1
|
van Stokkum IHM, Müller MG, Holzwarth AR. Energy Transfer and Radical-Pair Dynamics in Photosystem I with Different Red Chlorophyll a Pigments. Int J Mol Sci 2024; 25:4125. [PMID: 38612934 PMCID: PMC11012434 DOI: 10.3390/ijms25074125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.
Collapse
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
| | - Marc G. Müller
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| | - Alfred R. Holzwarth
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| |
Collapse
|
2
|
Kosumi D, Bandou-Uotani M, Kato S, Kawakami K, Yonekura K, Kamiya N. Reinvestigation on primary processes of PSII-dimer from Thermosynechococcus vulcanus by femtosecond pump-probe spectroscopy. PHOTOSYNTHESIS RESEARCH 2024; 159:79-91. [PMID: 38363474 DOI: 10.1007/s11120-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Cyanobacterial photosynthetic apparatus efficiently capture sunlight, and the energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. PSII is a unique membrane protein complex that photo-catalyzes oxidation of water and majorly contains photosynthetic pigments of chlorophyll a and carotenoids. In the present study, the ultrafast energy transfer and charge separation dynamics of PSII from a thermophilic cyanobacterium Thermosynechococcus vulcanus were reinvestigated by femtosecond pump-probe spectroscopic measurements under low temperature and weak intensity excitation condition. The results imply the two possible models of the energy transfers and subsequent charge separation in PSII. One is the previously suggested "transfer-to-trapped limit" model. Another model suggests that the energy transfers from core CP43 and CP47 antennas to the primary electron donor ChlD1 with time-constants of 0.71 ps and 3.28 ps at 140 K (0.17 and 1.33 ps at 296 K), respectively and that the pheophytin anion (PheoD1-) is generated with the time-constant of 43.0 ps at 140 K (14.8 ps at 296 K) upon excitation into the Qy band of chlorophyll a at 670 nm. The secondary electron transfer to quinone QA: PheoD1-QA → PheoD1QA- is observed with the time-constant of 650 ps only at 296 K. On the other hand, an inefficient β-carotene → chlorophyll a energy transfer (33%) occurred after excitation to the S2 state of β-carotene at 500 nm. Instead, the carotenoid triplet state appeared in an ultrafast timescale after excitation at 500 nm.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| | - Miki Bandou-Uotani
- School of Graduate Studies, The Open University of Japan, 2-11 Wakaba, Mihama-Ku, Chiba, 261-8586, Japan
- Division of Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Shunya Kato
- Department of Physics, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Keisuke Kawakami
- Biostructual Mechanism Laboratory, RIKEN, SPring-8 Center, 1-1-1, Kouto, Sayo, Hyougo, 679-5148, Japan.
| | - Koji Yonekura
- Biostructual Mechanism Laboratory, RIKEN, SPring-8 Center, 1-1-1, Kouto, Sayo, Hyougo, 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Nobuo Kamiya
- The OCU Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138Sumiyoshi-Ku, SugimotoOsaka City, Osaka, 558-8585, Japan
| |
Collapse
|
3
|
van Stokkum IH, Müller MG, Weißenborn J, Weigand S, Snellenburg JJ, Holzwarth AR. Energy transfer and trapping in photosystem I with and without chlorophyll- f. iScience 2023; 26:107650. [PMID: 37680463 PMCID: PMC10480676 DOI: 10.1016/j.isci.2023.107650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl a, two Red Chl a, and a reaction center compartment (WL-RC). The FRL-PSI contains two additional Chl f compartments. The lowest excited state of the FRL-RC is downshifted by ≈ 29 nm. The rate of charge separation drops from ≈900 ns-1 in WL-RC to ≈300 ns-1 in FRL-RC. The delayed trapping in the FRL-PSI (≈130 ps) is explained by uphill energy transfer from the Chl f compartments with Gibbs free energies of ≈kBT below that of the FRL-RC.
Collapse
Affiliation(s)
- Ivo H.M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Marc G. Müller
- Max-Planck-Institut für chemische Energiekonversion, 45470 Mülheim a.d. Ruhr, Germany
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Sebastian Weigand
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Joris J. Snellenburg
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
| | - Alfred R. Holzwarth
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands
- Max-Planck-Institut für chemische Energiekonversion, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
4
|
Pan J, Gelzinis A, Chorošajev V, Vengris M, Senlik SS, Shen JR, Valkunas L, Abramavicius D, Ogilvie JP. Ultrafast energy transfer within the photosystem II core complex. Phys Chem Chem Phys 2018; 19:15356-15367. [PMID: 28574545 DOI: 10.1039/c7cp01673e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report 2D electronic spectroscopy on the photosystem II core complex (PSII CC) at 77 K under different polarization conditions. A global analysis of the high time-resolution 2D data shows rapid, sub-100 fs energy transfer within the PSII CC. It also reveals the 2D spectral signatures of slower energy equilibration processes occurring on several to hundreds of picosecond time scales that are consistent with previous work. Using a recent structure-based model of the PSII CC [Y. Shibata, S. Nishi, K. Kawakami, J. R. Shen and T. Renger, J. Am. Chem. Soc., 2013, 135, 6903], we simulate the energy transfer in the PSII CC by calculating auxiliary time-resolved fluorescence spectra. We obtain the observed sub-100 fs evolution, even though the calculated electronic energy shows almost no dynamics at early times. On the other hand, the electronic-vibrational interaction energy increases considerably over the same time period. We conclude that interactions with vibrational degrees of freedom not only induce population transfer between the excitonic states in the PSII CC, but also reshape the energy landscape of the system. We suggest that the experimentally observed ultrafast energy transfer is a signature of excitonic-polaron formation.
Collapse
Affiliation(s)
- Jie Pan
- Department of Physics, University of Michigan, Ann Arbor, 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ultrafast infrared observation of exciton equilibration from oriented single crystals of photosystem II. Nat Commun 2016; 7:13977. [PMID: 28008915 PMCID: PMC5196431 DOI: 10.1038/ncomms13977] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
In oxygenic photosynthesis, two photosystems work in series. Each of them contains a reaction centre that is surrounded by light-harvesting antennae, which absorb the light and transfer the excitation energy to the reaction centre where electron transfer reactions are driven. Here we report a critical test for two contrasting models of light harvesting by photosystem II cores, known as the trap-limited and the transfer-to-the trap-limited model. Oriented single crystals of photosystem II core complexes of Synechococcus elongatus are excited by polarized visible light and the transient absorption is probed with polarized light in the infrared. The dichroic amplitudes resulting from photoselection are maintained on the 60 ps timescale that corresponds to the dominant energy transfer process providing compelling evidence for the transfer-to-the-trap limitation of the overall light-harvesting process. This finding has functional implications for the quenching of excited states allowing plants to survive under high light intensities.
Collapse
|
6
|
Yang J, Kim D. Excitation energy migration processes in various multi-porphyrin assemblies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:3802-18. [PMID: 22753827 DOI: 10.1098/rsta.2011.0206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The electronic interactions and excitation energy transfer (EET) processes of a variety of multi-porphyrin arrays with linear, cyclic and box architectures have been explored. Directly meso-meso linked linear arrays (Z(N)) exhibit strong excitonic coupling with an exciton coherence length of approximately 6 porphyrin units, while fused linear arrays (T(N)) exhibit extensive π-conjugation over the whole array. The excitonic coherence length in directly linked cyclic porphyrin rings (CZ(N)) was determined to be approximately 2.7 porphyrin units by simultaneous analysis of fluorescence intensities and lifetimes at the single-molecule level. By performing transient absorption (TA) and TA anisotropy decay measurements, the EET rates in m-phenylene linked cyclic porphyrin wheels C12ZA and C24ZB were determined to be 4 and 36 ps(-1), respectively. With increasing the size of C(N)ZA, the EET efficiencies decrease owing to the structural distortions that produce considerable non-radiative decay pathways. Finally, the EET rates of self-assembled porphyrin boxes consisting of directly linked diporphyrins, B1A, B2A and B3A, are 48, 98 and 361 ps(-1), respectively. The EET rates of porphyrin boxes consisting of alkynylene-bridged diporphyrins, B2B and B4B, depend on the conformation of building blocks (planar or orthogonal) rather than the length of alkynylene linkers.
Collapse
Affiliation(s)
- Jaesung Yang
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
7
|
Bahng HW, Yoon MC, Lee JE, Murase Y, Yoneda T, Shinokubo H, Osuka A, Kim D. Ensemble and Single-Molecule Spectroscopic Study on Excitation Energy Transfer Processes in 1,3-Phenylene-Linked Perylenebisimide Oligomers. J Phys Chem B 2012; 116:1244-55. [DOI: 10.1021/jp208855u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hee Won Bahng
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Min-Chul Yoon
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Ji-Eun Lee
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Yuichi Murase
- Department of Chemistry and Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoki Yoneda
- Department of Chemistry and Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Shinokubo
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Atsuhiro Osuka
- Department of Chemistry and Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
8
|
Waldeck DH, Khoshtariya DE. Fundamental Studies of Long- and Short-Range Electron Exchange Mechanisms between Electrodes and Proteins. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Renger T, Holzwarth AR. Theory of Excitation Energy Transfer and Optical Spectra of Photosynthetic Systems. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Hughes JL, Smith P, Pace R, Krausz E. Charge separation in photosystem II core complexes induced by 690-730 nm excitation at 1.7 K. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:841-51. [PMID: 16859635 DOI: 10.1016/j.bbabio.2006.05.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/01/2006] [Accepted: 05/22/2006] [Indexed: 11/24/2022]
Abstract
The illumination of oxygen-evolving PSII core complexes at very low temperatures in spectral regions not expected to excite P680 leads to charge separation in a majority of centers. The fraction of centers photoconverted as a function of the number of absorbed photons per PSII core is determined by quantification of electrochromic shifts on Pheo(D1). These shifts arise from the formation of metastable plastoquinone anion (Q(A)(-)) configurations. Spectra of concentrated samples identify absorption in the 700-730 nm range. This is well beyond absorption attributable to CP47. Spectra in the 690-730 nm region can be described by the 'trap' CP47 absorption at 689 nm, with dipole strength of approximately 1 chlorophyll a (chl a), partially overlapping a broader feature near 705 nm with a dipole strength of approximately 0.15 chl a. This absorption strength in the 700-730 nm region falls by 40% in the photoconverted configuration. Quantum efficiencies of photoconversion following illumination in the 690-700 nm region are similar to those obtained with green illumination but fall significantly in the 700-730 nm range. Two possible assignments of the long-wavelength absorption are considered. Firstly, as a low intensity component of strongly exciton-coupled reaction center chlorin excitations and secondly as a nominally 'dark' charge-transfer excitation of the 'special pair' P(D1)-P(D2). The opportunities offered by these observations towards the understanding of the nature of P680 and PSII fluorescence are discussed.
Collapse
Affiliation(s)
- Joseph L Hughes
- Research School of Chemistry, Australian National University, Canberra
| | | | | | | |
Collapse
|
11
|
Hwang IW, Yoon ZS, Kim J, Kamada T, Ahn TK, Aratani N, Osuka A, Kim D. Excitation energy migration in a dodecameric porphyrin box. J Photochem Photobiol A Chem 2006. [DOI: 10.1016/j.jphotochem.2005.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Hwang IW, Park M, Ahn TK, Yoon ZS, Ko DM, Kim D, Ito F, Ishibashi Y, Khan SR, Nagasawa Y, Miyasaka H, Ikeda C, Takahashi R, Ogawa K, Satake A, Kobuke Y. Excitation-Energy Migration in Self-Assembled Cyclic Zinc(II)-Porphyrin Arrays: A Close Mimicry of a Natural Light-Harvesting System. Chemistry 2005; 11:3753-61. [PMID: 15827988 DOI: 10.1002/chem.200500069] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The excitation-energy-hopping (EEH) times within two-dimensional cyclic zinc(II)-porphyrin arrays 5 and 6, which were prepared by intermolecular coordination and ring-closing metathesis reaction of olefins, were deduced by modeling the EEH process based on the anisotropy depolarization as well as the exciton-exciton annihilation dynamics. Assuming the number of energy-hopping sites N = 5 and 6, the two different experimental observables, that is, anisotropy depolarization and exciton-excition annihilation times, consistently give the EEH times of 8.0 +/- 0.5 and 5.3 +/- 0.6 ps through the 1,3-phenylene linkages of 5 and 6, respectively. Accordingly, the self-assembled cyclic porphyrin arrays have proven to be well-defined two-dimensional models for natural light-harvesting complexes.
Collapse
Affiliation(s)
- In-Wook Hwang
- Center for Ultrafast Optical Characteristics Control and Department of Chemistry, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nakamura Y, Hwang IW, Aratani N, Ahn TK, Ko DM, Takagi A, Kawai T, Matsumoto T, Kim D, Osuka A. Directly meso-meso linked porphyrin rings: synthesis, characterization, and efficient excitation energy hopping. J Am Chem Soc 2005; 127:236-46. [PMID: 15631473 DOI: 10.1021/ja045254p] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Directly meso-meso linked porphyrin rings CZ4, CZ6, and CZ8 that respectively comprise four, six, and eight porphyrins have been synthesized in a stepwise manner from a 5,10-diaryl zinc(II) porphyrin building block. Symmetric cyclic structures have been indicated by their very simple (1)H NMR spectra that exhibit only a single set of porphyrin and their absorption spectra that display a characteristic broad nonsplit Soret band around 460 nm. Energy minimized structures calculated at the B3LYP/6-31G* level indicate that a dihedral angle between neighboring porphyrins decreases in order of CZ6 > CZ8 > CZ4, which is consistent with the (1)H NMR data. Photophysical properties of these molecules have been examined by the steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related with the excitation energy migration processes within the porphyrin rings, where the exciton-exciton annihilation time and the polarization anisotropy rise time are well described in terms of the Forster-type incoherent energy hopping model. Consequently, the excitation energy hopping rates have been estimated for CZ4 (119 +/- 2 fs)(-)(1), CZ6 (342 +/- 59 fs)(-)(1), and CZ8 (236 +/- 31 fs)(-)(1), which reflect the magnitude of the electronic coupling between the neighboring porphyrins. Overall, these porphyrin rings serve as a well-defined wheel-shaped light harvesting antenna model in light of very efficient excitation energy hopping along the ring.
Collapse
Affiliation(s)
- Yasuyuki Nakamura
- Department of Chemistry, Graduate School of Science, Kyoto University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hwang IW, Ko DM, Ahn TK, Yoon ZS, Kim D, Peng X, Aratani N, Osuka A. Excitation Energy Migration in A Dodecameric Porphyrin Wheel. J Phys Chem B 2005; 109:8643-51. [PMID: 16852023 DOI: 10.1021/jp044274a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intramolecular excitation energy hopping (EEH) time within a dodecameric porphyrin wheel C6ZA, in which six meso-meso linked zinc(II) diporphyrin (Z2) subunits are bridged by 1,3-phenylene spacers, is deduced by a Förster energy hopping model based on S(1)-S(1) exciton-exciton annihilation and anisotropy depolarization. Under the assumption that the energy hopping sites are six Z2 subunits, two different observables (e.g., exciton-exciton annihilation and anisotropy depolarization times) consistently give the EEH time of 4.0 +/- 0.4 ps via 1,3-phenylene spacer of C6ZA, which is faster than 9.4 ps of linear 2Z2 (1,3-phenylene-linked zinc(II) tetraporphyrin). As a consequence, C6ZA serves as a well-defined two-dimensional model for a light-harvesting complex.
Collapse
Affiliation(s)
- In-Wook Hwang
- Center for Ultrafast Optical Characteristics Control and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Hwang IW, Kamada T, Ahn TK, Ko DM, Nakamura T, Tsuda A, Osuka A, Kim D. Porphyrin Boxes Constructed by Homochiral Self-Sorting Assembly: Optical Separation, Exciton Coupling, and Efficient Excitation Energy Migration. J Am Chem Soc 2004; 126:16187-98. [PMID: 15584755 DOI: 10.1021/ja046241e] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
meso-Pyridine-appended zinc(II) porphyrins Mn and their meso-meso-linked dimers Dn assemble spontaneously, in noncoordinating solvents such as CHCl3, into tetrameric porphyrin squares Sn and porphyrin boxes Bn, respectively. Interestingly, formation of Bn from Dn proceeds via homochiral self-sorting assembly, which has been verified by optical separations of B1 and B2. Optically pure enantiomers of B1 and B2 display strong Cotton effects in the CD spectra, which reflect the length of the pyridyl arm, thus providing evidence for the exciton coupling between the noncovalent neighboring porphyrin rings. Excitation energy migration processes within Bn have been investigated by steady-state and time-resolved spectroscopic methods in conjunction with polarization anisotropy measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly associated with the excitation energy migration process within the Bn boxes, where the exciton-exciton annihilation time and the polarization anisotropy rise time are well described in terms of the Förster-type incoherent energy hopping model by assuming a number of hopping sites of N = 4 and an exciton coherence length of L = 2. Consequently, the excitation energy hopping rates between the zinc(II) diporphyrin units have been estimated for B1 (48 ps)(-1), B2 (98 +/- 3 ps)(-1), and B3 (361 +/- 6 ps)(-1). Overall, the self-assembled porphyrin boxes Bn serve as a well-defined three-dimensional model for the light-harvesting complex.
Collapse
Affiliation(s)
- In-Wook Hwang
- Center for Ultrafast Optical Characteristics Control and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Müller MG, Niklas J, Lubitz W, Holzwarth AR. Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J 2004; 85:3899-922. [PMID: 14645079 PMCID: PMC1303691 DOI: 10.1016/s0006-3495(03)74804-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energy transfer and charge separation kinetics in core Photosystem I (PSI) particles of Chlamydomonas reinhardtii has been studied using ultrafast transient absorption in the femtosecond-to-nanosecond time range. Although the energy transfer processes in the antenna are found to be generally in good agreement with previous interpretations, we present evidence that the interpretation of the energy trapping and electron transfer processes in terms of both kinetics and mechanisms has to be revised substantially as compared to current interpretations in the literature. We resolved for the first time i), the transient difference spectrum for the excited reaction center state, and ii), the formation and decay of the primary radical pair and its intermediate spectrum directly from measurements on open PSI reaction centers. It is shown that the dominant energy trapping lifetime due to charge separation is only 6-9 ps, i.e., by a factor of 3 shorter than assumed so far. The spectrum of the first radical pair shows the expected strong bleaching band at 680 nm which decays again in the next electron transfer step. We show furthermore that the early electron transfer processes up to approximately 100 ps are more complex than assumed so far. Several possibilities are discussed for the intermediate redox states and their sequence which involve oxidation of P700 in the first electron transfer step, as assumed so far, or only in the second electron transfer step, which would represent a fundamental change from the presently assumed mechanism. To explain the data we favor the inclusion of an additional redox state in the electron transfer scheme. Thus we distinguish three different redox intermediates on the timescale up to 100 ps. At this level no final conclusion as to the exact mechanism and the nature of the intermediates can be drawn, however. From comparison of our data with fluorescence kinetics in the literature we also propose a reversible first charge separation step which has been excluded so far for open PSI reaction centers. For the first time an ultrafast 150-fs equilibration process, occurring among exciton states in the reaction center proper, upon direct excitation of the reaction center at 700 nm, has been resolved. Taken together the data call for a fundamental revision of the present understanding of the energy trapping and early electron transfer kinetics in the PSI reaction center. Due to the fact that it shows the fastest trapping time observed so far of any intact PSI particle, the PSI core of C. reinhardtii seems to be best suited to further characterize the electron transfer steps and mechanisms in the reaction center of PSI.
Collapse
Affiliation(s)
- Marc G Müller
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr 34-36, D-45470 Mülheim ad Ruhr, Germany
| | | | | | | |
Collapse
|
18
|
Hughes JL, Prince BJ, Krausz E, Smith PJ, Pace RJ, Riesen H. Highly Efficient Spectral Hole-Burning in Oxygen-Evolving Photosystem II Preparations. J Phys Chem B 2004. [DOI: 10.1021/jp0492523] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph L. Hughes
- Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, Faculties Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, ADFA, Canberra ACT 2600, Australia
| | - Barry J. Prince
- Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, Faculties Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, ADFA, Canberra ACT 2600, Australia
| | - Elmars Krausz
- Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, Faculties Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, ADFA, Canberra ACT 2600, Australia
| | - Paul J. Smith
- Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, Faculties Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, ADFA, Canberra ACT 2600, Australia
| | - Ron J. Pace
- Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, Faculties Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, ADFA, Canberra ACT 2600, Australia
| | - Hans Riesen
- Research School of Chemistry, The Australian National University, Canberra ACT 0200, Australia, Faculties Chemistry, The Australian National University, Canberra ACT 0200, Australia, and School of Physical, Environmental and Mathematical Sciences, University College, The University of New South Wales, ADFA, Canberra ACT 2600, Australia
| |
Collapse
|
19
|
Khoshtariya DE, Dolidze TD, Zusman LD, Waldeck DH. Observation of the Turnover between the Solvent Friction (Overdamped) and Tunneling (Nonadiabatic) Charge-Transfer Mechanisms for a Au/Fe(CN)63-/4- Electrode Process and Evidence for a Freezing Out of the Marcus Barrier. J Phys Chem A 2001. [DOI: 10.1021/jp0041095] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Prokhorenko VI, Holzwarth AR. Primary Processes and Structure of the Photosystem II Reaction Center: A Photon Echo Study,. J Phys Chem B 2000. [DOI: 10.1021/jp002323n] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valentin I. Prokhorenko
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45413 Mülheim a.d. Ruhr, Germany
| | - Alfred R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45413 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
21
|
Groot ML, van Grondelle R, Leegwater JA, van Mourik F. Radical Pair Quantum Yield in Reaction Centers of Photosystem II of Green Plants and of the Bacterium Rhodobacter sphaeroides. Saturation Behavior with Sub-picosecond Pulses. J Phys Chem B 1997. [DOI: 10.1021/jp971113g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marie-Louise Groot
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Jan-Adriaan Leegwater
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Frank van Mourik
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Donovan B, Walker LA, Kaplan D, Bouvier M, Yocum CF, Sension RJ. Structure and Function in the Isolated Reaction Center Complex of Photosystem II. 1. Ultrafast Fluorescence Measurements of PSII. J Phys Chem B 1997. [DOI: 10.1021/jp971112o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brent Donovan
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Larry A. Walker
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Daniel Kaplan
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Marcel Bouvier
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Charles F. Yocum
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Roseanne J. Sension
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| |
Collapse
|
23
|
Greenfield SR, Seibert M, Govindjee, Wasielewski MR. Direct Measurement of the Effective Rate Constant for Primary Charge Separation in Isolated Photosystem II Reaction Centers. J Phys Chem B 1997. [DOI: 10.1021/jp962982t] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott R. Greenfield
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael Seibert
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Govindjee
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael R. Wasielewski
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
24
|
Connelly JP, Müller MG, Hucke M, Gatzen G, Mullineaux CW, Ruban AV, Horton P, Holzwarth AR. Ultrafast Spectroscopy of Trimeric Light-Harvesting Complex II from Higher Plants. J Phys Chem B 1997. [DOI: 10.1021/jp9619651] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. P. Connelly
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - M. G. Müller
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - M. Hucke
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - G. Gatzen
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - C. W. Mullineaux
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - A. V. Ruban
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - P. Horton
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - A. R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, D-45470 Mülheim an der Ruhr, Germany, and Robert-Hill-Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
25
|
Müller MG, Hucke M, Reus M, Holzwarth AR. Primary Processes and Structure of the Photosystem II Reaction Center. 4. Low-Intensity Femtosecond Transient Absorption Spectra of D1-D2-cyt-b559 Reaction Centers,. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp953714i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc G. Müller
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Mathias Hucke
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Michael Reus
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Alfred R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|