1
|
Meng X, Ganapathy S, van Roemburg L, Post M, Brinks D. Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway. ACS PHYSICAL CHEMISTRY AU 2023; 3:320-333. [PMID: 37520318 PMCID: PMC10375888 DOI: 10.1021/acsphyschemau.3c00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 08/01/2023]
Abstract
Voltage imaging using genetically encoded voltage indicators (GEVIs) has taken the field of neuroscience by storm in the past decade. Its ability to create subcellular and network level readouts of electrical dynamics depends critically on the kinetics of the response to voltage of the indicator used. Engineered microbial rhodopsins form a GEVI subclass known for their high voltage sensitivity and fast response kinetics. Here we review the essential aspects of microbial rhodopsin photocycles that are critical to understanding the mechanisms of voltage sensitivity in these proteins and link them to insights from efforts to create faster, brighter and more sensitive microbial rhodopsin-based GEVIs.
Collapse
Affiliation(s)
- Xin Meng
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Srividya Ganapathy
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Pediatrics & Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California 92093, United States
| | - Lars van Roemburg
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Marco Post
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Daan Brinks
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Molecular Genetics, Erasmus University
Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
3
|
Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, Gashi D, Borin V, Skopintsev P, Jaeger K, Nass K, Båth P, Bosman R, Koglin J, Seaberg M, Lane T, Kekilli D, Brünle S, Tanaka T, Wu W, Milne C, White T, Barty A, Weierstall U, Panneels V, Nango E, Iwata S, Hunter M, Schapiro I, Schertler G, Neutze R, Standfuss J. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 2018; 361:science.aat0094. [PMID: 29903883 DOI: 10.1126/science.aat0094] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
Ultrafast isomerization of retinal is the primary step in photoresponsive biological functions including vision in humans and ion transport across bacterial membranes. We used an x-ray laser to study the subpicosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin. A series of structural snapshots with near-atomic spatial resolution and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket before passing through a twisted geometry and emerging in the 13-cis conformation. Our findings suggest ultrafast collective motions of aspartic acid residues and functional water molecules in the proximity of the retinal Schiff base as a key facet of this stereoselective and efficient photochemical reaction.
Collapse
Affiliation(s)
- Przemyslaw Nogly
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Daniel James
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Dardan Gashi
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Veniamin Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Petr Skopintsev
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kathrin Jaeger
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jason Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Demet Kekilli
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wenting Wu
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Thomas White
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Valerie Panneels
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mark Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gebhard Schertler
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| |
Collapse
|
4
|
Mizuno M, Nakajima A, Kandori H, Mizutani Y. Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis. J Phys Chem A 2018; 122:2411-2423. [DOI: 10.1021/acs.jpca.7b12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| | - Ayumi Nakajima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and
| |
Collapse
|
5
|
Terpugov EL, Degtyareva OV. Photo-induced processes and the reaction dynamics of bacteriorhodopsin. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Wende T, Liebel M, Schnedermann C, Pethick RJ, Kukura P. Population-controlled impulsive vibrational spectroscopy: background- and baseline-free Raman spectroscopy of excited electronic states. J Phys Chem A 2014; 118:9976-84. [PMID: 25244029 DOI: 10.1021/jp5075863] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have developed the technique of population-controlled impulsive vibrational spectroscopy (PC-IVS) aimed at providing high-quality, background-free Raman spectra of excited electronic states and their dynamics. Our approach consists of a modified transient absorption experiment using an ultrashort (<10 fs) pump pulse with additional electronic excitation and control pulses. The latter allows for the experimental isolation of excited-state vibrational coherence and, hence, vibrational spectra. We illustrate the capabilities of PC-IVS by reporting the Raman spectra of well-established molecular systems such as the carotenoid astaxanthin and trans-stilbene and present the first excited-state Raman spectra of the retinal protonated Schiff base chromophore in solution. Our approach, illustrated here with impulsive vibrational spectroscopy, is equally applicable to transient and even multidimensional infrared and electronic spectroscopies to experimentally isolate spectroscopic signatures of interest.
Collapse
Affiliation(s)
- Torsten Wende
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
8
|
Liebel M, Kukura P. Broad-Band Impulsive Vibrational Spectroscopy of Excited Electronic States in the Time Domain. J Phys Chem Lett 2013; 4:1358-64. [PMID: 26282153 DOI: 10.1021/jz4004203] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We demonstrate that transient absorption spectroscopy performed with an ultrashort pump pulse and a chirped, broad-band probe pulse is capable of recording full vibrational spectra of excited electronic states in the time domain. The resulting spectra do not suffer from the nontrivial baselines and line shapes often encountered in frequency domain techniques and enable optimal and automated subtraction of background signatures. Probing the molecular dynamics continuously over a broad energy bandwidth makes it possible to confidently assign the vibrational coherences to specific electronic states and suggests the existence of mode-specific absorption spectra reminiscent of resonance Raman intensity analysis. The first observation of the nominally forbidden one-photon ground to first excited electronic state transition in β-carotene demonstrates the high sensitivity of our approach. Our results provide a first glimpse of the immense potential of broad-band impulsive vibrational spectroscopy (BB-IVS) to study ultrafast chemical reaction dynamics.
Collapse
Affiliation(s)
- Matz Liebel
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
Wand A, Friedman N, Sheves M, Ruhman S. Ultrafast Photochemistry of Light-Adapted and Dark-Adapted Bacteriorhodopsin: Effects of the Initial Retinal Configuration. J Phys Chem B 2012; 116:10444-52. [DOI: 10.1021/jp2125284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| | - Noga Friedman
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the
Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Groma GI, Colonna A, Martin JL, Vos MH. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy. Biophys J 2011; 100:1578-86. [PMID: 21402041 DOI: 10.1016/j.bpj.2011.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process.
Collapse
Affiliation(s)
- Géza I Groma
- Laboratory for Optical Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | |
Collapse
|
11
|
Control of retinal isomerization in bacteriorhodopsin in the high-intensity regime. Proc Natl Acad Sci U S A 2009; 106:10896-900. [PMID: 19564608 DOI: 10.1073/pnas.0904589106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A learning algorithm was used to manipulate optical pulse shapes and optimize retinal isomerization in bacteriorhodopsin, for excitation levels up to 1.8 x 10(16) photons per square centimeter. Below 1/3 the maximum excitation level, the yield was not sensitive to pulse shape. Above this level the learning algorithm found that a Fourier-transform-limited (TL) pulse maximized the 13-cis population. For this optimal pulse the yield increases linearly with intensity well beyond the saturation of the first excited state. To understand these results we performed systematic searches varying the chirp and energy of the pump pulses while monitoring the isomerization yield. The results are interpreted including the influence of 1-photon and multiphoton transitions. The population dynamics in each intermediate conformation and the final branching ratio between the all-trans and 13-cis isomers are modified by changes in the pulse energy and duration.
Collapse
|
12
|
Shim S, Dasgupta J, Mathies RA. Femtosecond Time-Resolved Stimulated Raman Reveals the Birth of Bacteriorhodopsin’s J and K Intermediates. J Am Chem Soc 2009; 131:7592-7. [DOI: 10.1021/ja809137x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangdeok Shim
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Jyotishman Dasgupta
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
13
|
Szymczak JJ, Barbatti M, Lischka H. Mechanism of Ultrafast Photodecay in Restricted Motions in Protonated Schiff Bases: The Pentadieniminium Cation. J Chem Theory Comput 2008; 4:1189-99. [DOI: 10.1021/ct800148n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jaroslaw J. Szymczak
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| | - Mario Barbatti
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| | - Hans Lischka
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Wu Y, Zhong S, Ai X, Hu K, Zhang J. Ultrafast isomerization dynamics of retinal in bacteriorhodopsin as revealed by femtosecond absorption spectroscopy. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Initial reaction dynamics of proteorhodopsin observed by femtosecond infrared and visible spectroscopy. Biophys J 2008; 94:4796-807. [PMID: 18326639 DOI: 10.1529/biophysj.107.125484] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a comparative study using femtosecond pump/probe spectroscopy in the visible and infrared of the early photodynamics of solubilized proteorhodopsin (green absorbing variant) in D(2)O with deprotonated (pD 9.2) and protonated (pD 6.4) primary proton acceptor Asp-97. The vis-pump/vis-probe experiments show a kinetic isotope effect that is more pronounced for alkaline conditions, thus decreasing the previously reported pH-dependence of the primary reaction of proteorhodopsin in H(2)O. This points to a pH dependent H-bonding network in the binding pocket of proteorhodopsin, that directly influences the primary photo-induced dynamics. The vis-pump/IR-probe experiments were carried out in two different spectral regions and allowed to monitor the retinal C=C (1500 cm(-1)-1580 cm(-1)) and C=N stretching vibration as well as the amide I mode of the protein (1590 cm(-1)-1680 cm(-1)). Like the FTIR spectra of the K intermediate (PR(K)-PR difference spectra) in this spectral range, the kinetic parameters and also the quantum efficiency of photo-intermediate formation are found to be virtually independent of the pD value.
Collapse
|
16
|
Kobayashi T, Yabushita A, Saito T, Ohtani H, Tsuda M. Sub-5-fs real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Photochem Photobiol 2007; 83:363-8. [PMID: 17132067 DOI: 10.1562/2006-08-19-ir-1006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By using a sub-5-fs visible laser pulse, we have made the first observation of the vibrational spectra of the transition state during trans-cis isomerization in the retinal chromophore of bacteriorhodopsin (bR(S68). No instant isomerization of the retinal occurs in spite of electron promotion from the bonding pi-orbital to the anti-bonding pi*-orbital. The difference between the in-plane and out-of-plane vibrational frequencies (about 1150-1250 and 900-1000 cm(-1), respectively) is reduced during the first time period. The vibrational spectra after this period became very broad and weak and are ascribed to a "silent state." The silent state lasts for 700-900 fs until the chromophore isomerizes to the cis-C13 = C14 conformation. The frequency of the C = C stretching mode was modulated by the torsion mode of the C13 = C14 double bond with a period of 200 fs. The modulation was clearly observed for four to five periods. Using the empirical equation for the relation between bond length and stretching frequency, we determined the transitional C = C bond length with about 0.01 angstroms accuracy during the torsion motion around the double bond with 1-fs time resolution.
Collapse
Affiliation(s)
- Takayoshi Kobayashi
- Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
17
|
Send R, Sundholm D. The Role of the β-Ionone Ring in the Photochemical Reaction of Rhodopsin. J Phys Chem A 2006; 111:27-33. [PMID: 17201384 DOI: 10.1021/jp065510f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Time-dependent density functional theory (TDDFT) calculations on the photoabsorption process of the 11-cis retinal protonated Schiff base (PSB) chromophore show that the Franck-Condon relaxation of the first excited state of the chromophore involves a torsional twist motion of the beta-ionone ring relative to the conjugated retinyl chain. For the ground state, the beta-ionone ring and the retinyl chain of the free retinal PSB chromophore form a -40 degrees dihedral angle as compared to -94 degrees for the first excited state. The double bonds of the retinal are shorter for the fully optimized structure of the excited state than for the ground state suggesting a higher cis-trans isomerization barrier for the excited state than for the ground state. According to the present TDDFT calculations, the excitation of the retinal PSB chromophore does not primarily lead to a reaction along the cis-trans torsional coordinate at the C11-C12 bond. The activation of the isomerization center seems to occur at a later stage of the photo reaction. The results obtained at the TDDFT level are supported by second-order Møller-Plesset (MP2) and approximate singles and doubles-coupled cluster (CC2) calculations on retinal chromophore models; the MP2 and CC2 calculations yield for them qualitatively the same ground state and excited-state structures as obtained in the density functional theory and TDDFT calculations.
Collapse
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
18
|
Primary events in the bacteriorhodopsin photocycle: Torsional vibrational dephasing in the first excited electronic state. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Nibbering ETJ, Fidder H, Pines E. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics. Annu Rev Phys Chem 2005; 56:337-67. [PMID: 15796704 DOI: 10.1146/annurev.physchem.56.092503.141314] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.
Collapse
Affiliation(s)
- Erik T J Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany.
| | | | | |
Collapse
|
20
|
Abramczyk H. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: Revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle. J Chem Phys 2004; 120:11120-32. [PMID: 15268142 DOI: 10.1063/1.1737731] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Femtosecond primary events in bacteriorhodopsin (BR) and its retinal modified analogs are discussed. Ultrafast time resolved electronic spectra of the primary intermediates induced in the BR photocycle are discussed along with spectral and kinetic inconsistencies of the previous models proposed in the literature. The theoretical model proposed in this paper based on vibrational coupling between the electronic transition of the chromophore and intramolecular vibrational modes allows us to calculate the equilibrium electronic absorption band shape and the hole burning profiles. The model is able to rationalize the complex pattern of behavior for the primary events in BR and explain the origin of the apparent inconsistencies between the experiment and the previous theoretical models. The model presented in the paper is based on the anharmonic coupling assumption in the adiabatic approximation using the canonical transformation method for diagonalization of the vibrational Hamiltonian instead of the commonly used perturbation theory. The electronic transition occurs between the Born-Oppenheimer potential energy surfaces with the electron involved in the transition being coupled to the intramolecular vibrational modes of the molecule (chromophore). The relaxation of the excited state occurs by indirect damping (dephasing) mechanisms. The indirect dephasing is governed by the time evolution of the anharmonic coupling constant driven by the resonance energy exchange between the intramolecular vibrational mode and the bath. The coupling with the intramolecular vibrational modes results in the Franck-Condon progression of bands that are broadened due to the vibrational dephasing mechanisms. The electronic absorption line shape has been calculated based on the linear response theory whereas the third order nonlinear response functions have been used to analyze the hole burning profiles obtained from the pump-probe time-resolved measurements. The theoretical treatment proposed in this paper provides a basis for a substantial revision of the commonly accepted interpretation of the primary events in the BR photocycle that exists in the literature.
Collapse
Affiliation(s)
- Halina Abramczyk
- Technical University, Department of Chemistry, Laboratory of Molecular Laser Spectroscopy at IARC, Wroblewskiego 15 Street, 93-590 Lodz, Poland.
| |
Collapse
|
21
|
Terentis AC, Zhou Y, Atkinson GH, Ujj L. Picosecond Time-Resolved Coherent Anti-Stokes Raman Spectroscopy of the Artificial Bacteriorhodopsin Pigment, BR6.11. J Phys Chem A 2003. [DOI: 10.1021/jp030612g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew C. Terentis
- Department of Chemistry and Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
| | - Yidong Zhou
- Department of Chemistry and Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
| | - George H. Atkinson
- Department of Chemistry and Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
| | - Laszlo Ujj
- Department of Physics, University of West Florida, Pensacola, Florida 32514
| |
Collapse
|
22
|
Wang J, Link S, Heyes CD, El-Sayed MA. Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. Biophys J 2002; 83:1557-66. [PMID: 12202380 PMCID: PMC1302253 DOI: 10.1016/s0006-3495(02)73925-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.
Collapse
Affiliation(s)
- Jianping Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 USA
| | | | | | | |
Collapse
|
23
|
Wang J, El-Sayed MA. Time-resolved long-lived infrared emission from bacteriorhodopsin during its photocycle. Biophys J 2002; 83:1589-94. [PMID: 12202383 PMCID: PMC1302256 DOI: 10.1016/s0006-3495(02)73928-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The infrared emission observed below 2000 cm(-1) upon exciting retinal in bacteriorhodopsin (bR) is found to have a rise time in the submicrosecond time regime and to relax with two exponential components on the submillisecond to millisecond time scale. These time scales, together with the assignment of this emission to hot vibrations from the all-trans retinal (in bR) and the 13-cis retinal (in the K intermediate), support the recent assignment of the J-intermediate as an electronically excited species (Atkinson et al., J. Phys. Chem. A. 104:4130-4139, 2000) rather than a vibrationally hot K intermediate. A discussion of these time scales of the observed infrared emission is given in terms of the competition between radiative and nonradiative relaxation processes of the vibrational states involved.
Collapse
Affiliation(s)
- Jianping Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 USA
| | | |
Collapse
|
24
|
Herbst J, Heyne K, Diller R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 2002; 297:822-5. [PMID: 12161649 DOI: 10.1126/science.1072144] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The vibrational dynamics of the retinal chromophore all-trans-to-13-cis photoisomerization in bacteriorhodopsin has been studied with mid-infrared absorption spectroscopy at high time resolution (about 200 femtoseconds). After photoexcitation of light-adapted bacteriorhodopsin, the transient infrared absorption was probed in a broad spectral region, including vibrations with dominant C-C, C=C, and C=NH stretching mode amplitude. All photoproduct modes, especially those around 1190 reciprocal-centimeters that are indicative for a 13-cis configuration of the chromophore, rise with a time constant of approximately 0.5 picosecond. The results presented give direct vibrational-spectroscopic evidence for the isomerization taking place within 0.5 picosecond, as has been suggested by previous optical femtosecond time-resolved experiments but questioned recently by picosecond time-resolved vibrational spectroscopy experiments.
Collapse
Affiliation(s)
- Johannes Herbst
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | |
Collapse
|
25
|
Ruhman S, Hou B, Friedman N, Ottolenghi M, Sheves M. Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping. J Am Chem Soc 2002; 124:8854-8. [PMID: 12137538 DOI: 10.1021/ja026426q] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New information concerning the photochemical dynamics of bacteriorhodopsin (BR) is obtained by impulsively stimulating emission from the reactive fluorescent state. Depletion of the excited-state fluorescence leads to an equal reduction in production of later photoproducts. Accordingly, chromophores which are forced back to the ground state via emission do not continue on in the photocycle, conclusively demonstrating that the fluorescent state is a photocycle intermediate. The insensitivity of depletion dynamics to the "dump" pulse timing, throughout the fluorescent states lifetime, and the biological inactivity of the dumped population suggest that the fluorescent-state structure is constant, well-defined, and significantly different than that where crossing to the ground state takes place naturally. In conjunction with conclusions from comparing the photophysics of BR with those of synthetic analogues containing "locked" retinals, present results show that large-amplitude torsion around C13=C14 is required to go between the above structures.
Collapse
Affiliation(s)
- Sanford Ruhman
- Department of Physical Chemistry and The Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel.
| | | | | | | | | |
Collapse
|
26
|
Haacke S, Schenkl S, Vinzani S, Chergui M. Femtosecond and picosecond fluorescence of native bacteriorhodopsin and a nonisomerizing analog. Biopolymers 2002; 67:306-9. [PMID: 12012454 DOI: 10.1002/bip.10092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The spectrally and temporally resolved fluorescence properties of native bacteriorhodopsin (bR) and bR reconstituted with a nonisomerizing analog of the retinal Schiff base (bR5.12) are examined. The first attempt to experimentally monitor the excited state relaxation processes in both type of pigments using ultrafast fluorescence spectroscopy is reported. The fluorescence is emitted from retinal molecules in an all-trans configuration. Substantial energy relaxation involves very fast intramolecular and intermolecular vibrational modes and these are shown to occur on a time scale faster than isomerization. The possible contribution of dielectric interaction between the retinal Schiff base and the protein environment for the excited state energy relaxation is discussed.
Collapse
Affiliation(s)
- S Haacke
- Institut de Physique de la Matière Condensée, Université de Lausanne, CH-1015, Switzerland.
| | | | | | | |
Collapse
|
27
|
Kobayashi T, Saito T, Ohtani H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 2001; 414:531-4. [PMID: 11734850 DOI: 10.1038/35107042] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Real-time investigations of the rearrangement of bonds during chemical transformations require femtosecond temporal resolution, so that the atomic vibrations within the reacting molecules can be observed. Following the development of lasers capable of emitting ultrashort laser flashes on this timescale, chemical reactions involving relatively simple molecules have been monitored in detail, revealing the transient existence of intermediate species as reactants are transformed into products. Here we report the direct observation of nuclear motion in a complex biological system, the retinal chromophore of bacteriorhodopsin (bR568), as it undergoes the trans-cis photoisomerization that is fundamental to the vision process. By using visible-light pulses of less than 5 femtosecond in duration, we are able to monitor changes in the vibrational spectra of the transition state and thus show that despite photoexcitation of the anti-bonding molecular orbital involved, isomerization does not occur instantly, but involves transient formation of a so-called 'tumbling state'. Our observations thus agree with growing experimental and ab initio evidence for a three-state photoisomerization model and firmly discount the initially suggested two-state model for this process.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
28
|
Logunov SL, Volkov VV, Braun M, El-Sayed MA. The relaxation dynamics of the excited electronic states of retinal in bacteriorhodopsin by two-pump-probe femtosecond studies. Proc Natl Acad Sci U S A 2001; 98:8475-9. [PMID: 11447258 PMCID: PMC37460 DOI: 10.1073/pnas.141220198] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the results of two-pump and probe femtosecond experiments designed to follow the relaxation dynamics of the lowest excited state (S(1)) populated by different modes. In the first mode, a direct (S(0) --> S(1)) radiative excitation of the ground state is used. In the second mode, an indirect excitation is used where the S(1) state is populated by the use of two femtosecond laser pulses with different colors and delay times between them. The first pulse excites the S(0) --> S(1) transition whereas the second pulse excites the S(1) --> S(n) transition. The nonradiative relaxation from the S(n) state populates the lowest excited state. Our results suggest that the S(1) state relaxes faster when populated nonradiatively from the S(n) state than when pumped directly by the S(0) --> S(1) excitation. Additionally, the S(n) --> S(1) nonradiative relaxation time is found to change by varying the delay time between the two pump pulses. The observed dependence of the lowest excited state population as well as its dependence on the delay between the two pump pulses are found to fit a kinetic model in which the S(n) state populates a different surface (called S'(1)) than the one being directly excited (S(1)). The possible involvement of the A(g) type states, the J intermediate, and the conical intersection leading to the S(0) or to the isomerization product (K intermediate) are discussed in the framework of the proposed model.
Collapse
Affiliation(s)
- S L Logunov
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | |
Collapse
|
29
|
Haacke S, Vinzani S, Schenkl S, Chergui M. Spectral and Kinetic Fluorescence Properties of Native and Nonisomerizing Retinal in Bacteriorhodopsin. Chemphyschem 2001; 2:310-5. [DOI: 10.1002/1439-7641(20010518)2:5<310::aid-cphc310>3.0.co;2-c] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2000] [Indexed: 11/11/2022]
|
30
|
Watts AB, Patel H. The theory and application of transition state pK(a) values: the reaction of papain with a series of trimethylene disulphide reactivity probes. J Theor Biol 2001; 209:417-29. [PMID: 11319891 DOI: 10.1006/jtbi.2001.2276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For many years methods to describe the structure of the transition state for a reaction have been sought. Most commonly these structures have been inferred from kinetic isotope effects. We report here for the first time the application of transition state pK(a) values to describe the relationship between molecular recognition and the transition state for the catalytic mechanism of papain. The background to the theory is presented and applied to the reactions of papain with a series of trimethylene disulphide reactivity probes. The common feature of these reactions is a loss in reactivity on ionization of the imidazolium cation for those probes containing molecular recognition features and an increase in reactivity on ionization of the electrostatic switch residue. The use of transition state pK(a) values enhances this information by providing details regarding the protonic distribution within the transition state. This has led to the reconsideration of the effect of the electrostatic switch ionization and the role of the hydrogen bond formed between the catalytic-site imidazolium cation and the leaving group of the reaction in the catalytic mechanism of papain.
Collapse
Affiliation(s)
- A B Watts
- Schools of Chemistry and Biological Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | | |
Collapse
|
31
|
Wang J, El-Sayed MA. Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin. Biophys J 2001; 80:961-71. [PMID: 11159463 PMCID: PMC1301294 DOI: 10.1016/s0006-3495(01)76075-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nanosecond-to-microsecond time-resolved Fourier transform infrared (FTIR) spectroscopy in the 3000-1000-cm(-1) region has been used to examine the polarizable proton continua observed in bacteriorhodopsin (bR) during its photocycle. The difference in the transient FTIR spectra in the time domain between 20 ns and 1 ms shows a broad absorption continuum band in the 2100-1800-cm(-1) region, a bleach continuum band in the 2500-2150-cm(-1) region, and a bleach continuum band above 2700 cm(-1). According to Zundel (G., J. Mol. Struct. 322:33-42), these continua appear in systems capable of forming polarizable hydrogen bonds. The formation of a bleach continuum suggests the presence of a polarizable proton in the ground state that changes during the photocycle. The appearance of a transient absorption continuum suggests a change in the polarizable proton or the appearance of new ones. It is found that each continuum has a rise time of less than 80 ns and a decay time component of approximately 300 micros. In addition, it is found that the absorption continuum in the 2100-1800-cm(-1) region has a slow rise component of 190 ns and a fast decay component of approximately 60 micros. Using these results and those of the recent x-ray structural studies of bR(570) and M(412) (H. Luecke, B. Schobert, H.T. Richter, J.-P. Cartailler, and J. K., Science 286:255-260), together with the already known spectroscopic properties of the different intermediates in the photocycle, the possible origins of the polarizable protons giving rise to these continua during the bR photocycle are proposed. Models of the proton pump are discussed in terms of the changes in these polarizable protons and the hydrogen-bonded chains and in terms of previously known results such as the simultaneous deprotonation of the protonated Schiff base (PSB) and Tyr185 and the disappearance of water molecules in the proton release channel during the proton pump process.
Collapse
Affiliation(s)
- J Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|