Fergus E. Poynton
- School of ChemistryTrinity College Dublin Dublin 2 Ireland
- Trinity Biomedical Sciences Institute Pearse St. Dublin 2 Ireland
| | - Bjørn C. Poulsen
- School of ChemistryTrinity College Dublin Dublin 2 Ireland
- Trinity Biomedical Sciences Institute Pearse St. Dublin 2 Ireland
| | - Sarah P. Gurung
- Department of ChemistryUniversity of Reading, Whiteknights Reading RG6 6AD UK
- Diamond Light Source, Harwell Science and Innovation CampusDidcot Oxfordshire OX11 0DE UK
| | - Ian P. Clark
- Central Laser FacilityResearch Complex at Harwell, STFC Rutherford Appleton LaboratoriesDidcot Oxfordshire OX11 0QX UK
| | - Igor V. Sazanovich
- Central Laser FacilityResearch Complex at Harwell, STFC Rutherford Appleton LaboratoriesDidcot Oxfordshire OX11 0QX UK
| | - Michael Towrie
- Central Laser FacilityResearch Complex at Harwell, STFC Rutherford Appleton LaboratoriesDidcot Oxfordshire OX11 0QX UK
| | - Thorfinnur Gunnlaugsson
- School of ChemistryTrinity College Dublin Dublin 2 Ireland
- Trinity Biomedical Sciences Institute Pearse St. Dublin 2 Ireland
| | - Susan J. Quinn
- School of ChemistryUniversity College Dublin, Belfield Dublin 4 Ireland
| | - Christine J. Cardin
- Department of ChemistryUniversity of Reading, Whiteknights Reading RG6 6AD UK
| | - John M. Kelly
- School of ChemistryTrinity College Dublin Dublin 2 Ireland
| |
Collapse
|
20
|
Cardin CJ, Kelly JM, Quinn SJ. Photochemically active DNA-intercalating ruthenium and related complexes - insights by combining crystallography and transient spectroscopy. Chem Sci 2017; 8:4705-4723. [PMID: 28936338 PMCID: PMC5596416 DOI: 10.1039/c7sc01070b] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Recent research on the study of the interaction of ruthenium polypyridyl compounds and defined sequence nucleic acids is reviewed. Particular emphasis is paid to complexes [Ru(LL)2(Int)]2+ containing potentially intercalating ligands (Int) such as dipyridophenazine (dppz), which are known to display light-switching or photo-oxidising behaviour, depending on the nature of the ancillary ligands. X-ray crystallography has made a key contribution to our understanding, and the first complete survey of structural results is presented. These include sequence, enantiomeric, substituent and structural specificities. The use of ultrafast transient spectroscopic methods to probe the ultrafast processes for complexes such as [Ru(TAP)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ when bound to mixed sequence oligonucleotides are reviewed with particular attention being paid to the complementary advantages of transient (visible) absorption and time-resolved (mid) infra-red techniques to probe spectral changes in the metal complex and in the nucleic acid. The observed photophysical properties are considered in light of the structural information obtained from X-ray crystallography. In solution, metal complexes can be expected to bind at more than one DNA step, so that a perfect correlation of the photophysical properties and factors such as the orientation or penetration of the ligand into the intercalation pocket should not be expected. This difficulty can be obviated by carrying out TRIR studies in the crystals. Dppz complexes also undergo insertion, especially with mismatched sequences. Future areas for study such as those involving non-canonical forms of DNA, such as G-quadruplexes or i-motifs are also briefly considered.
Collapse
Affiliation(s)
- Christine J Cardin
- School of Chemistry , University of Reading , Whiteknights , RG6 6AD , UK .
| | - John M Kelly
- School of Chemistry , Trinity College Dublin , Dublin 2 , Ireland .
| | - Susan J Quinn
- School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| |
Collapse
|
21
|
Jie J, Liu K, Wu L, Zhao H, Song D, Su H. Capturing the radical ion-pair intermediate in DNA guanine oxidation. SCIENCE ADVANCES 2017; 3:e1700171. [PMID: 28630924 PMCID: PMC5457143 DOI: 10.1126/sciadv.1700171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/06/2017] [Indexed: 05/28/2023]
Abstract
Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl- in the chlorine radical-initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl- is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA.
Collapse
Affiliation(s)
- Jialong Jie
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lidan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Saha S, Quiney HM. Solvent effects on the excited state characteristics of adenine–thymine base pairs. RSC Adv 2017. [DOI: 10.1039/c7ra03244g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A systematic analysis of the excited state characteristics of the DNA base pair adenine–thymine in stacked and Watson–Crick hydrogen bonded configurations has been carried out in this study.
Collapse
Affiliation(s)
- S. Saha
- ARC Centre of Excellence for Advanced Molecular Imaging
- Theoretical Condensed Matter Physics Group
- School of Physics
- The University of Melbourne
- Australia
| | - H. M. Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging
- Theoretical Condensed Matter Physics Group
- School of Physics
- The University of Melbourne
- Australia
| |
Collapse
|
23
|
Horvath R, Huff GS, Gordon KC, George MW. Probing the excited state nature of coordination complexes with blended organic and inorganic chromophores using vibrational spectroscopy. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Keane PM, Poynton FE, Hall JP, Clark IP, Sazanovich IV, Towrie M, Gunnlaugsson T, Quinn SJ, Cardin CJ, Kelly JM. Monitoring guanine photo-oxidation by enantiomerically resolved Ru(II) dipyridophenazine complexes using inosine-substituted oligonucleotides. Faraday Discuss 2016; 185:455-69. [PMID: 26426601 DOI: 10.1039/c5fd00085h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intercalating [Ru(TAP)2(dppz)](2+) complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both Λ- and Δ-enantiomers of [Ru(TAP)2(dppz)](2+) in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and picosecond time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for Λ- and Δ-complexes.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry, Trinity College, Dublin 2, Ireland. and Dept. of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | - Fergus E Poynton
- School of Chemistry, Trinity College, Dublin 2, Ireland. and Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - James P Hall
- Dept. of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK. and Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX, UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX, UK
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX, UK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College, Dublin 2, Ireland. and Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Christine J Cardin
- Dept. of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | - John M Kelly
- School of Chemistry, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
25
|
Poynton FE, Hall JP, Keane PM, Schwarz C, Sazanovich IV, Towrie M, Gunnlaugsson T, Cardin CJ, Cardin DJ, Quinn SJ, Long C, Kelly JM. Direct observation by time-resolved infrared spectroscopy of the bright and the dark excited states of the [Ru(phen) 2(dppz)] 2+ light-switch compound in solution and when bound to DNA. Chem Sci 2016; 7:3075-3084. [PMID: 29997799 PMCID: PMC6005197 DOI: 10.1039/c5sc04514b] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/26/2016] [Indexed: 02/01/2023] Open
Abstract
The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this "light-switch" effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280-1450 cm-1, which characterise both the emissive "bright" and the non-emissive "dark" excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the "dark" excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the "bright" state are observed for both Λ- and Δ-enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the Λ-enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland .
- Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland
| | - James P Hall
- Department of Chemistry , University of Reading , Reading RG6 6AD , UK
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0QX , UK
| | - Páraic M Keane
- School of Chemistry , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland .
- Department of Chemistry , University of Reading , Reading RG6 6AD , UK
| | - Christine Schwarz
- Department of Chemistry , University of Reading , Reading RG6 6AD , UK
| | - Igor V Sazanovich
- Central Laser Facility , Research Complex at Harwell , STFC Rutherford Appleton Laboratory , Oxfordshire OX11 0QX , UK
| | - Michael Towrie
- Central Laser Facility , Research Complex at Harwell , STFC Rutherford Appleton Laboratory , Oxfordshire OX11 0QX , UK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland .
- Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland
| | | | - David J Cardin
- Department of Chemistry , University of Reading , Reading RG6 6AD , UK
| | - Susan J Quinn
- School of Chemistry , University College Dublin , Dublin 4 , Ireland
| | - Conor Long
- The School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland .
| | - John M Kelly
- School of Chemistry , Trinity College Dublin , The University of Dublin , Dublin 2 , Ireland .
| |
Collapse
|
26
|
Harris MA, Mishra AK, Young RM, Brown KE, Wasielewski MR, Lewis FD. Direct Observation of the Hole Carriers in DNA Photoinduced Charge Transport. J Am Chem Soc 2016; 138:5491-4. [DOI: 10.1021/jacs.6b00702] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michelle A. Harris
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ashutosh Kumar Mishra
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kristen E. Brown
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Frederick D. Lewis
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
27
|
Zhang Y, de La Harpe K, Beckstead AA, Martínez-Fernández L, Improta R, Kohler B. Excited-State Dynamics of DNA Duplexes with Different H-Bonding Motifs. J Phys Chem Lett 2016; 7:950-954. [PMID: 26886244 DOI: 10.1021/acs.jpclett.6b00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The excited-state dynamics of three distinct forms of the d(GC)9·d(GC)9 DNA duplex were studied by combined time-resolved infrared experiments and quantum mechanical calculations. In the B- and Z-forms, bases on opposite strands form Watson-Crick (WC) base pairs but stack differently because of salt-induced changes in backbone conformation. At low pH, the two strands associate by Hoogsteen (HG) base pairing. Ultraviolet-induced intrastrand electron transfer (ET) triggers interstrand proton transfer (PT) in the B- and Z-forms, but the PT pathway is blocked in the HG duplex. Despite the different decay mechanisms, a common excited-state lifetime of ∼ 30 ps is observed in all three duplex forms. The ET-PT pathway in the WC duplexes and the solely intrastrand ET pathway in the HG duplex yield the same pair of π-stacked radicals on one strand. Back ET between these radicals is proposed to be the rate-limiting step behind excited-state deactivation in all three duplexes.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy , USAF Academy, Colorado 80840, United States
| | - Ashley A Beckstead
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Lara Martínez-Fernández
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini , 80136 Naples, Italy
| | - Roberto Improta
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini , 80136 Naples, Italy
| | - Bern Kohler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| |
Collapse
|
28
|
Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy. Nat Chem 2015; 7:961-7. [PMID: 26587711 DOI: 10.1038/nchem.2369] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/04/2015] [Indexed: 12/19/2022]
Abstract
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
Collapse
|
29
|
Bucher DB, Pilles BM, Carell T, Zinth W. Dewar Lesion Formation in Single- and Double-Stranded DNA is Quenched by Neighboring Bases. J Phys Chem B 2015; 119:8685-92. [DOI: 10.1021/acs.jpcb.5b04694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dominik B. Bucher
- BioMolecular
Optics and Center for Integrated Protein Science, Ludwig-Maximilians- Universität München Oettingenstrasse 67, 80538 München, Germany
- Center
for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Bert M. Pilles
- BioMolecular
Optics and Center for Integrated Protein Science, Ludwig-Maximilians- Universität München Oettingenstrasse 67, 80538 München, Germany
| | - Thomas Carell
- Center
for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Wolfgang Zinth
- BioMolecular
Optics and Center for Integrated Protein Science, Ludwig-Maximilians- Universität München Oettingenstrasse 67, 80538 München, Germany
| |
Collapse
|
30
|
Keane PM, Poynton FE, Hall JP, Sazanovich IV, Towrie M, Gunnlaugsson T, Quinn SJ, Cardin CJ, Kelly JM. Reversal of a Single Base-Pair Step Controls Guanine Photo-Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex. Angew Chem Int Ed Engl 2015; 54:8364-8. [PMID: 26096623 PMCID: PMC4985698 DOI: 10.1002/anie.201502608] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/20/2015] [Indexed: 01/05/2023]
Abstract
Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo‐oxidation by Λ‐[Ru(TAP)2(dppz)]2+ have been compared in 5′‐{CCGGATCCGG}2 and 5′‐{CCGGTACCGG}2 using pico/nanosecond transient visible and time‐resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5′‐TA‐3′ versus 5′‐AT‐3′ binding preference predicted by X‐ray crystallography. The TRIR spectra also reveal the differences in binding sites in the two oligonucleotides.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry, Trinity College, Dublin 2 (Ireland). .,Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK).
| | - Fergus E Poynton
- School of Chemistry, Trinity College, Dublin 2 (Ireland).,Trinity Biomedical Sciences Institute, Pearse St., Dublin 2 (Ireland)
| | - James P Hall
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK).,Diamond Light Source, Harwell Science and Innovation campus Didcot, Oxfordshire,OX11 0QX (UK)
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation campus, Didcot, Oxfordshire,OX11 0QX (UK)
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation campus, Didcot, Oxfordshire,OX11 0QX (UK)
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity College, Dublin 2 (Ireland).,Trinity Biomedical Sciences Institute, Pearse St., Dublin 2 (Ireland)
| | - Susan J Quinn
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4 (Ireland)
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK).
| | - John M Kelly
- School of Chemistry, Trinity College, Dublin 2 (Ireland).
| |
Collapse
|
31
|
Keane PM, Poynton FE, Hall JP, Sazanovich IV, Towrie M, Gunnlaugsson T, Quinn SJ, Cardin CJ, Kelly JM. Reversal of a Single Base-Pair Step Controls Guanine Photo-Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Zhang Y, de La Harpe K, Beckstead AA, Improta R, Kohler B. UV-Induced Proton Transfer between DNA Strands. J Am Chem Soc 2015; 137:7059-62. [DOI: 10.1021/jacs.5b03914] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuyuan Zhang
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kimberly de La Harpe
- Department
of Physics, United States Air Force Academy, USAF Academy, Colorado 80840, United States
| | - Ashley A. Beckstead
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Roberto Improta
- Consiglio
Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via Mezzocannone
16, 80136 Naples, Italy
| | - Bern Kohler
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
33
|
Keane PM, Poynton FE, Hall JP, Clark IP, Sazanovich IV, Towrie M, Gunnlaugsson T, Quinn SJ, Cardin CJ, Kelly JM. Enantiomeric Conformation Controls Rate and Yield of Photoinduced Electron Transfer in DNA Sensitized by Ru(II) Dipyridophenazine Complexes. J Phys Chem Lett 2015; 6:734-738. [PMID: 26262495 DOI: 10.1021/jz502743q] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers, as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)](2+), by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound Δ-[Ru(TAP)2(dppz)](2+), whereas those for the Λ enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.
Collapse
Affiliation(s)
- Páraic M Keane
- †School of Chemistry, Trinity College, Dublin 2, Ireland
- ‡Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Fergus E Poynton
- †School of Chemistry, Trinity College, Dublin 2, Ireland
- §Trinity Biomedical Sciences Institute, Pearse Street, Dublin 2, Ireland
| | - James P Hall
- ‡Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
- ∥Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, United Kingdom
| | - Ian P Clark
- ⊥Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire, OX11 0QX, United Kingdom
| | - Igor V Sazanovich
- ⊥Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire, OX11 0QX, United Kingdom
| | - Michael Towrie
- ⊥Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire, OX11 0QX, United Kingdom
| | - Thorfinnur Gunnlaugsson
- †School of Chemistry, Trinity College, Dublin 2, Ireland
- §Trinity Biomedical Sciences Institute, Pearse Street, Dublin 2, Ireland
| | - Susan J Quinn
- #School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Christine J Cardin
- ‡Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - John M Kelly
- †School of Chemistry, Trinity College, Dublin 2, Ireland
| |
Collapse
|
34
|
Marques MPM, Gianolio D, Cibin G, Tomkinson J, Parker SF, Valero R, Pedro Lopes R, Batista de Carvalho LAE. A molecular view of cisplatin's mode of action: interplay with DNA bases and acquired resistance. Phys Chem Chem Phys 2015; 17:5155-71. [DOI: 10.1039/c4cp05183a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A definite molecular picture of cisplatin's MOA is presented, including a detailed interpretation of the glutathione-mediated drug scavenging process.
Collapse
Affiliation(s)
- M. Paula M. Marques
- Molecular Physical Chemistry R&D Unit
- Fac. Science and Technology
- Univ. Coimbra
- 3004-535 Coimbra
- Portugal
| | - Diego Gianolio
- Diamond Light Source
- STFC Harwell Science and Innovation Campus
- UK
| | | | - John Tomkinson
- ISIS Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | - Rosendo Valero
- Molecular Physical Chemistry R&D Unit
- Fac. Science and Technology
- Univ. Coimbra
- 3004-535 Coimbra
- Portugal
| | - R. Pedro Lopes
- Molecular Physical Chemistry R&D Unit
- Fac. Science and Technology
- Univ. Coimbra
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
35
|
Poully JC, Miles J, De Camillis S, Cassimi A, Greenwood JB. Proton irradiation of DNA nucleosides in the gas phase. Phys Chem Chem Phys 2015; 17:7172-80. [DOI: 10.1039/c4cp05303f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge localization within nucleosides after proton irradiation is strongly influenced by the ionization energy of the base.
Collapse
Affiliation(s)
| | - Jordan Miles
- Centre for Plasma Physics
- School of Mathematics and Physics
- Queen's University Belfast
- Northern Ireland
- UK
| | - Simone De Camillis
- Centre for Plasma Physics
- School of Mathematics and Physics
- Queen's University Belfast
- Northern Ireland
- UK
| | - Amine Cassimi
- CIMAP (UMR 6252 CEA, Université de Caen, ENSICAEN, CNRS)
- 14070 CAEN Cedex 5
- France
| | - Jason B. Greenwood
- Centre for Plasma Physics
- School of Mathematics and Physics
- Queen's University Belfast
- Northern Ireland
- UK
| |
Collapse
|
36
|
Wu L, Liu K, Jie J, Song D, Su H. Direct observation of guanine radical cation deprotonation in G-quadruplex DNA. J Am Chem Soc 2014; 137:259-66. [PMID: 25506785 DOI: 10.1021/ja510285t] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although numerous studies have been devoted to the charge transfer through double-stranded DNA (dsDNA), one of the major problems that hinder their potential applications in molecular electronics is the fast deprotonation of guanine cation (G(+•)) to form a neutral radical that can cause the termination of hole transfer. It is thus of critical importance to explore other DNA structures, among which G-quadruplexes are an emerging topic. By nanosecond laser flash photolysis, we report here the direct observation and findings of the unusual deprotonation behavior (loss of amino proton N2-H instead of imino proton N1-H) and slower (1-2 orders of magnitude) deprotonation rate of G(+•) within G-quadruplexes, compared to the case in the free base dG or dsDNA. Four G-quadruplexes AG3(T2AG3)3, (G4T4G4)2, (TG4T)4, and G2T2G2TGTG2T2G2 (TBA) are measured systematically to examine the relationship of deprotonation with the hydrogen-bonding surroundings. Combined with in depth kinetic isotope experiments and pKa analysis, mechanistic insights have been further achieved, showing that it should be the non-hydrogen-bonded free proton to be released during deprotonation in G-quadruplexes, which is the N2-H exposed to solvent for G bases in G-quartets or the free N1-H for G base in the loop. The slower N2-H deprotonation rate can thus ensure less interruption of the hole transfer. The unique deprotonation features observed here for G-quadruplexes open possibilities for their interesting applications as molecular electronic devices, while the elucidated mechanisms can provide illuminations for the rational design of G-quadruplex structures toward such applications and enrich the fundamental understandings of DNA radical chemistry.
Collapse
Affiliation(s)
- Lidan Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | |
Collapse
|
37
|
Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide. Proc Natl Acad Sci U S A 2014; 111:11612-7. [PMID: 25071180 DOI: 10.1073/pnas.1404411111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During the early evolution of life, 8-oxo-7,8-dihydro-2'-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer wavelength UVB radiation. To investigate the ability of O to act as an excited-state electron donor, a dinucleotide mimic of the FADH2 cofactor containing O at the 5'-end and 2'-deoxyadenosine at the 3'-end was studied by femtosecond transient absorption spectroscopy in aqueous solution. Following excitation with a UV pulse, a broadband mid-IR pulse probed vibrational modes of ground-state and electronically excited molecules in the double-bond stretching region. Global analysis of time- and frequency-resolved transient absorption data coupled with ab initio quantum mechanical calculations reveal vibrational marker bands of nucleobase radical ions formed by electron transfer from O to 2'-deoxyadenosine. The quantum yield of charge separation is 0.4 at 265 nm, but decreases to 0.1 at 295 nm. Charge recombination occurs in 60 ps before the O radical cation can lose a deuteron to water. Kinetic and thermodynamic considerations strongly suggest that all nucleobases can undergo ultrafast charge separation when π-stacked in DNA or RNA. Interbase charge transfer is proposed to be a major decay pathway for UV excited states of nucleic acids of great importance for photostability as well as photoredox activity.
Collapse
|
38
|
Charge separation and charge delocalization identified in long-living states of photoexcited DNA. Proc Natl Acad Sci U S A 2014; 111:4369-74. [PMID: 24616517 DOI: 10.1073/pnas.1323700111] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Base stacking in DNA is related to long-living excited states whose molecular nature is still under debate. To elucidate the molecular background we study well-defined oligonucleotides with natural bases, which allow selective UV excitation of one single base in the strand. IR probing in the picosecond regime enables us to dissect the contribution of different single bases to the excited state. All investigated oligonucleotides show long-living states on the 100-ps time scale, which are not observable in a mixture of single bases. The fraction of these states is well correlated with the stacking probabilities and reaches values up to 0.4. The long-living states show characteristic absorbance bands that can be assigned to charge-transfer states by comparing them to marker bands of radical cation and anion spectra. The charge separation is directed by the redox potential of the involved bases and thus controlled by the sequence. The spatial dimension of this charge separation was investigated in longer oligonucleotides, where bridging sequences separate the excited base from a sensor base with a characteristic marker band. After excitation we observe a bleach of all involved bases. The contribution of the sensor base is observable even if the bridge is composed of several bases. This result can be explained by a charge delocalization along a well-stacked domain in the strand. The presence of charged radicals in DNA strands after light absorption may cause reactions--oxidative or reductive damage--currently not considered in DNA photochemistry.
Collapse
|
39
|
Bucher DB, Pilles BM, Pfaffeneder T, Carell T, Zinth W. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation. Chemphyschem 2014; 15:420-3. [PMID: 24382745 DOI: 10.1002/cphc.201300954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 11/08/2022]
Abstract
Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry.
Collapse
Affiliation(s)
- Dominik B Bucher
- BioMolecular Optics and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München (Germany), Fax: (+49) 89-2180-9202; Center for Integrated Protein Science, Department für Chemie, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München (Germany)
| | | | | | | | | |
Collapse
|
40
|
Devereux SJ, Keane PM, Vasudevan S, Sazanovich IV, Towrie M, Cao Q, Sun XZ, George MW, Cardin CJ, Kane-Maguire NAP, Kelly JM, Quinn SJ. Study of picosecond processes of an intercalated dipyridophenazine Cr(iii) complex bound to defined sequence DNAs using transient absorption and time-resolved infrared methods. Dalton Trans 2014; 43:17606-9. [DOI: 10.1039/c4dt01989j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited-state quenching of DNA intercalated [Cr(phen)2(dppz)]3+ by guanine proceeds by rapid forward and back electron transfer of <3 ps.
Collapse
Affiliation(s)
- Stephen J. Devereux
- School of Chemistry and Chemical Biology
- Centre for Synthesis and Chemical Biology
- University College Dublin
- Dublin 4, Ireland
| | - Páraic M. Keane
- School of Chemistry
- Trinity College Dublin
- Dublin 2, Ireland
- Department of Chemistry
- University of Reading
| | - Suni Vasudevan
- School of Chemistry
- Trinity College Dublin
- Dublin 2, Ireland
| | - Igor V. Sazanovich
- Central Laser Facility
- Research Complex at Harwell
- Science & Technology Facilities Council
- Rutherford Appleton Laboratory
- Didcot, UK
| | - Michael Towrie
- Central Laser Facility
- Research Complex at Harwell
- Science & Technology Facilities Council
- Rutherford Appleton Laboratory
- Didcot, UK
| | - Qian Cao
- Department of Chemistry
- University of Nottingham
- , UK
| | | | | | | | | | - John M. Kelly
- School of Chemistry
- Trinity College Dublin
- Dublin 2, Ireland
| | - Susan J. Quinn
- School of Chemistry and Chemical Biology
- Centre for Synthesis and Chemical Biology
- University College Dublin
- Dublin 4, Ireland
| |
Collapse
|
41
|
Transient spectroscopy of dipyridophenazine metal complexes which undergo photo-induced electron transfer with DNA. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Cao Q, Creely CM, Davies ES, Dyer J, Easun TL, Grills DC, McGovern DA, McMaster J, Pitchford J, Smith JA, Sun XZ, Kelly JM, George MW. Excited state dependent electron transfer of a rhenium-dipyridophenazine complex intercalated between the base pairs of DNA: a time-resolved UV-visible and IR absorption investigation into the photophysics of fac-[Re(CO)3(F2dppz)(py)]+ bound to either [poly(dA-dT)]2 or [poly(dG-dC)]2. Photochem Photobiol Sci 2011; 10:1355-64. [PMID: 21698328 DOI: 10.1039/c1pp05050h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transient species formed following excitation of fac-[Re(CO)(3)(F(2)dppz)(py)](+) (F(2)dppz = 11,12-difluorodipyrido[3,2-a:2',3'-c]phenazine) bound to double-stranded polynucleotides [poly(dA-dT)](2) or [poly(dG-dC)](2) have been studied by transient visible and infra-red spectroscopy in both the picosecond and nanosecond time domains. The latter technique has been used to monitor both the metal complex and the DNA by monitoring the regions 1900-2100 and 1500-1750 cm(-1) respectively. These data provide direct evidence for electron transfer from guanine to the excited state of the metal complex, which proceeds both on a sub-picosecond time scale and with a lifetime of 35 ps, possibly due to the involvement of two excited states. No electron transfer is found for the [poly(dA-dT)](2) complex, although characteristic changes are seen in the DNA-region TRIR consistent with changes in the binding of the bases in the intercalation site upon excitation of the dppz-complex.
Collapse
Affiliation(s)
- Qian Cao
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kumar A, Sevilla MD. Density functional theory studies of the extent of hole delocalization in one-electron oxidized adenine and guanine base stacks. J Phys Chem B 2011; 115:4990-5000. [PMID: 21417208 PMCID: PMC3084348 DOI: 10.1021/jp200537t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the extent of hole delocalization in one-electron oxidized adenine (A) and guanine (G) stacks and shows that new IR vibrational bands are predicted that are characteristic of hole delocalization within A-stacks. The geometries of A-stacks (A(i); i = 2-8) and G-stacks (GG and GGG) in their neutral and one-electron oxidized states were optimized with the bases in a B-DNA conformation using the M06-2X/6-31G* method. The highest occupied molecular orbital (HOMO) is localized on a single adenine in A-stacks and on a single guanine in GG and GGG stacks located at the 5'-site of the stack. On one-electron oxidation (removal of an electron from the HOMO of the neutral A- and G-stacks) a "hole" is created. Mulliken charge analysis shows that these "holes" are delocalized over two to three adenine bases in the A-stack. The calculated spin density distribution of A(i)(•+) (i = 2-8) also showed delocalization of the hole predominantly on two adenine bases, with some delocalization on a neighboring base. For GG and GGG radical cations, the hole was found to be localized on a single G in the stack. The calculated HFCCs of GG and GGG are in good agreement with the experiment. Further, from the vibrational frequency analysis, it was found that IR spectra of neutral and the corresponding one-electron oxidized adenine stacks are quite different. The IR spectra of A(2)(•+) has intense IR peaks between 900 and 1500 cm(-1) that are not present in the neutral A(2) stack. The presence of A(2)(•+) in the adenine stack has a characteristic intense peak at ~1100 cm(-1). Thus, IR and Raman spectroscopy has potential for monitoring the extent of hole delocalization in A stacks.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
44
|
Yamamura M, Ichino T, Yoshioka Y. A B3LYP Study on Repair of Guanyl and 8-Oxoguanyl Radical by Simultaneous Proton- and Electron-Transfer Reaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20100211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Li XJ, Zhong ZJ, Wu HZ. DFT and MP2 investigations of L-proline and its hydrated complexes. J Mol Model 2011; 17:2623-30. [PMID: 21264484 DOI: 10.1007/s00894-011-0957-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 01/03/2011] [Indexed: 11/25/2022]
Abstract
A theoretical study of L-proline-nH(2)O (n = 1-3) has been performed using the hybrid DFT-B3LYP and MP2 methods together with the 6-311++G(d,p) basis set. The results show that the P2 conformer is energetically favorable when forming a hydrated structure, and the hydration of the carboxyl group leads to the greatest stability. For hydrated complexes, the adiabatic and vertical singlet-triplet excitation energies tend to decrease with the addition of water molecules. The hydration energy indicates that in the hydrated complexes the order of stability is: binding site 2 > binding site 1 > binding site 3, and binding site 12 > binding site 23 > binding site 13. As water molecules are added, the stabilities of these hydrated structures gradually increase. In addition, an infrared frequency analysis indicated that there are some differences in the low-frequency range, which are mainly dominated by the O-H stretching or bending vibrations of different water molecules. All of these results should aid our understanding of molecular behavior and provide reference data for further studies of biological systems.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Chemistry and Chemical Engineering, Weinan Teachers University, Weinan, Shaanxi 714000, People's Republic of China.
| | | | | |
Collapse
|
46
|
Costentin C, Hajj V, Robert M, Savéant JM, Tard C. Effect of Base Pairing on the Electrochemical Oxidation of Guanine. J Am Chem Soc 2010; 132:10142-7. [DOI: 10.1021/ja103421f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyrille Costentin
- Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université—CNRS No. 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Viviane Hajj
- Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université—CNRS No. 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Marc Robert
- Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université—CNRS No. 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Michel Savéant
- Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université—CNRS No. 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | - Cédric Tard
- Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université—CNRS No. 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|