1
|
de Souza Santos VL, Ribeiro FA, Kim CD, López-Castillo A. The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications. J Mol Model 2024; 30:381. [PMID: 39438344 DOI: 10.1007/s00894-024-06184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
CONTEXT Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we investigated the role of different metal dications (Ca2⁺, Mg2⁺, Zn2⁺, Mn2⁺, and Cu2⁺) in promoting the hydrolysis of phosphodiester bonds. A minimal DNA model was constructed using two pyrimidine nucleobases (cytosine and thymine), two deoxyribose units, one phosphate group, and one metallic dication coordinated by six water molecules. The results highlight that Cu2⁺ is the most efficient in lowering the energy barrier for bond cleavage, with an energy barrier of 183 kJ/mol, compared to higher barriers for metals like Zn2⁺ (202 kJ/mol), Mn2⁺ (202 kJ/mol), Mg2⁺ (210 kJ/mol), and Ca2⁺ (223 kJ/mol). Understanding the interaction between these metal ions and phosphodiester bonds offers insight into DNA stability and organic data storage systems. METHODS DFT calculations were employed using Gaussian 16 software, applying the B3LYP hybrid functional with def2-SVP basis sets and GD3BJ dispersion corrections. Full geometry optimizations were performed for the initial and transition states, followed by identifying energy barriers associated with phosphodiester bond cleavage. The optimization criteria included maximum force, root-mean-square force, displacement, and energy convergence thresholds.
Collapse
Affiliation(s)
| | - Felipe Augusto Ribeiro
- Chemistry Department, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Chang Dong Kim
- Miua Medical Center, Rua Barão de Triunfo, 612, cj. 601, São Paulo, SP, 04602-002, Brazil
| | | |
Collapse
|
2
|
Persson I. Structure and size of complete hydration shells of metal ions and inorganic anions in aqueous solution. Dalton Trans 2024; 53:15517-15538. [PMID: 39211949 DOI: 10.1039/d4dt01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The structures of nine hydrated metal ions in aqueous solution have been redetermined by large angle X-ray scattering to obtain experimental data of better quality than those reported 40-50 years ago. Accurate M-OI and M-(OI-H)⋯OII distances and M-OI(H)⋯OII bond angles are reported for the hydrated magnesium(II), aluminium(III), manganese(II), iron(II), iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) ions; the subscripts I and II denote oxygen atoms in the first and second hydration sphere, respectively. Reported structures of hydrated metal ions in aqueous solution are summarized and evaluated with emphasis on a possible relationship between M-OI-OII bond angles and bonding character. Metal ions with high charge density have M-OI-OII bond angles close to 120°, indicative of a mainly electrostatic interaction with the oxygen atom in the water molecule in the first hydration shell. Metal ions forming bonds with a significant covalent contribution, as e.g. mercury(II) and tin(II), have M-OI-OII bond angles close to 109.5°. This implies that they bind to one of the free electron pairs in the water molecule. Comparison of M-O bond distances of hydrated metal ions in the solid state with one hydration shell, and in aqueous solution with in most cases at least two hydration shells, shows no significant differences. On the other hand, the X-O bond distance in hydrated oxoanions increases by ca. 0.02 Å in aqueous solution in comparison with the corresponding X-O distance in the solid state. A linear correlation is observed between volume, calculated from the van der Waals radius of the hydrated ion, and the ionic diffusion coefficient in aqueous solution. This correlation strongly indicates that monovalent metal ions, except lithium and silver(I), and singly-charged monovalent oxoanions have a single hydration shell. Divalent metal ions, bismuth(III) and the lanthanoid(III) and actinoid(III) ions have two hydration shells. Trivalent transition and tetravalent metal ions have two full hydration shells and portion of a third one. Doubly charged oxoanions have one well-defined hydration shell and an ill-defined second one.
Collapse
Affiliation(s)
- Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
3
|
Zhang D, Zhang Y, Li X, Zhang M, Zou L, Chi R, Zhou F. The investigation of ion association characteristics in lanthanum sulfate solution by the density functional theory and molecular dynamics simulations. J Mol Graph Model 2024; 127:108698. [PMID: 38199066 DOI: 10.1016/j.jmgm.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The ion association behavior in aqueous lanthanum sulfate solutions was investigated using density functional theory (DFT). The structures and properties of [La(SO4)m·(H2O)n](3-2m) clusters, where m = 1 to 3 and n = 1 to 9, were examined at the PBE0/6-311+G(d, p) level. The results show that Lanthanum sulfate hydrated clusters exist in the aqueous solution's microscopic state of contact ion pairs (CIP). [La(SO4)(H2O)n]+ and [La(SO4)2·(H2O)n]-, and [La(SO4)3·(H2O)n]3- clusters approximately reach the saturation of the first water shell at n = 7 and 6 and 3. [La(SO4)2·(H2O)6]- and [La(SO4)3·(H2O)3]3- clusters have lower binding energy than [LaSO4·(H2O)n]+. This indicates that lanthanum sulfate tends to aggregate in an aqueous solution. Compared to the gas-phase cluster structures, the distance of R(La-O)H2O expands in the PCM solvent model, while R(La-O)SO4 contracts. The hydration energy of LaSO4·(H2O)7, La(SO4)2·(H2O)6, and La(SO4)3·(H2O)3 were -76.5, -54.1 and -332.0 kcal/mol, respectively. The molecular dynamics simulation results show that La is more inclined to coordinate with sulfate's oxygen than water's oxygen, and the coordination number of water around La3+ is 6.075. These results are consistent with the calculated results by DFT.
Collapse
Affiliation(s)
- Danting Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuefei Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Xueying Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Mei Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lian Zou
- School of Electronic Information, Wuhan University, Wuhan, 430072, China
| | - Ruan Chi
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Fang Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan, 430073, China.
| |
Collapse
|
4
|
Reyna-Luna J, Soriano-Agueda L, Vera CJ, Franco-Pérez M. Insights into the coordination chemistry of antineoplastic doxorubicin with 3d-transition metal ions Zn 2+, Cu 2+, and VO 2+: a study using well-calibrated thermodynamic cycles and chemical interaction quantum chemistry models. J Comput Aided Mol Des 2023:10.1007/s10822-023-00506-4. [PMID: 37245168 DOI: 10.1007/s10822-023-00506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
We present a computational strategy based on thermodynamic cycles to predict and describe the chemical equilibrium between the 3d-transition metal ions Zn2+, Cu2+, and VO2+ and the widely used antineoplastic drug doxorubicin. Our method involves benchmarking a theoretical protocol to compute gas-phase quantities using DLPNO Coupled-Cluster calculations as reference, followed by estimating solvation contributions to the reaction Gibbs free energies using both explicit partial (micro)solvation steps for charged solutes and neutral coordination complexes, as well as a continuum solvation procedure for all solutes involved in the complexation process. We rationalized the stability of these doxorubicin-metal complexes by inspecting quantities obtained from the topology of their electron densities, particularly the bond critical points and non-covalent interaction index. Our approach allowed us to identify representative species in solution phase, infer the most likely complexation process for each case, and identify key intramolecular interactions involved in the stability of these compounds. To the best of our knowledge, this is the first study reporting thermodynamic constants for the complexation of doxorubicin with transition metal ions. Unlike other methods, our procedure is computationally affordable for medium-sized systems and provides valuable insights even with limited experimental data. Furthermore, it can be extended to describe the complexation process between 3d-transition metal ions and other bioactive ligands.
Collapse
Affiliation(s)
- Julieta Reyna-Luna
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Ciudad de Mexico, México
| | - Luis Soriano-Agueda
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
| | - Christiaan Jardinez Vera
- Laboratorio de Modelado y Simulación Computacional en Nanomedicina, Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan S/N, Colonia, 43920, Chimalpa Tlalayote, Hgo, México
| | - Marco Franco-Pérez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Ciudad de Mexico, México.
| |
Collapse
|
5
|
Hu P, Luo X, Hu T, Chen S, Li D, Chen Y, Li F. Ethanol Solvent Used in Constructing Ultra-Low-Temperature Zinc-Ion Capacitors with a Long Cycling Life. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5180-5190. [PMID: 36656080 DOI: 10.1021/acsami.2c19041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zinc-ion capacitors (ZICs) gain enormous attraction for their high power density, low cost, and long life, but their poor low-temperature performance is still a challenge due to the dissatisfactory freezing point of aqueous electrolyte solution. It is difficult for them to meet the requirements in cold environments as well as the extreme low temperature and severe temperature fluctuations in aerospace environments. Herein, ethanol (EtOH) solvent with ZnCl2 is used as an electrolyte to address these issues. Benefiting from the low freezing point (-114 °C) of EtOH, the ZIC with the ZnCl2/EtOH electrolyte can be operated at an ultralow temperature of -78 °C. It also demonstrates long cycling stability over 30,000 cycles. Such an enhancement is attributed to the unique properties of [ZnCl(EtOH)5]+ that can stabilize the coordination environment of Zn2+, slow the diffusivity, and raise the nucleation overpotential, leading to uniform Zn plating/stripping and subsequently suppressing dendrite growth. Meanwhile, the lower activation energy in ZnCl2/EtOH than that in ZnSO4/H2O electrolytes endows the ZIC excellent charge transfer properties. This work provides a fascinating electrolyte and a feasible pathway for ultra-low-temperature ZICs with a long cycling life.
Collapse
Affiliation(s)
- Pengyun Hu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Xianyou Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Tianzhao Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, China
| | - Shaorui Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei230052, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Feng Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei230052, China
| |
Collapse
|
6
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
7
|
Structures and Spectroscopic Properties of Hydrated Zinc(II) Ion Clusters [Zn2+(H2O)n (n = 1−8)] by Ab Initio Study. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Beryllium ion coordination in Ammonia, methanol and water solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Liu J, Dong D, Caro AL, Andreas N, Li Z, Qin Y, Bedrov D, Gao T. Aqueous Electrolytes Reinforced by Mg and Ca Ions for Highly Reversible Fe Metal Batteries. ACS CENTRAL SCIENCE 2022; 8:729-740. [PMID: 35756376 PMCID: PMC9228558 DOI: 10.1021/acscentsci.2c00293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) metal batteries, such as Fe-ion batteries and all Fe flow batteries, are promising energy storage technologies for grid applications due to the extremely low cost of Fe and Fe salts. Nonetheless, the cycle life of Fe metal batteries is poor primarily due to the low Coulombic efficiency of the Fe deposition/stripping reaction. Current aqueous electrolytes based on Fe chloride or sulfate salts can only operate at a Coulombic efficiency of <91% under mild operation conditions (<5 mA/cm2), largely due to undesired hydrogen evolution reaction (HER). This work reports a series of novel Fe electrolytes, Fe electrolytes reinforced with Mg ions (FERMI) and Ca ions (FERCI), which have remarkably better Coulombic efficiency, higher conductivity, and faster deposition/stripping kinetics. By the addition of 4.5 M MgCl2 or CaCl2 into the baseline FeCl2 electrolyte, the Fe deposition/stripping efficiency can be significantly improved to 99.1%, which greatly boosts the cycling performance of Fe metal batteries in both half-cells and full-cells. Mechanistic studies reveal that the remarkably improved efficiency is due to a reduced amount of "dead Fe" as well as suppressed HER. By the combination of experiments and molecular dynamics and density functional theory computation, the electrolyte structure is revealed, and the mechanism for enhanced water reduction resistance is elucidated. These novel electrolytes not only enable a highly reversible Fe metal anode for low-cost energy storage technologies but also have the potential to address the HER side reaction problem in other electrochemical technologies based on aqueous electrolytes, such as CO2 reduction, NH3 synthesis, etc.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| | - Dengpan Dong
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| | - Alan Larrea Caro
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| | - Nicolai
Sage Andreas
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| | - Zongjian Li
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| | - Yunan Qin
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| | - Dimitry Bedrov
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| | - Tao Gao
- Department
of Chemical Engineering and Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84114, United States
| |
Collapse
|
10
|
Multiple Li+ extraction mechanisms of sulfate saline by graphene nanopores: Effects of ion association under electric fields. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Guan X, Tan C, Li W, Wang W, Thirumalai D. Role of water-bridged interactions in metal ion coupled protein allostery. PLoS Comput Biol 2022; 18:e1010195. [PMID: 35653400 PMCID: PMC9197054 DOI: 10.1371/journal.pcbi.1010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/14/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Allosteric communication between distant parts of proteins controls many cellular functions, in which metal ions are widely utilized as effectors to trigger the allosteric cascade. Due to the involvement of strong coordination interactions, the energy landscape dictating the metal ion binding is intrinsically rugged. How metal ions achieve fast binding by overcoming the landscape ruggedness and thereby efficiently mediate protein allostery is elusive. By performing molecular dynamics simulations for the Ca2+ binding mediated allostery of the calmodulin (CaM) domains, each containing two Ca2+ binding helix-loop-helix motifs (EF-hands), we revealed the key role of water-bridged interactions in Ca2+ binding and protein allostery. The bridging water molecules between Ca2+ and binding residue reduces the ruggedness of ligand exchange landscape by acting as a lubricant, facilitating the Ca2+ coupled protein allostery. Calcium-induced rotation of the helices in the EF-hands, with the hydrophobic core serving as the pivot, leads to exposure of hydrophobic sites for target binding. Intriguingly, despite being structurally similar, the response of the two symmetrically arranged EF-hands upon Ca2+ binding is asymmetric. Breakage of symmetry is needed for efficient allosteric communication between the EF-hands. The key roles that water molecules play in driving allosteric transitions are likely to be general in other metal ion mediated protein allostery. Natural proteins often utilize allostery in executing a variety of functions. Metal ions are typical cofactors to trigger the allosteric cascade. In this work, using the Ca2+ sensor protein calmodulin as the model system, we revealed crucial roles of water-bridged interactions in the metal ion coupled protein allostery. The coordination of the Ca2+ to the binding site involves an intermediate in which the water molecule bridges the Ca2+ and the liganding residue. The bridging water reduces the free energy barrier height of ligand exchange, therefore facilitating the ligand exchange and allosteric coupling by acting as a lubricant. We also showed that the response of the two symmetrically arranged EF-hand motifs of CaM domains upon Ca2+ binding is asymmetric, which is directly attributed to the differing dehydration process of the Ca2+ ions and is needed for efficient allosteric communication.
Collapse
Affiliation(s)
- Xingyue Guan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Cheng Tan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- * E-mail: (WL); (WW); (DT)
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- * E-mail: (WL); (WW); (DT)
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Texas, United States of America
- * E-mail: (WL); (WW); (DT)
| |
Collapse
|
12
|
Wang J, Konigsberg WH. Two-Metal-Ion Catalysis: Inhibition of DNA Polymerase Activity by a Third Divalent Metal Ion. Front Mol Biosci 2022; 9:824794. [PMID: 35300112 PMCID: PMC8921852 DOI: 10.3389/fmolb.2022.824794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/15/2022] Open
Abstract
Almost all DNA polymerases (pols) exhibit bell-shaped activity curves as a function of both pH and Mg2+ concentration. The pol activity is reduced when the pH deviates from the optimal value. When the pH is too low the concentration of a deprotonated general base (namely, the attacking 3′-hydroxyl of the 3′ terminal residue of the primer strand) is reduced exponentially. When the pH is too high the concentration of a protonated general acid (i.e., the leaving pyrophosphate group) is reduced. Similarly, the pol activity also decreases when the concentration of the divalent metal ions deviates from its optimal value: when it is too low, the binding of the two catalytic divalent metal ions required for the full activity is incomplete, and when it is too high a third divalent metal ion binds to pyrophosphate, keeping it in the replication complex longer and serving as a substrate for pyrophosphorylysis within the complex. Currently, there is a controversy about the role of the third metal ion which we will address in this review.
Collapse
|
13
|
Meng YF, Zhu YB, Zhou LC, Meng XS, Yang YL, Zhao R, Xia J, Yang B, Lu YJ, Wu HA, Mao LB, Yu SH. Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108267. [PMID: 34957604 DOI: 10.1002/adma.202108267] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The high fracture toughness of mollusk nacre is predominantly attributed to the structure-associated extrinsic mechanisms such as platelet sliding and crack deflection. While the nacre-mimetic structures are widely adopted in artificial ceramics, the extrinsic mechanisms are often weakened by the relatively low tensile strength of the platelets with a large aspect ratio, which makes the fracture toughness of these materials much lower than expected. Here, it is demonstrated that the fracture toughness of artificial nacre materials with high inorganic contents can be improved by residual stress-induced platelet strengthening, which can catalyze more effective extrinsic toughening mechanisms that are specific to the nacre-mimetic structures. Thereby, while the absolute fracture toughness of the materials is not comparable with advanced ceramic-based composites, the toughness amplification factor of the material reaches 16.1 ± 1.1, outperforming the state-of-the-art biomimetic ceramics. The results reveal that, with the merit of nacre-mimetic structural designs, the overall fracture toughness of the artificial nacre can be improved by the platelet strengthening through extrinsic toughening mechanisms, although the intrinsic fracture toughness may decrease at platelet level due to the strengthening. It is anticipated that advanced structural ceramics with exceeding performance can be fabricated through these unconventional strategies.
Collapse
Affiliation(s)
- Yu-Feng Meng
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Li-Chuan Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xiang-Sen Meng
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Ran Zhao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Bo Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Jie Lu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Li-Bo Mao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
A Study of the Deuterium Isotope Effect on Zinc(II) Hydrolysis and Solubility Under Hydrothermal Conditions Using Density Functional Theory. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Pillai SB, Wilcox RJ, Hillis BG, Losey BP, Martin JD. Understanding the Water-in-Salt to Salt-in-Water Characteristics across the Zinc Chloride : Water Phase Diagram. J Phys Chem B 2022; 126:2265-2278. [PMID: 35139641 DOI: 10.1021/acs.jpcb.1c10530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a series of time- and temperature-resolved synchrotron diffraction experiments, the relationship between multiple polymorphs of ZnCl2 and its respective hydrates is established. The δ-phase is found to be the pure anhydrous phase, while the α, β, and γ phases result from partial hydration. Diffraction, gravimetric, and calorimetric measurements across the entire ZnCl2·R H2O, 0 > R > ∞ composition range using ultrapure, doubly sublimed ZnCl2 establish the ZnCl2 : H2O phase diagram. The results are consistent with the existence of crystalline hydrates at R = 1.33, 3, and 4.5 and identify a mechanistic pathway for hydration. All water is not removed from hydrated ZnCl2 until the system is heated above its melting point. While hydration/dehydration is reversible in concentrated solutions, dehydration from dilute aqueous solutions can result in loss of HCl, the source of hydroxide impurities commonly found in commercial ZnCl2 preparations. The strong interaction between ZnCl2 and water exerts a significant impact on the solvent water such that the system exhibits a deep eutectic at a composition of about R = 7 (87.5 mol %) and a eutectic temperature below -60 °C.
Collapse
Affiliation(s)
- Shelby B Pillai
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Robert J Wilcox
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Berkley G Hillis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Bradley P Losey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James D Martin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
16
|
Wang X, Clegg SL, Di Tommaso D. Bridging atomistic simulations and thermodynamic hydration models of aqueous electrolyte solutions. J Chem Phys 2022; 156:024502. [PMID: 35032987 DOI: 10.1063/5.0074970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chemical thermodynamic models of solvent and solute activities predict the equilibrium behavior of aqueous solutions. However, these models are semi-empirical. They represent micro-scale ion and solvent behaviors controlling the macroscopic properties using small numbers of parameters whose values are obtained by fitting to activities and other partial derivatives of the Gibbs energy measured for the bulk solutions. We have conducted atomistic simulations of aqueous electrolyte solutions (MgCl2 and CaCl2) to determine the parameters of thermodynamic hydration models. We have implemented a cooperative hydration model to categorize the water molecules in electrolyte solutions into different subpopulations. The value of the electrolyte-specific parameter, k, was determined from the ion-affected subpopulation with the lowest absolute value of the free energy of removing the water molecule. The other equilibrium constant parameter, K1, associated with the first degree of hydration, was computed from the free energy of hydration of hydrated clusters. The hydration number, h, was determined from a reorientation dynamic analysis of the water subpopulations compared to bulk-like behavior. The reparameterized models [R. H. Stokes and R. H. Robinson, J. Solution Chem. 2, 173 (1973) and Balomenos et al., Fluid Phase Equilib. 243, 29 (2006)] using the computed values of the parameters lead to the osmotic coefficients of MgCl2 solutions that are consistent with measurements. Such an approach removes the dependence on the availability of experimental data and could lead to aqueous thermodynamic models capable of estimating the values of solute and solvent activities as well as thermal and volumetric properties for a wide range of compositions and concentrations.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Simon L Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
17
|
Longuinho M, Ramnarain V, Ortiz Peña N, Ihiawakrim D, Soria-Martínez R, Farina M, Ersen O, Rossi AL. The influence of L-aspartic acid on calcium carbonate nucleation and growth revealed by in situ liquid phase TEM. CrystEngComm 2022. [DOI: 10.1039/d2ce00117a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ transmission electron microscopy has permitted the study of nanomaterials in liquid environments with high spatial and temporal resolutions, allowing chemical reaction visualization in real time. The aim of...
Collapse
|
18
|
Chen D, Li Y, Li X, Hong X, Fan X, Savidge T. Key difference between transition state stabilization and ground state destabilization: increasing atomic charge densities before or during enzyme–substrate binding. Chem Sci 2022; 13:8193-8202. [PMID: 35919436 PMCID: PMC9278421 DOI: 10.1039/d2sc01994a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
The origin of the enormous catalytic power of enzymes has been extensively studied through experimental and computational approaches. Although precise mechanisms are still subject to much debate, enzymes are thought to catalyze reactions by stabilizing transition states (TSs) or destabilizing ground states (GSs). By exploring the catalysis of various types of enzyme–substrate noncovalent interactions, we found that catalysis by TS stabilization and the catalysis by GS destabilization share common features by reducing the free energy barriers (ΔG‡s) of reactions, but are different in attaining the requirement for ΔG‡ reduction. Irrespective of whether enzymes catalyze reactions by TS stabilization or GS destabilization, they reduce ΔG‡s by enhancing the charge densities of catalytic atoms that experience a reduction in charge density between GSs and TSs. Notably, in TS stabilization, the charge density of catalytic atoms is enhanced prior to enzyme–substrate binding; whereas in GS destabilization, the charge density of catalytic atoms is enhanced during the enzyme–substrate binding. Results show that TS stabilization and GS destabilization are not contradictory to each other and are consistent in reducing the ΔG‡s of reactions. The full mechanism of enzyme catalysis includes the mechanism of reducing ΔG‡ and the mechanism of enhancing atomic charge densities. Our findings may help resolve the debate between TS stabilization and GS destabilization and assist our understanding of catalysis and the design of artificial enzymes. Transition state stabilization and ground state destabilization utilize the same molecular mechanism when lowering the free energy barriers (ΔG‡s) of reactions, but differ in achieving the requirement for ΔG‡ reduction.![]()
Collapse
Affiliation(s)
- Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xun Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery and Hubei Province, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xiaolin Fan
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tor Savidge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Microbiome Center, Texas Childrens Hospital, Houston, TX 77030, USA
| |
Collapse
|
19
|
Kumar A, Satpati P. Divalent-Metal-Ion Selectivity of the CRISPR-Cas System-Associated Cas1 Protein: Insights from Classical Molecular Dynamics Simulations and Electronic Structure Calculations. J Phys Chem B 2021; 125:11943-11954. [PMID: 34694813 DOI: 10.1021/acs.jpcb.1c07744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-associated protein 1 (Cas1) is a universally conserved essential metalloenzyme of the clustered regularly interspaced short palindromic repeat (CRISPR) immune system of prokaryotes (bacteria, archaea) that can cut and integrate a part of viral DNA to its host genome with the help of other proteins. The integrated DNA acts as a memory of viral infection, which can be transcribed to RNA and stop future infection by recognition (based on the RNA/DNA complementarity principle) followed by protein-mediated degradation of the viral DNA. It has been proposed that the presence of a single manganese (Mn2+) ion in a conserved divalent-metal-ion binding pocket (key residues: E190, H254, D265, D268) of Cas1 is crucial for its function. Cas1-mediated DNA degradation was proposed to be hindered by metal substitution, metal chelation, or mutation of the binding pocket residues. Cas1 is active toward dsDNA degradation with both Mn2+ and Mg2+. X-ray structures of Cas1 revealed an intricate atomic interaction network of the divalent-metal-ion binding pocket and opened up the possibility of modeling related metal ions (viz., Mg2+, Ca2+) in the binding pocket of wild-type (WT) and mutated Cas1 proteins for computational analysis, which includes (1) quantitative estimation of the energetics of the divalent-metal-ion preference and (2) exploring the structural and dynamical aspects of the protein in response to divalent-metal-ion substitution or amino acid mutation. Using the X-ray structure of the Cas1 protein from Pseudomonas aeruginosa as a template (PDB 3GOD), we performed (∼2.23 μs) classical molecular dynamics (MD) simulations to compare structural and dynamical differences between Mg2+- and Ca2+-bound binding pockets of wild-type (WT) and mutant (E190A, H254A, D265A, D268A) Cas1. Furthermore, reduced binding pocket models were generated from X-ray and molecular dynamics (MD) trajectories, and the resulting structures were subjected to quantum chemical calculations. Results suggest that Cas1 prefers Mg2+ binding relative to Ca2+ and the preference is the strongest for WT and the weakest for the D268A mutant. Quantum chemical calculations indicate that Mn2+ is the most preferred relative to both Mg2+ and Ca2+ in the wild-type and mutant Cas1. Substitution of Mg2+ by Ca2+ does not alter the interaction network between Cas1 and the divalent metal ion but increases the wetness of the binding pocket by introducing a single water molecule in the first coordination shell of the latter. The strength of metal-ion preference (Mg2+ versus Ca2+) seems to be dependent on the solvent accessibility of the divalent-metal-ion binding pocket, strongest for wild-type Cas1 (in which the metal-ion binding pocket is dry, which includes two water molecules) and the weakest for the D268A mutant (in which the metal-ion binding pocket is wet, which includes four water molecules).
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
20
|
Zare S, Qomi MJA. Reactive force fields for aqueous and interfacial magnesium carbonate formation. Phys Chem Chem Phys 2021; 23:23106-23123. [PMID: 34617078 DOI: 10.1039/d1cp02627e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We develop Mg/C/O/H ReaxFF parameter sets for two environments: an aqueous force field for magnesium ions in solution and an interfacial force field for minerals and mineral-water interfaces. Since magnesium is highly ionic, we choose to fix the magnesium charge and model its interaction with C/O/H through Coulomb, Lennard-Jones, and Buckingham potentials. We parameterize the forcefields against several crystal structures, including brucite, magnesite, magnesia, magnesium hydride, and magnesium carbide, as well as Mg2+ water binding energies for the aqueous forcefield. Then, we test the forcefield for other magnesium-containing crystals, solvent separated and contact ion-pairs and single-molecule/multilayer water adsorption energies on mineral surfaces. We also apply the forcefield to the forsterite-water and brucite-water interface that contains a bicarbonate ion. We observe that a long-range proton transfer mechanism deprotonates the bicarbonate ion to carbonate at the interface. Free energy calculations show that carbonate can attach to the magnesium surface with an energy barrier of about 0.22 eV, consistent with the free energy required for aqueous Mg-CO3 ion pairing. Also, the diffusion constant of the hydroxide ions in the water layers formed on the forsterite surface are shown to be anisotropic and heterogeneous. These findings can help explain the experimentally observed fast nucleation and growth of magnesite at low temperature at the mineral-water-CO2 interface in water-poor conditions.
Collapse
Affiliation(s)
- Siavash Zare
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA.
| | | |
Collapse
|
21
|
Liao T, Wu J, Tang Z, Su Q, Huang Z, Gu Y, Li Y, Xie J, Lin X, Yi G. Construction of sacrificial network in styrene-ethylene/butadiene-styrene triblock copolymer composites and their mechanical behaviors. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1967170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tingting Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Qiuping Su
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yuxin Gu
- Kinte Material Technology Co., Ltd, Dongguan, China
| | - Yong Li
- Kinte Material Technology Co., Ltd, Dongguan, China
| | - Jing Xie
- Kinte Material Technology Co., Ltd, Dongguan, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
22
|
León-Pimentel CI, Saint-Martin H, Ramírez-Solís A. Mg(II) and Ca(II) Microsolvation by Ammonia: Born-Oppenheimer Molecular Dynamics Studies. J Phys Chem A 2021; 125:4565-4577. [PMID: 34029097 DOI: 10.1021/acs.jpca.1c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the structural and energetic features of the Mg2+ and Ca2+ cations in ammonia microsolvation environments. Born-Oppenhemier molecular dynamics studies are carried out for [Mg(NH3)n]2+ and [Ca(NH3)n]2+ clusters with n = 2, 3, 4, 6, 8, 20, and 27 at 300 K based on hybrid density functional theory calculations. We determine binding energies per ammonia molecule and the metal cation solvation patterns as a function of the number of molecules. The general trend for Mg2+ is that the Mg-N distances increase as a function of n until the first solvation shell is populated by six ammonia molecules, and then the distances slightly decrease while CN = 6 does not change. For Ca2+, the first solvation shell at room temperature is populated by eight ammonia molecules for clusters with more than one solvation shell, leading to a different structure from that of [Ca(NH3)6]2+ hexamine. The evaporation of NH3 molecules was found at 300 K only for Mg2+ clusters with n ≥ 10; this was not the case for Ca2+ clusters. Vibrational spectra are obtained for all of the clusters, and the evolution of the main features is discussed. EXAFS spectra are also presented for the [Mg(NH3)27(NH3)27]2+ and [Ca(NH3)27]2+ clusters, which yield valuable data to be compared with experimental data in the liquid phase, as previously done for the aqueous solvation of these dications.
Collapse
Affiliation(s)
- C I León-Pimentel
- Departamento de Física, Centro de Investigación en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| | - H Saint-Martin
- Instituto de Ciencias Físicas, Universidad Nacional Autonóna de México, Cuernvaca, Morelos 62210 México
| | - A Ramírez-Solís
- Departamento de Física, Centro de Investigación en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| |
Collapse
|
23
|
Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters. INORGANICS 2021. [DOI: 10.3390/inorganics9050031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Information resulting from a comprehensive investigation into the intrinsic strengths of hydrated divalent magnesium clusters is useful for elucidating the role of aqueous solvents on the Mg2+ ion, which can be related to those in bulk aqueous solution. However, the intrinsic Mg–O and intermolecular hydrogen bond interactions of hydrated magnesium ion clusters have yet to be quantitatively measured. In this work, we investigated a set of 17 hydrated divalent magnesium clusters by means of local vibrational mode force constants calculated at the ωB97X-D/6-311++G(d,p) level of theory, where the nature of the ion–solvent and solvent–solvent interactions were interpreted from topological electron density analysis and natural population analysis. We found the intrinsic strength of inner shell Mg–O interactions for [Mg(H2O)n]2+ (n = 1–6) clusters to relate to the electron density at the bond critical point in Mg–O bonds. From the application of a secondary hydration shell to [Mg(H2O)n]2+ (n = 5–6) clusters, stronger Mg–O interactions were observed to correspond to larger instances of charge transfer between the lp(O) orbitals of the inner hydration shell and the unfilled valence shell of Mg. As the charge transfer between water molecules of the first and second solvent shell increased, so did the strength of their intermolecular hydrogen bonds (HBs). Cumulative local vibrational mode force constants of explicitly solvated Mg2+, having an outer hydration shell, reveal a CN of 5, rather than a CN of 6, to yield slightly more stable configurations in some instances. However, the cumulative local mode stretching force constants of implicitly solvated Mg2+ show the six-coordinated cluster to be the most stable. These results show that such intrinsic bond strength measures for Mg–O and HBs offer an effective way for determining the coordination number of hydrated magnesium ion clusters.
Collapse
|
24
|
Wang J, Natchiar SK, Moore PB, Klaholz BP. Identification of Mg 2+ ions next to nucleotides in cryo-EM maps using electrostatic potential maps. Acta Crystallogr D Struct Biol 2021; 77:534-539. [PMID: 33825713 PMCID: PMC8025889 DOI: 10.1107/s2059798321001893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Cryo electron microscopy (cryo-EM) can produce maps of macromolecules that have resolutions that are sufficiently high that structural details such as chemical modifications, water molecules and bound metal ions can be discerned. However, those accustomed to interpreting the electron-density maps of macromolecules produced by X-ray crystallography need to be careful when assigning features such as these in cryo-EM maps because cations, for example, interact far more strongly with electrons than they do with X-rays. Using simulated electrostatic potential (ESP) maps as a tool led us to re-examine a recent cryo-EM map of the human ribosome, and we realized that some of the ESP peaks originally identified as novel groups covalently bonded to the N7, O6 or O4 atoms of several guanines, adenines or uridines, respectively, in this structure are likely to instead represent Mg2+ ions coordinated to these atoms, which provide only partial charge compensation compared with Mg2+ ions located next to phosphate groups. In addition, direct evidence is provided for a variation in the level of 2'-O ribose methylation of nucleotides in the human ribosome. ESP maps can thus help in identifying ions next to nucleotide bases, i.e. at positions that can be difficult to address in cryo-EM maps due to charge effects, which are specifically encountered in cryo-EM. This work is particularly relevant to nucleoprotein complexes and shows that it is important to consider charge effects when interpreting cryo-EM maps, thus opening possibilities for localizing charges in structures that may be relevant for enzymatic mechanisms and drug interactions.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - S. Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Peter B. Moore
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Bruno P. Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
25
|
Li N, Cui W, Cong P, Tang J, Guan Y, Huang C, Liu Y, Yu C, Yang R, Zhang X. Biomimetic inorganic-organic hybrid nanoparticles from magnesium-substituted amorphous calcium phosphate clusters and polyacrylic acid molecules. Bioact Mater 2021; 6:2303-2314. [PMID: 33553817 PMCID: PMC7841502 DOI: 10.1016/j.bioactmat.2021.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Amorphous calcium phosphate (ACP) has been widely found during bone and tooth biomineralization, but the meta-stability and labile nature limit further biomedical applications. The present study found that the chelation of polyacrylic acid (PAA) molecules with Ca2+ ions in Mg-ACP clusters (~2.1 ± 0.5 nm) using a biomineralization strategy produced inorganic-organic Mg-ACP/PAA hybrid nanoparticles with better thermal stability. Mg-ACP/PAA hybrid nanoparticles (~24.0 ± 4.8 nm) were pH-responsive and could be efficiently digested under weak acidic conditions (pH 5.0–5.5). The internalization of assembled Mg-ACP/PAA nanoparticles by MC3T3-E1 cells occurred through endocytosis, indicated by laser scanning confocal microscopy and cryo-soft X-ray tomography. Our results showed that cellular lipid membranes remained intact without pore formation after Mg-ACP/PAA particle penetration. The assembled Mg-ACP/PAA particles could be digested in cell lysosomes within 24 h under weak acidic conditions, thereby indicating the potential to efficiently deliver encapsulated functional molecules. Both the in vitro and in vivo results preliminarily demonstrated good biosafety of the inorganic-organic Mg-ACP/PAA hybrid nanoparticles, which may have potential for biomedical applications. Mg-ACP/PAA hybrid nanoparticles have been synthesized following a biomineralization strategy. The chelation of PAA molecules in synergy with Mg2+ substitution improves thermal stability of Mg-ACP/PAA nanoparticles. The Mg-ACP/PAA nanoparticles are pH sensitive and can be digested in cell lysosomes within 24 h.
Collapse
Affiliation(s)
- Na Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Cui
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peifang Cong
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
26
|
Wang C, Pei Z, Meng Q, Zhang C, Sui X, Yuan Z, Wang S, Chen Y. Toward Flexible Zinc‐Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl
2
Salt‐Based Electrolytes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng Wang
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Qiangqiang Meng
- School of Physics and Materials Engineering Hefei Normal University Hefei 230601 China
| | - Chunmei Zhang
- Institute of Physics School of Physics Northwest University Xian 710069 China
| | - Xiao Sui
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Sijie Wang
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
27
|
Wang C, Pei Z, Meng Q, Zhang C, Sui X, Yuan Z, Wang S, Chen Y. Toward Flexible Zinc‐Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl
2
Salt‐Based Electrolytes. Angew Chem Int Ed Engl 2020; 60:990-997. [DOI: 10.1002/anie.202012030] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng Wang
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Qiangqiang Meng
- School of Physics and Materials Engineering Hefei Normal University Hefei 230601 China
| | - Chunmei Zhang
- Institute of Physics School of Physics Northwest University Xian 710069 China
| | - Xiao Sui
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Sijie Wang
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
28
|
Sidorczuk D, Kozanecki M, Civalleri B, Pernal K, Prywer J. Structural and Optical Properties of Struvite. Elucidating Structure of Infrared Spectrum in High Frequency Range. J Phys Chem A 2020; 124:8668-8678. [PMID: 32972131 PMCID: PMC7586396 DOI: 10.1021/acs.jpca.0c04707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/22/2020] [Indexed: 12/02/2022]
Abstract
Study of structure and optical properties of magnesium ammonium phosphate hexahydrate crystal known as struvite is presented. Experimentally determined infrared (IR) and ultraviolet-visible (UV-vis) spectra are compared with the theoretical predictions of density functional methods. Examination of the interatomic bond lengths, Mulliken atomic charges, and binding energies of water in the magnesium hexahydrate cation, together with the analysis of the hydrogen bond pattern have allowed us to explain a special feature of the IR spectrum of struvite, a blueshift of the band corresponding to the O-H stretching mode. This mode has been assigned to a "dangling" hydroxyl group in one of the water molecules in magnesium hexahydrate. Using experimentally obtained UV-vis spectrum and performing Tauc plots analysis, optical bandgap of struvite has been narrowed to a range from 5.92 to 6.06 eV.
Collapse
Affiliation(s)
- Dominik Sidorczuk
- Institute
of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924Łódź, Poland
| | - Marcin Kozanecki
- Department
of Molecular Physics, Lodz University of
Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
| | - Bartolomeo Civalleri
- Department
of Chemistry, University of Torino, Via P. Giuria 7-10125 Torino, Italy
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924Łódź, Poland
| | - Jolanta Prywer
- Institute
of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924Łódź, Poland
| |
Collapse
|
29
|
Serov N, Darmoroz D, Lokteva A, Chernyshov I, Koshel E, Vinogradov V. One-pot synthesis of template-free hollow anisotropic CaCO 3 structures: towards inorganic shape-mimicking drug delivery systems. Chem Commun (Camb) 2020; 56:11969-11972. [PMID: 33033816 DOI: 10.1039/d0cc05502f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A major obstacle in the introduction of nanoformulated drugs has been the fact that the shape of the drug delivery systems (DDSs) - the most important parameter driven by the nature of viruses and bacteria - remains almost out-of-scope in artificial systems. Here we propose a potential solution for this problem by developing a template-free approach for the formulation of hollow bacteria-like CaCO3-based pH-sensitive DDSs with controllable anisotropy and click-release behavior.
Collapse
Affiliation(s)
- Nikita Serov
- International Institute "Solution Chemistry of Advanced Materials and Technologies" (SCAMT), 9, Lomonosova str., Saint-Petersburg, 191002, Russian Federation.
| | | | | | | | | | | |
Collapse
|
30
|
Nikam R, Xu X, Kanduč M, Dzubiella J. Competitive sorption of monovalent and divalent ions by highly charged globular macromolecules. J Chem Phys 2020; 153:044904. [DOI: 10.1063/5.0018306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rohit Nikam
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| | - Xiao Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People’s Republic of China
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Applied Theoretical Physics – Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| |
Collapse
|
31
|
Barger JP, Dillon PF. Electrophoretic measurement of water charge density and ion hydration. Electrophoresis 2020; 41:1170-1177. [PMID: 32357247 DOI: 10.1002/elps.201900467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/07/2022]
Abstract
Water exchange between bulk water and water-ion complexes will be at equilibrium when the charge density of the complex surface equals the charge density of bulk water, producing a constant radius water-ion complex. This complex will migrate in an electric field at a velocity proportional to the complex radius. CE velocity is the sum of the complex charge-dependent velocity and the buffer electro-osmotic flow. Simultaneous use of both a base (1.07 mM imidazole) and an acid (1.5 mM MOPS) buffer negates EOF at pH 7.4. Electric fields below 300 V/cm (potassium, calcium) and 400 V/cm (magnesium) yield migration velocities with no dehydration of the water-ion complexes. The number of waters per complex increase with the ion charge density: K+ 1.90, Ca++ 5.90, Mg++ 6.59 waters/ion. The charge densities of the complexes are similar: K+ 1.24, Ca++ 1.43, Mg++ 1.21 e/nm2 , for an average bulk water charge density of 1.29 ± 0.11 (SD) e/nm2 . The addition of 0.1% Triton increases the number of waters for Mg++ to 25.33 and lowers the charge density to 0.497 e/nm2 . High electric field dehydration shows that calcium will be fully dehydrated at 638.3 V/cm and magnesium fully dehydrated at 925.5 V/cm, which occur at 6.15 and 5.78 nm from the membrane. Dehydrated magnesium will then bind to calcium channels leading to decreased smooth muscle activation.
Collapse
Affiliation(s)
- James P Barger
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Patrick F Dillon
- Department of Physiology, Michigan State University, East Lansing, MI
| |
Collapse
|
32
|
Bradley RP, Slochower DR, Janmey PA, Radhakrishnan R. Divalent cations bind to phosphoinositides to induce ion and isomer specific propensities for nano-cluster initiation in bilayer membranes. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192208. [PMID: 32537210 PMCID: PMC7277276 DOI: 10.1098/rsos.192208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 05/22/2023]
Abstract
We report all-atom molecular dynamics simulations of asymmetric bilayers containing phosphoinositides in the presence of monovalent and divalent cations. We have characterized the molecular mechanism by which these divalent cations interact with phosphoinositides. Ca2+ desolvates more readily, consistent with single-molecule calculations, and forms a network of ionic-like bonds that serve as a 'molecular glue' that allows a single ion to coordinate with up to three phosphatidylinositol-(4,5)-bisphosphate (PI(4, 5)P2) lipids. The phosphatidylinositol-(3,5)-bisphosphate isomer shows no such effect and neither does PI(4, 5)P2 in the presence of Mg2+. The resulting network of Ca2+-mediated lipid-lipid bonds grows to span the entire simulation space and therefore has implications for the lateral distribution of phosophoinositides in the bilayer. We observe context-specific differences in lipid diffusion rates, lipid surface densities and bilayer structure. The molecular-scale delineation of ion-lipid arrangements reported here provides insight into similar nanocluster formation induced by peripheral proteins to regulate the formation of functional signalling complexes on the membrane.
Collapse
Affiliation(s)
- Ryan P. Bradley
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R. Slochower
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Author for correspondence: Ravi Radhakrishnan e-mail:
| |
Collapse
|
33
|
Reyna-Luna J, Flores R, Gómez-Balderas R, Franco-Pérez M. Chemical Equilibrium of Zinc Acetate Complexes in Ethanol Solution. A Theoretical Description through Thermodynamic Cycles. J Phys Chem B 2020; 124:3355-3370. [PMID: 32216349 DOI: 10.1021/acs.jpcb.9b10687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gibbs free energy of complexation between the Zn(II) species and acetate ligands, forming the [Zn(OAc)n]2-n complexes with n = 1, 2 in an ethanol solution, was assessed by two different theoretical protocols based on thermodynamic cycles. In both approaches, the solution phase Gibbs free energy of each reaction is computed by summing up contributions from gas phase thermochemistry calculations to solvation Gibbs free energies obtained in a hybrid fashion, i.e., each (neutral or electrically charged) solute was first solvated by explicit solvent molecules in order to capture relevant (micro) solute-solvent and/or solvent-solvent interactions and then, a continuum model calculation is performed in order to get the corresponding bulky solute-solvent contributions. For our first thermodynamic protocol, here denominated as variant 1, a set of x independent solvent molecules are used to screen each of the involved solutes, while the variant 2 strategy uses the fact that a set of solvent molecules may exist as aggregates (or molecular clusters) in the solvent macroscopic media, before the solvation process of solutes. Our selected quantum theoretical protocol was the M05-2X/6-31+G(d)/SMD level. We made a systematic exploration about the influence of several sources of errors, such as the solvent conformation, the number of solvent molecules used to screen each of the involved solutes, the coordination geometry of the metallic center before and after the complexation process, and the pertinence of using molecular geometries optimized in gas phase and in ethanol solution, for the computation of the Gibbs free energy variation regarding the two chemical reactions under study. We set an accuracy threshold equal or less than 4.0 kcal·mol-1, with respect to the corresponding experimental records. The robustness of our thermodynamic strategies was then tested by computing the gas phase free energy contributions to the (solution phase) reaction free energies here assessed, using different density functional approximations, namely the M05-2X, BH&HLYP, PBE0, ωb97X-D and M06-2X functionals in conjunction with the larger 6-311+G(d,p) basis set.
Collapse
Affiliation(s)
- Julieta Reyna-Luna
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de México, México.,Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, 54700, Estado de México, México
| | - Raúl Flores
- Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, 54700, Estado de México, México
| | - Rodolfo Gómez-Balderas
- Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, 54700, Estado de México, México
| | - Marco Franco-Pérez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de México, México
| |
Collapse
|
34
|
Singh R, Kociok-Köhn G, Kaur Jassal A, Singh L. Three-dimensional hydrogen-bonded magnesium(II) supramolecular motifs based on in situ generated alkanesulfonate (Me/Et/ PrSO3−) ligands: A combined experimental and computational study. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Density functional theory study on the inner shell of hydrated M2+(H2O)1-7 cluster ions for M = Zn, Cd and Hg. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2019.112666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Yuan D, Manalastas W, Zhang L, Chan JJ, Meng S, Chen Y, Srinivasan M. Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries. CHEMSUSCHEM 2019; 12:4889-4900. [PMID: 31475452 DOI: 10.1002/cssc.201901409] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/22/2019] [Indexed: 05/13/2023]
Abstract
Metallic zinc is an ideal anode material for rechargeable zinc-ion batteries (ZIBs), taking us beyond the lithium-ion era. In-depth understanding of the Zn metal surface is currently required owing to diverse but uncorrelated data about the Zn surface in mild environments. Herein, the surface chemistry of Zn is elucidated and the formation and growth of a zinc layer hydroxide is verified as an effective solid-electrolyte interface (SEI) during stripping/plating in mild electrolyte. The effects of battery separators/membranes on the growth of an effective SEI and deposited Zn are then investigated from the perspectives of structure, morphology, compositions, and interfacial impedance. Nafion-based membranes enable the formation of a planar SEI, which protects the metal surface and prevents short circuiting. Biomass@Nafion membranes are developed and assessed with a long cycle life of over 400 h compared with below 200 h for physical separators. The mechanism behind this is attributed to interaction between the membranes and Zn2+ , which enables reshaping of the Zn2+ coordination in an aqueous medium. Together with the advantages of using the membranes in β-MnO2 |ZnSO4 |Zn, our work provides a feasible way to design an effective SEI for advancing the use of Zn anodes in rechargeable ZIBs.
Collapse
Affiliation(s)
- Du Yuan
- Energy Research Institute, Nanyang Technological University, Singapore, 637553, Singapore
| | - William Manalastas
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Liping Zhang
- Energy Research Institute, Nanyang Technological University, Singapore, 637553, Singapore
| | - Jun Jie Chan
- Energy Research Institute, Nanyang Technological University, Singapore, 637553, Singapore
| | - Shizhe Meng
- Energy Research Institute, Nanyang Technological University, Singapore, 637553, Singapore
| | - Yingqian Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Madhavi Srinivasan
- Energy Research Institute, Nanyang Technological University, Singapore, 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
37
|
Sun LZ, Zhou Y, Chen SJ. Predicting Monovalent Ion Correlation Effects in Nucleic Acids. ACS OMEGA 2019; 4:13435-13446. [PMID: 31460472 PMCID: PMC6705202 DOI: 10.1021/acsomega.9b01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/18/2019] [Indexed: 05/14/2023]
Abstract
Ion correlation and fluctuation can play a potentially significant role in metal ion-nucleic acid interactions. Previous studies have focused on the effects for multivalent cations. However, the correlation and fluctuation effects can be important also for monovalent cations around the nucleic acid surface. Here, we report a model, gMCTBI, that can explicitly treat discrete distributions of both monovalent and multivalent cations and can account for the correlation and fluctuation effects for the cations in the solution. The gMCTBI model enables investigation of the global ion binding properties as well as the detailed discrete distributions of the bound ions. Accounting for the ion correlation effect for monovalent ions can lead to more accurate predictions, especially in a mixed monovalent and multivalent salt solution, for the number and location of the bound ions. Furthermore, although the monovalent ion-mediated correlation does not show a significant effect on the number of bound ions, the correlation may enhance the accumulation of monovalent ions near the nucleic acid surface and hence affect the ion distribution. The study further reveals novel ion correlation-induced effects in the competition between the different cations around nucleic acids.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department
of Applied Physics, Zhejiang University
of Technology, Hangzhou 310023, China
- Department
of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Yuanzhe Zhou
- Department
of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department
of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
- E-mail:
| |
Collapse
|
38
|
Denton JK, Kelleher PJ, Johnson MA, Baer MD, Kathmann SM, Mundy CJ, Wellen Rudd BA, Allen HC, Choi TH, Jordan KD. Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the air-water interface. Proc Natl Acad Sci U S A 2019; 116:14874-14880. [PMID: 31278149 PMCID: PMC6660762 DOI: 10.1073/pnas.1818600116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We exploit gas-phase cluster ion techniques to provide insight into the local interactions underlying divalent metal ion-driven changes in the spectra of carboxylic acids at the air-water interface. This information clarifies the experimental findings that the CO stretching bands of long-chain acids appear at very similar energies when the head group is deprotonated by high subphase pH or exposed to relatively high concentrations of Ca2+ metal ions. To this end, we report the evolution of the vibrational spectra of size-selected [Ca2+·RCO2-]+·(H2O) n=0to12 and RCO2-·(H2O) n=0to14 cluster ions toward the features observed at the air-water interface. Surprisingly, not only does stepwise hydration of the RCO2- anion and the [Ca2+·RCO2-]+ contact ion pair yield solvatochromic responses in opposite directions, but in both cases, the responses of the 2 (symmetric and asymmetric stretching) CO bands to hydration are opposite to each other. The result is that both CO bands evolve toward their interfacial asymptotes from opposite directions. Simulations of the [Ca2+·RCO2-]+·(H2O) n clusters indicate that the metal ion remains directly bound to the head group in a contact ion pair motif as the asymmetric CO stretch converges at the interfacial value by n = 12. This establishes that direct metal complexation or deprotonation can account for the interfacial behavior. We discuss these effects in the context of a model that invokes the water network-dependent local electric field along the C-C bond that connects the head group to the hydrocarbon tail as the key microscopic parameter that is correlated with the observed trends.
Collapse
Affiliation(s)
- Joanna K Denton
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520
| | | | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520;
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195
| | - Bethany A Wellen Rudd
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210
- Department of Chemistry, Ohio Wesleyan University, Delaware, OH 43015
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Tae Hoon Choi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kenneth D Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
39
|
Liu C, Min F, Liu L, Chen J. Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
Lynes O, Austin J, Kerridge A. Ab initio molecular dynamics studies of hydroxide coordination of alkaline earth metals and uranyl. Phys Chem Chem Phys 2019; 21:13809-13820. [PMID: 31210212 DOI: 10.1039/c9cp00142e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ab initio molecular dynamics (AIMD) simulations of the Mg2+, Ca2+, Sr2+ and UO22+ ions in either a pure aqueous environment or an environment containing two hydroxide ions have been carried out at the density functional level of theory, employing the generalised gradient approximation via the PBE exchange-correlation functional. Calculated mean M-O bond lengths in the first solvation shell of the aquo systems compared very well to existing experimental and computational literature, with bond lengths well within values measured previously and coordination numbers in line with previously calculated values. When applied to systems containing additional hydroxide ions, the methodology revealed increased bond lengths in all systems. Proton transfer events (PTEs) were recorded and were found to be most prevalent in the strontium hydroxide systems, likely due to the low charge density of the ion and the consequent lack of hydroxide coordination. For all alkaline earths, intrashell PTEs which occurred outside of the first solvation shell were most prevalent. Only three PTEs were identified in the entire simulation data of the uranium dihydroxide system, indicating the clear impact of the increased charge density of the hexavalent uranium ion on the strength of metal-oxygen bonds in aqueous solution. Broadly, systems containing more charge dense ions were found to exhibit fewer PTEs than those containing ions of lower charge density.
Collapse
Affiliation(s)
- Olivia Lynes
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | | |
Collapse
|
41
|
Skripkin MY, Chernykh LV, Pestova ON, Baranauskaite VE, Burkov KA, Zamyatin IV, Stepakova LV, Gusev IM, Gorbunov AO, Bogachev NA, Starova GL. Influence of Interactions in Solutions on the Solid Phase Formation in Ternary Water-Salt Systems. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219060033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Buchachenko A, Bukhvostov A, Ermakov K, Kuznetsov D. Nuclear spin selectivity in enzymatic catalysis: A caution for applied biophysics. Arch Biochem Biophys 2019; 667:30-35. [PMID: 31029686 DOI: 10.1016/j.abb.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
Abstract
Nuclear magnetic ions 25Mg2+, 43Ca2+, and 67Zn2+ suppress DNA synthesis by 3-5 times with respect to ions with nonmagnetic nuclei. This observation unambiguously evidences that the DNA synthesis occurs by radical pair mechanism, which is well known in chemistry and implies pairwise generation of radicals by electron transfer between reaction partners. This mechanism coexists with generally accepted nucleophilic one; it is switched on, when at least two ions enter into the catalytic site. It is induced by both sorts of ions, magnetic and nonmagnetic but it functions by 3-5 times more efficiently with magnetic ions stimulating radical pair mechanism. Decreasing catalytic activity of polymerases by 3-5 times, nuclear magnetic ions 25Mg2+, 43Ca2+, and 67Zn2+ even more strongly, by 30-50 times, increase mortality of cancer cells. The two reasons of this unique phenomenon are suggested: first, the high concentration of nuclear magnetic ions delivered by specific nano-container into the cancer cells, and, second, generation of short DNA fragments by polymerases loaded with nuclear magnetic ions, which is known to activate protein p53, efficiently stimulating apoptosis of cancer cells.
Collapse
Affiliation(s)
- Anatoly Buchachenko
- Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russian Federation; Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Russian Federation; Scientific Center of the Russian Academy of Sciences, 142432, Chernogolovka, Russian Federation; Moscow State University, Russian Federation
| | - Alexander Bukhvostov
- Russian National Research Medical University, Moscow, 119997, Russian Federation.
| | - Kirill Ermakov
- Russian National Research Medical University, Moscow, 119997, Russian Federation
| | - Dmitry Kuznetsov
- Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russian Federation; Russian National Research Medical University, Moscow, 119997, Russian Federation
| |
Collapse
|
43
|
Schauss J, Dahms F, Fingerhut BP, Elsaesser T. Phosphate-Magnesium Ion Interactions in Water Probed by Ultrafast Two-Dimensional Infrared Spectroscopy. J Phys Chem Lett 2019; 10:238-243. [PMID: 30599134 DOI: 10.1021/acs.jpclett.8b03568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electric interactions between ions and ionic molecular groups in aqueous solution play a fundamental role in chemistry and biology. While Mg2+ ions are known to strongly affect the structure and folding dynamics of biomolecules, the relevance of different solvation geometries and the underlying interactions are mainly unresolved. We study dynamics and couplings between the hydrated Mg2+ and the dimethylphosphate anion, an established model system for the DNA and RNA backbone. The asymmetric (PO2-) stretching vibration serves as a sensitive noninvasive probe of phosphate-ion interactions. Femtosecond two-dimensional infrared (2D-IR) spectroscopy directly maps Mg2+ ions in contact with the phosphate groups via a distinct blue-shifted signature in the 2D spectrum. Data for different Mg2+ concentrations are analyzed by microscopic density functional theory modeling of cluster geometries and associated spectroscopic features, providing spatial assignments of the observed 2D-IR signatures. Phosphate-ion interactions arising from electrostatic Coulomb forces and exchange repulsion are the predominant origin of the observed frequency shifts.
Collapse
Affiliation(s)
- Jakob Schauss
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| | - Fabian Dahms
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Berlin 12489 , Germany
| |
Collapse
|
44
|
Rani RS, Saharay M. Molecular dynamics simulation of protein-mediated biomineralization of amorphous calcium carbonate. RSC Adv 2019; 9:1653-1663. [PMID: 35518017 PMCID: PMC9059667 DOI: 10.1039/c8ra08459a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
The protein-mediated biomineralization of calcium carbonate (CaCO3) in living organisms is primarily governed by critical interactions between the charged amino acids of the protein, solvent, calcium (Ca2+) and carbonate (CO32−) ions. The present article investigates the molecular mechanism of lysozyme-mediated nucleation of amorphous calcium carbonate (ACC) using molecular dynamics and metadynamics simulations. The results reveal that, by acting as nucleation sites, the positively charged side chains of surface-exposed arginine residues form hydrogen bonds with carbonates and promote aggregation of ions around them leading to the formation and growth of ACC on the protein surface. The newly formed ACC patches were found to be less hydrated due to ion aggregation-induced expulsion of water from the nucleation sites. Despite favorable electrostatic interactions of the negatively charged side chains of aspartate and glutamate with calcium ions, these residues contribute minimally to the growth of ACC on protein surface. The activation barrier for the growth of partially hydrated ACC patches on lysozymes was determined from the free energy profiles obtained from metadynamics simulations. The protein-mediated biomineralization of calcium carbonate (CaCO3) in living organisms is primarily governed by critical interactions between the charged amino acids of the protein, solvent, calcium (Ca2+) and carbonate (CO32−) ions.![]()
Collapse
Affiliation(s)
- R Sandya Rani
- Department of Physics, Osmania University Hyderabad India
| | | |
Collapse
|
45
|
Miller QRS, Kaszuba JP, Schaef HT, Bowden ME, McGrail BP, Rosso KM. Anomalously low activation energy of nanoconfined MgCO3 precipitation. Chem Commun (Camb) 2019; 55:6835-6837. [DOI: 10.1039/c9cc01337g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental study of nanoconfined MgCO3 nucleation and growth processes reveals elevated kinetics due to less strongly hydrated Mg2+.
Collapse
Affiliation(s)
- Quin R. S. Miller
- Department of Geology and Geophysics
- University of Wyoming
- Laramie
- USA
- Physical and Computational Sciences Directorate
| | - John P. Kaszuba
- Department of Geology and Geophysics
- University of Wyoming
- Laramie
- USA
- School of Energy Resources
| | - Herbert T. Schaef
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Mark E. Bowden
- William R. Wiley Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| | - B. Peter McGrail
- Energy and Environment Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Kevin M. Rosso
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
46
|
Chen D, Li Y, Guo W, Li Y, Savidge T, Li X, Fan X. The shielding effect of metal complexes on the binding affinities of ligands to metalloproteins. Phys Chem Chem Phys 2019; 21:205-216. [DOI: 10.1039/c8cp06555a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The contributions of metal–ligand interactions to the ligand binding affinities are largely reduced by the shielding effects of metal complexes.
Collapse
Affiliation(s)
- Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Wei Guo
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Yongdong Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Tor Savidge
- Department of Pathology & Immunology
- Baylor College of Medicine
- Houston
- USA
- Texas Children's Microbiome Center
| | - Xun Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiaolin Fan
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
47
|
Sun LZ, Chen SJ. Predicting RNA-Metal Ion Binding with Ion Dehydration Effects. Biophys J 2018; 116:184-195. [PMID: 30612712 DOI: 10.1016/j.bpj.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023] Open
Abstract
Metal ions play essential roles in nucleic acids folding and stability. The interaction between metal ions and nucleic acids can be highly complicated because of the interplay between various effects such as ion correlation, fluctuation, and dehydration. These effects may be particularly important for multivalent ions such as Mg2+ ions. Previous efforts to model ion correlation and fluctuation effects led to the development of the Monte Carlo tightly bound ion model. Here, by incorporating ion hydration/dehydration effects into the Monte Carlo tightly bound ion model, we develop a, to our knowledge, new approach to predict ion binding. The new model enables predictions for not only the number of bound ions but also the three-dimensional spatial distribution of the bound ions. Furthermore, the new model reveals several intriguing features for the bound ions such as the mutual enhancement/inhibition in ion binding between the fully hydrated (diffuse) ions, the outer-shell dehydrated ions, and the inner-shell dehydrated ions and novel features for the monovalent-divalent ion interplay due to the hydration effect.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China; Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri.
| |
Collapse
|
48
|
Wang J, Smithline ZB. Crystallographic evidence for two-metal-ion catalysis in human pol η. Protein Sci 2018; 28:439-447. [PMID: 30368948 DOI: 10.1002/pro.3541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Extensive evidence exists that DNA polymerases use two metal ions to catalyze the phosphoryl transfer reaction. Recently, competing evidence emerged, suggesting that a third metal ion, known as MnC, may be involved in catalysis. The binding of MnC was observed in crystal structures of the replication complexes of human polymerase (pol) η, pol β, and pol μ. Its occupancy (qMnC ) in the pol η replication complexes exhibited a strong correlation with the occupancy of the formed product pyrophosphate (qPPi ), i.e., qMnC ∝ qPPi . However, a key piece of information was missing that is needed to distinguish between two possible sequences of events: (i) the chemical reaction occurs first with only two meal ions, followed by the binding of MnC in a "catch-the-product" mode; and (ii) MnC binds first, followed by the chemical reaction with all three metal ions in a "push-the-reaction-forward" mode. Both mechanisms can lead to a strong correlation between qMnC and qPPi . However, qMnC ≤ qPPi in the first scenario, whereas qMnC ≥ qPPi in the second. In this study, an analysis of crystallographic data published recently for pol η complexes shows that the formation of the product pyrophosphate definitely precedes the binding of MnC. Therefore, just like all other DNA polymerases, human pol η employs a two-metal-ion catalytic mechanism. Rather than help to catalyze the reaction, MnC stabilizes the formed product, which remains trapped inside the crystals, before it slowly diffuses out.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520
| | - Zachary B Smithline
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
49
|
Shi Q, Sterbinsky GE, Prigiobbe V, Meng X. Mechanistic Study of Lead Adsorption on Activated Carbon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13565-13573. [PMID: 30350696 DOI: 10.1021/acs.langmuir.8b03096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Activated carbon (AC) is a carbonaceous material broadly applied in filters to remove lead (Pb(II)) from drinking water through adsorption. However, the chemical interactions between Pb(II) and the reactive sites on AC or other carbonaceous materials are not well understood, yet. The understanding of the mechanism of Pb(II) adsorption onto AC would allow to optimally design AC-based materials even in the presence of a complex liquid phase. Here, the interaction between Pb(II) and functional groups on AC was investigated at the molecular scale to help identifying the chemical reactions at the solid-liquid interface. Spectroscopic analyses and chemical quantum calculations were performed and indicated the formation of monodentate mononuclear Pb(II)-phenol and bidentate mononuclear Pb(II)-carboxyl complexes on AC. Competitive adsorption behavior was observed between Pb(II) and calcium (Ca(II)) because of their similar adsorption configurations on AC. In contrast, anions, including sulfate and phosphate, were observed to enhance Pb(II) adsorption on AC by forming ternary complexes. On the basis of these observations, a new surface complexation model of Pb(II) adsorption onto AC was formulated and validated with batch tests. Overall, this work presents a new set of chemical reactions at the solid-liquid interface between Pb(II) and AC under various conditions of interest for the application of AC or other carbonaceous materials in water treatment.
Collapse
Affiliation(s)
- Qiantao Shi
- Center for Environmental Systems , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - George E Sterbinsky
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Valentina Prigiobbe
- Center for Environmental Systems , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - Xiaoguang Meng
- Center for Environmental Systems , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| |
Collapse
|
50
|
Selimović E, Soldatović T. Impact of Chloride Concentration on Ligand Substitution Reactions of Zinc(II) Complexes with Biologically Relevant Nitrogen Nucleophiles. PROGRESS IN REACTION KINETICS AND MECHANISM 2018. [DOI: 10.3184/146867818x15319903829164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mole-ratio method was used to determine the metal–ligand stoichiometry between [ZnCl2(en)] and [ZnCl2(terpy)] (where en = 1,2-diaminoethane or ethylenediamine and terpy = 2,2′:6′,2″-terpyridine) and imidazole at pH 7.2 in the presence of different chloride concentrations. The results indicated step-wise formation of 1:1 and 1:2 complexes in the presence of 0.010 M NaCl and 1:1 complexes in the presence of 0.001 M NaCl for the [ZnCl2(en)] complex. These results are correlated with additional coordination of chlorides in the first coordination sphere and with changes in coordination geometry. In the presence of 0.001 M NaCl the five-coordinate complex anion [ZnCl3(en)]- is formed initially and then a substitution reaction with imidazole occurs. In the presence of 0.010 M NaCl the octahedral complex anion [ZnCl4(en)]2- is formed. Additional coordination of chloride in the [ZnCl2(terpy)] complex is not found and the metal–ligand stoichiometry is 1:2. The kinetics of ligand substitution reactions of zinc(II) complexes and biologically relevant nitrogen nucleophiles such as imidazole, 1,2,3-triazole and L-histidine were investigated at pH 7.2 as a function of nucleophile concentration in the presence of 0.001 M and 0.010 M NaCl. The reactions were followed under pseudo first-order conditions by UV-Vis spectrophotometry. The substitution reactions included two steps of consecutive displacement of chlorido ligands with changes only in the coordination geometry of the [ZnCl2(en)] complex. The order of reactivity of the investigated nucleophiles for the first reaction step towards both complexes was L-histidine > 1,2,3-triazole > imidazole, while in the presence of 0.010 M NaCl the most reactive ligand was 1,2,3-triazole towards the [ZnCl2(en)] complex.
Collapse
Affiliation(s)
- Enisa Selimović
- Department of Chemical-Technological Science, State University of Novi Pazar, Vuka Karadžiča bb, 36300 Novi Pazar, Serbia
| | - Tanja Soldatović
- Department of Chemical-Technological Science, State University of Novi Pazar, Vuka Karadžiča bb, 36300 Novi Pazar, Serbia
| |
Collapse
|