1
|
Oberg CP, Spangler LC, Coker DF, Scholes GD. Chirped Laser Pulse Control of Vibronic Wavepackets and Energy Transfer in Phycocyanin 645. J Phys Chem Lett 2024; 15:7125-7132. [PMID: 38959027 DOI: 10.1021/acs.jpclett.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Photosynthetic organisms use light-harvesting complexes to increase the spectrum of light that they absorb from solar photons. Recent ultrafast spectroscopic studies have revealed that efficient (sub-ps) energy transfer is mediated by vibronic coherence in the phycobiliprotein phycocyanin 645 (PC645). Here, we report studies that employ broadband pump-probe spectroscopy with linearly chirped excitation pulses to further investigate the relationship between vibronic state preparation and energy transfer dynamics in PC645. Negatively chirped pulse excitation is found to enhance wavepackets of a high-frequency mode (1580 cm-1) and increase the rate of downhill energy transfer, while on the other hand, positively chirped pulses suppress these oscillatory features and decrease this rate. Model calculations incorporating the influence of the chirped pump pulse are used to understand its effect on initial state preparation. These results provide mechanistic insight into how the overall nonequilibrium rate of energy transfer is influenced by initial state preparation.
Collapse
Affiliation(s)
- Catrina P Oberg
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| | - Leah C Spangler
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| | - David F Coker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Zhu R, Li W, Zhen Z, Zou J, Liao G, Wang J, Wang Z, Chen H, Qin S, Weng Y. Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas. Nat Commun 2024; 15:3171. [PMID: 38609379 PMCID: PMC11015008 DOI: 10.1038/s41467-024-47560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.
Collapse
Affiliation(s)
- Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
| | - Jiading Zou
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guohong Liao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China.
| |
Collapse
|
3
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
4
|
Du M, Qin M, Cui H, Wang C, Xu Y, Ma X, Yi X. Role of Spatially Correlated Fluctuations in Photosynthetic Excitation Energy Transfer with an Equilibrium and a Nonequilibrium Initial Bath. J Phys Chem B 2021; 125:6417-6430. [PMID: 34105973 DOI: 10.1021/acs.jpcb.1c02041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of excitation energy in photosynthetic light-harvesting complexes has inspired growing interest for its scientific and engineering significance. Recent experimental findings have suggested that spatially correlated environmental fluctuations may account for the existence of long-lived quantum coherent energy transfer observed even at physiological temperature. In this paper, we investigate the effects of spatial correlations on the excitation energy transfer dynamics by including a nonequilibrium initial bath in a simulated donor-acceptor model. The initial bath state, which is assumed to be either equilibrium or nonequilibrium, is expanded in powers of coupling strength within the polaron formalism of a quantum master equation. The spatial correlations of bath fluctuations strongly influence the decay of coherence in the dynamics. The role of a nonequilibrium initial bath is also influenced by spatial correlations and becomes the most conspicuous for certain degrees of spatial correlations from which we propose a picture that the spatial correlations of bath fluctuations open up new energy transfer pathways, playing a role of protecting coherence. Besides, we apply the polaron master equation approach to study the dynamics in a two-site subsystem of the FMO complex and provide a practical example that shows the versatility of this approach.
Collapse
Affiliation(s)
- Min Du
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Ming Qin
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.,Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Haitao Cui
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.,Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Chunyang Wang
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Yuqing Xu
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaoguang Ma
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xuexi Yi
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Schultz JD, Shin JY, Chen M, O'Connor JP, Young RM, Ratner MA, Wasielewski MR. Influence of Vibronic Coupling on Ultrafast Singlet Fission in a Linear Terrylenediimide Dimer. J Am Chem Soc 2021; 143:2049-2058. [PMID: 33464054 DOI: 10.1021/jacs.0c12201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF) is a photophysical process capable of boosting the efficiency of solar cells. Recent experimental investigations into the mechanism of SF provide evidence for coherent mixing between the singlet, triplet, and charge transfer basis states. Up until now, this interpretation has largely focused on electronic interactions; however, nuclear motions resulting in vibronic coupling have been suggested to support rapid and efficient SF in organic chromophore assemblies. Further information about the complex interactions between vibronic excited states is needed to understand the potential role of this coupling in SF. Here, we report mixed singlet and correlated triplet pair states giving rise to sub-50 fs SF in a terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer in which the two TDI molecules are covalently linked by a direct N-N connection at one of their imide positions, leading to a linear dimer with perpendicular TDI π systems. We observe the transfer of low-frequency coherent wavepackets between the initial predominantly singlet states to the product triplet-dominated states. This implies a non-negligible dependence of SF on nonadiabatic coupling in this dimer. We interpret our experimental results in the framework of a modified Holstein Hamiltonian, which predicts that vibronic interactions between low-frequency singlet modes and high-frequency correlated triplet pair motions lead to mixing of the pure basis states. These results highlight how nonadiabatic mixing can shape the complex potential energy landscape underlying ultrafast SF.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, 30019 Sejong-ro, Sejong, South Korea
| | - Michelle Chen
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark A Ratner
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
6
|
Abstract
The fundamental principle governing the robust excitation energy transfer (EET) in the light-harvesting complexes remained elusive. Recent spectroscopic observations of the EET attract attention toward the role of the quantum effects in the biological systems. In this study, along with the time evolution, the distance between the quantum states of the pigments is also considered for a detailed illustration of the effect of the quantum coherence on the speed of the excitation transfer. The comparative analysis of the coherently delocalized EET with the incoherent discrete hopping reveals that the coherent superposition speedup the excitation transfer process, for instance, with the initially localized excitation, coherence provides a ∼4-fold enhancement to the excitation transfer rate.
Collapse
Affiliation(s)
- Davinder Singh
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
7
|
Interference among Multiple Vibronic Modes in Two-Dimensional Electronic Spectroscopy. MATHEMATICS 2020. [DOI: 10.3390/math8020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vibronic coupling between electronic and vibrational states in molecules plays a critical role in most photo-induced phenomena. Many key details about a molecule’s vibronic coupling are hidden in linear spectroscopic measurements, and therefore nonlinear optical spectroscopy methods such as two-dimensional electronic spectroscopy (2D ES) have become more broadly adopted. A single vibrational mode of a molecule leads to a Franck–Condon progression of peaks in a 2D spectrum. Each peak oscillates as a function of the waiting time, and Fourier transformation can produce a spectral slice known as a ‘beating map’ at the oscillation frequency. The single vibrational mode produces a characteristic peak structure in the beating map. Studies of single modes have limited utility, however, because most molecules have numerous vibrational modes that couple to the electronic transition. Interactions or interference among the modes may lead to complicated peak patterns in each beating map. Here, we use lineshape-function theory to simulate 2D ES arising from a system having multiple vibrational modes. The simulations reveal that the peaks in each beating map are affected by all of the vibrational modes and therefore do not isolate a single mode, which was anticipated.
Collapse
|
8
|
Siwiak-Jaszek S, Olaya-Castro A. Transient synchronisation and quantum coherence in a bio-inspired vibronic dimer. Faraday Discuss 2019; 216:38-56. [PMID: 31062011 DOI: 10.1039/c9fd00006b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synchronisation is a collective phenomenon widely investigated in classical oscillators and, more recently, in quantum systems. However it remains unclear what features distinguish synchronous behaviour in these two scenarios. Recent works have shown that investigating synchronisation dynamics in open quantum systems can give insight into this issue. Here we study transient synchronisation in a bio-inspired vibronic dimer, where electronic excitation dynamics is mediated by coherent interactions with intramolecular vibrational modes. We show that the synchronisation dynamics of local mode displacements exhibit a rich behaviour which arises directly from the distinct time-evolutions of different vibronic quantum coherences. Furthermore, our study shows that coherent energy transport in this bio-inspired system is concomitant with the emergence of positive synchronisation between mode displacements. Our work provides further understanding of the relations between quantum coherence and synchronisation in open quantum systems and suggests an interesting role for coherence in biomolecules, that of promoting synchronisation of vibrational motions driven out of thermal equilibrium.
Collapse
Affiliation(s)
- Stefan Siwiak-Jaszek
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
9
|
Lim J, Bösen CM, Somoza AD, Koch CP, Plenio MB, Huelga SF. Multicolor Quantum Control for Suppressing Ground State Coherences in Two-Dimensional Electronic Spectroscopy. PHYSICAL REVIEW LETTERS 2019; 123:233201. [PMID: 31868446 DOI: 10.1103/physrevlett.123.233201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 06/10/2023]
Abstract
The measured multidimensional spectral response of different light harvesting complexes exhibits oscillatory features which suggest an underlying coherent energy transfer. However, making this inference rigorous is challenging due to the difficulty of isolating excited state coherences in highly congested spectra. In this work, we provide a coherent control scheme that suppresses ground state coherences, thus making rephasing spectra dominated by excited state coherences. We provide a benchmark for the scheme using a model dimeric system and numerically exact methods to analyze the spectral response. We argue that combining temporal and spectral control methods can facilitate a second generation of experiments that are tailored to extract desired information and thus significantly advance our understanding of complex open many-body structure and dynamics.
Collapse
Affiliation(s)
- J Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - C M Bösen
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - A D Somoza
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - C P Koch
- Theoretische Physik, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - M B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - S F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| |
Collapse
|
10
|
Wang L, Allodi MA, Engel GS. Quantum coherences reveal excited-state dynamics in biophysical systems. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0109-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Bizimana LA, Carbery WP, Gellen TA, Turner DB. Signatures of Herzberg-Teller coupling in three-dimensional electronic spectroscopy. J Chem Phys 2018; 146:084311. [PMID: 28249416 DOI: 10.1063/1.4976995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The coupling between electronic and nuclear variables is a key consideration in molecular dynamics and spectroscopy. However, simulations that include detailed vibronic coupling terms are challenging to perform, and thus a variety of approximations can be used to model and interpret experimental results. Recent work shows that these simplified models can be inadequate. It is therefore important to understand spectroscopic signals that can identify failures of those approximations. Here we use an extended response-function method to simulate coherent three-dimensional electronic spectroscopy (3D ES) and study the sensitivity of this method to the breakdown of the Franck-Condon approximation. The simulations include a coordinate-dependent transition dipole operator that produces nodes, phase shifts, and peak patterns in 3D ES that can be used to identify Herzberg-Teller coupling. Guided by the simulation results, we interpret measurements on a molecular aggregate.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - William P Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Tobias A Gellen
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| |
Collapse
|
12
|
Realistic Quantum Control of Energy Transfer in Photosynthetic Processes. ENERGIES 2016. [DOI: 10.3390/en9121063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Holdaway DIH, Collini E, Olaya-Castro A. Coherence specific signal detection via chiral pump-probe spectroscopy. J Chem Phys 2016; 144:194112. [DOI: 10.1063/1.4948943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David I. H. Holdaway
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, I-35131 Padova, Italy
| | - Alexandra Olaya-Castro
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Iles-Smith J, Dijkstra AG, Lambert N, Nazir A. Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations. J Chem Phys 2016; 144:044110. [DOI: 10.1063/1.4940218] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Jake Iles-Smith
- Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2PG, United Kingdom
- Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Arend G. Dijkstra
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Ahsan Nazir
- Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
15
|
Novelli F, Nazir A, Richards GH, Roozbeh A, Wilk KE, Curmi PMG, Davis JA. Vibronic resonances facilitate excited-state coherence in light-harvesting proteins at room temperature. J Phys Chem Lett 2015; 6:4573-4580. [PMID: 26528956 DOI: 10.1021/acs.jpclett.5b02058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semiclassical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we unambiguously identify excited state coherent superpositions in photosynthetic light-harvesting complexes using a new experimental approach. Decoherence on the time scale of the excited state lifetime allows low energy (56 cm(-1)) oscillations on the signal intensity to be observed. In conjunction with an appropriate model, these oscillations provide clear and direct experimental evidence that the persistent coherences observed originate from quantum superpositions among vibronic excited states.
Collapse
Affiliation(s)
- Fabio Novelli
- Centre for Quantum and Optical Science, Swinburne University of Technology , Victoria 3122, Australia
| | - Ahsan Nazir
- Photon Science Institute and School of Physics & Astronomy, The University of Manchester , Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gethin H Richards
- Centre for Quantum and Optical Science, Swinburne University of Technology , Victoria 3122, Australia
| | - Ashkan Roozbeh
- Centre for Quantum and Optical Science, Swinburne University of Technology , Victoria 3122, Australia
| | - Krystyna E Wilk
- School of Physics, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Paul M G Curmi
- School of Physics, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Jeffrey A Davis
- Centre for Quantum and Optical Science, Swinburne University of Technology , Victoria 3122, Australia
| |
Collapse
|
16
|
Arpin PC, Turner DB, McClure SD, Jumper CC, Mirkovic T, Challa JR, Lee J, Teng CY, Green BR, Wilk KE, Curmi PMG, Hoef-Emden K, McCamant DW, Scholes GD. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations. J Phys Chem B 2015; 119:10025-34. [DOI: 10.1021/acs.jpcb.5b04704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul C. Arpin
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Daniel B. Turner
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Scott D. McClure
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Chanelle C. Jumper
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tihana Mirkovic
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - J. Reddy Challa
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joohyun Lee
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Chang Ying Teng
- Department
of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Beverley R. Green
- Department
of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Krystyna E. Wilk
- School
of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Paul M. G. Curmi
- School
of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kerstin Hoef-Emden
- Botanical
Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - David W. McCamant
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Gregory D. Scholes
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Senlik SS, Policht VR, Ogilvie JP. Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics. J Phys Chem Lett 2015; 6:2413-20. [PMID: 26266711 DOI: 10.1021/acs.jpclett.5b00861] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies.
Collapse
Affiliation(s)
- S Seckin Senlik
- †Department of Physics, University of Michigan, Ann Arbor, 48109, United States
| | - Veronica R Policht
- ‡Applied Physics Program, University of Michigan, Ann Arbor, 48109, United States
| | - Jennifer P Ogilvie
- †Department of Physics, University of Michigan, Ann Arbor, 48109, United States
| |
Collapse
|
18
|
Levi F, Mostarda S, Rao F, Mintert F. Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:082001. [PMID: 26194028 DOI: 10.1088/0034-4885/78/8/082001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Collapse
Affiliation(s)
- Federico Levi
- FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludgwigs Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
19
|
Diers JR, Tang Q, Hondros CJ, Chen CY, Holten D, Lindsey JS, Bocian DF. Vibronic Characteristics and Spin-Density Distributions in Bacteriochlorins as Revealed by Spectroscopic Studies of 16 Isotopologues. Implications for Energy- and Electron-Transfer in Natural Photosynthesis and Artificial Solar-Energy Conversion. J Phys Chem B 2014; 118:7520-7532. [DOI: 10.1021/jp504286w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- James R. Diers
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Qun Tang
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Christopher J. Hondros
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Chih-Yuan Chen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Dewey Holten
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Jonathan S. Lindsey
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David F. Bocian
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
20
|
Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins. Proc Natl Acad Sci U S A 2014; 111:E2666-75. [PMID: 24979784 DOI: 10.1073/pnas.1402538111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Observation of coherent oscillations in the 2D electronic spectra (2D ES) of photosynthetic proteins has led researchers to ask whether nontrivial quantum phenomena are biologically significant. Coherent oscillations have been reported for the soluble light-harvesting phycobiliprotein (PBP) antenna isolated from cryptophyte algae. To probe the link between spectral properties and protein structure, we determined crystal structures of three PBP light-harvesting complexes isolated from different species. Each PBP is a dimer of αβ subunits in which the structure of the αβ monomer is conserved. However, we discovered two dramatically distinct quaternary conformations, one of which is specific to the genus Hemiselmis. Because of steric effects emerging from the insertion of a single amino acid, the two αβ monomers are rotated by ∼73° to an "open" configuration in contrast to the "closed" configuration of other cryptophyte PBPs. This structural change is significant for the light-harvesting function because it disrupts the strong excitonic coupling between two central chromophores in the closed form. The 2D ES show marked cross-peak oscillations assigned to electronic and vibrational coherences in the closed-form PC645. However, such features appear to be reduced, or perhaps absent, in the open structures. Thus cryptophytes have evolved a structural switch controlled by an amino acid insertion to modulate excitonic interactions and therefore the mechanisms used for light harvesting.
Collapse
|
21
|
Jun S, Yang C, Isaji M, Tamiaki H, Kim J, Ihee H. Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2014; 5:1386-1392. [PMID: 26269984 DOI: 10.1021/jz500328w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are the most efficient photosynthetic light-harvesting complexes found in nature and consist of many bacteriochlorophyll (BChl) molecules self-assembled into supramolecular aggregates. Here we elucidate the presence and the origin of coherent oscillations in chlorosome at cryogenic temperature using 2D electronic spectroscopy. We observe coherent oscillations of multiple frequencies superimposed on the ultrafast amplitude decay of 2D spectra. Comparison of oscillatory features in the rephasing and nonrephasing 2D spectra suggests that an oscillation of 620 cm(-1) frequency arises from electronic coherence. However, this coherent oscillation can be enhanced by vibronic coupling with intermolecular vibrations of BChl aggregate, and thus it might originate from vibronic coherence rather than pure electronic coherence. Although the 620 cm(-1) oscillation dephases rapidly, the electronic (or vibronic) coherence may still take part in the initial step of energy transfer in chlorosome, which is comparably fast.
Collapse
Affiliation(s)
- Sunhong Jun
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Cheolhee Yang
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Megumi Isaji
- §Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- §Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jeongho Kim
- ∥Department of Chemistry, Inha University, Incheon 402-751, Republic of Korea
| | - Hyotcherl Ihee
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| |
Collapse
|
22
|
Tollerud JO, Hall CR, Davis JA. Isolating quantum coherence using coherent multi-dimensional spectroscopy with spectrally shaped pulses. OPTICS EXPRESS 2014; 22:6719-6733. [PMID: 24664021 DOI: 10.1364/oe.22.006719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate how spectral shaping in coherent multidimensional spectroscopy can isolate specific signal pathways and directly access quantitative details. By selectively exciting pathways involving a coherent superposition of exciton states we are able to identify, isolate and analyse weak coherent coupling between spatially separated excitons in an asymmetric double quantum well. Analysis of the isolated signal elucidates details of the coherent interactions between the spatially separated excitons. With a dynamic range exceeding 10(4) in electric field amplitude, this approach facilitates quantitative comparisons of different signal pathways and a comprehensive description of the electronic states and their interactions.
Collapse
|
23
|
Fassioli F, Dinshaw R, Arpin PC, Scholes GD. Photosynthetic light harvesting: excitons and coherence. J R Soc Interface 2014; 11:20130901. [PMID: 24352671 PMCID: PMC3899860 DOI: 10.1098/rsif.2013.0901] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/29/2013] [Indexed: 12/15/2022] Open
Abstract
Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.
Collapse
Affiliation(s)
| | | | | | - Gregory D. Scholes
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario, CanadaM5S 3H6
| |
Collapse
|
24
|
Ryu IS, Dong H, Fleming GR. Role of Electronic-Vibrational Mixing in Enhancing Vibrational Coherences in the Ground Electronic States of Photosynthetic Bacterial Reaction Center. J Phys Chem B 2014; 118:1381-8. [DOI: 10.1021/jp4100476] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ian Seungwan Ryu
- Department of Chemistry, University of California—Berkeley, and Physical Bioscience
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hui Dong
- Department of Chemistry, University of California—Berkeley, and Physical Bioscience
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Graham R. Fleming
- Department of Chemistry, University of California—Berkeley, and Physical Bioscience
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Butkus V, Valkunas L, Abramavicius D. Vibronic phenomena and exciton–vibrational interference in two-dimensional spectra of molecular aggregates. J Chem Phys 2014; 140:034306. [DOI: 10.1063/1.4861466] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Richards GH, Wilk KE, Curmi PMG, Davis JA. Disentangling Electronic and Vibrational Coherence in the Phycocyanin-645 Light-Harvesting Complex. J Phys Chem Lett 2014; 5:43-49. [PMID: 26276179 DOI: 10.1021/jz402217j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Energy transfer between chromophores in photosynthesis proceeds with near-unity quantum efficiency. Understanding the precise mechanisms of these processes is made difficult by the complexity of the electronic structure and interactions with different vibrational modes. Two-dimensional spectroscopy has helped resolve some of the ambiguities and identified quantum effects that may be important for highly efficient energy transfer. Many questions remain, however, including whether the coherences observed are electronic and/or vibrational in nature and what role they play. We utilize a two-color, four-wave mixing experiment with control of the wavelength and polarization to selectively excite specific coherence pathways. For the light-harvesting complex PC645, from cryptophyte algae, we reveal and identify specific contributions from both electronic and vibrational coherences and determine an excited-state structure based on two strongly coupled electronic states and two vibrational modes. Separation of the coherence pathways also uncovers the complex evolution of these coherences and the states involved.
Collapse
Affiliation(s)
| | - K E Wilk
- ‡School of Physics and Centre for Applied Medical Research, St Vincents Hospital, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - P M G Curmi
- ‡School of Physics and Centre for Applied Medical Research, St Vincents Hospital, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
27
|
O’Reilly EJ, Olaya-Castro A. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat Commun 2014; 5:3012. [PMID: 24402469 PMCID: PMC3896760 DOI: 10.1038/ncomms4012] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 11/25/2013] [Indexed: 11/09/2022] Open
Abstract
Advancing the debate on quantum effects in light-initiated reactions in biology requires clear identification of non-classical features that these processes can exhibit and utilize. Here we show that in prototype dimers present in a variety of photosynthetic antennae, efficient vibration-assisted energy transfer in the sub-picosecond timescale and at room temperature can manifest and benefit from non-classical fluctuations of collective pigment motions. Non-classicality of initially thermalized vibrations is induced via coherent exciton-vibration interactions and is unambiguously indicated by negativities in the phase-space quasi-probability distribution of the effective collective mode coupled to the electronic dynamics. These quantum effects can be prompted upon incoherent input of excitation. Our results therefore suggest that investigation of the non-classical properties of vibrational motions assisting excitation and charge transport, photoreception and chemical sensing processes could be a touchstone for revealing a role for non-trivial quantum phenomena in biology.
Collapse
Affiliation(s)
- Edward J. O’Reilly
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Alexandra Olaya-Castro
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
28
|
Viani L, Corbella M, Curutchet C, O'Reilly EJ, Olaya-Castro A, Mennucci B. Molecular basis of the exciton–phonon interactions in the PE545 light-harvesting complex. Phys Chem Chem Phys 2014; 16:16302-11. [DOI: 10.1039/c4cp01477d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A fully polarizable QM/MM approach is used in combination with classical MD simulations to predict the pigment-dependent spectral densities of the PE545 antenna complex and account for their effects on the exciton dynamics.
Collapse
Affiliation(s)
- Lucas Viani
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56126 Pisa, Italy
| | - Marina Corbella
- Departament de Fisicoquímica
- Facultat de Farmàcia
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - Carles Curutchet
- Departament de Fisicoquímica
- Facultat de Farmàcia
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - Edward J. O'Reilly
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT, UK
| | | | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56126 Pisa, Italy
| |
Collapse
|
29
|
Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv 2014. [DOI: 10.1039/c4ra06441k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilizing the energy, nutrients and CO2held within residual waste materials to provide all necessary inputs except for sunlight, the cultivation of algae becomes a closed-loop engineered ecosystem. Developing this green biotechnology is a tangible step towards a waste-free sustainable society.
Collapse
Affiliation(s)
- Yafei Shen
- Department of Environmental Science and Technology
- Interdisciplinary Graduate School of Science and Engineering
- Tokyo Institute of Technology
- Yokohama, Japan
| |
Collapse
|
30
|
Laos AJ, Curmi PMG, Thordarson P. Quantum Coherence and its Impact on Biomimetic Light-Harvesting. Aust J Chem 2014. [DOI: 10.1071/ch14054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The survival of all photosynthetic organisms relies on the initial light harvesting step, and thus, after ~3 billion years of evolution energy capture and transfer has become a highly efficient and effective process. Here we examine the latest developments on understanding light harvesting, particularly in systems that exhibit an ultrafast energy transfer mechanism known as quantum coherence. With increasing knowledge of the structural and function parameters that produce quantum coherence in photosynthetic organisms, we can begin to replicate this process through biomimetic systems providing a faster and more efficient approach to harvesting and storing solar power for the worlds energy needs. Importantly, synthetic systems that display signs of quantum coherence have also been created and the first design principles for synthetic systems utilising quantum coherence are beginning to emerge. Recent claims that quantum coherence also plays a key role in ultrafast charge-separation highlights the importance for chemists, biologists, and material scientists to work more closely together to uncover the role of quantum coherence in photosynthesis and solar energy research.
Collapse
|
31
|
Fassioli F, Oblinsky DG, Scholes GD. Designs for molecular circuits that use electronic coherence. Faraday Discuss 2013; 163:341-51; discussion 393-432. [PMID: 24020210 DOI: 10.1039/c3fd00009e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mounting evidence of recent years regarding long-lived coherent dynamics of electronic excitations in several light-harvesting antenna proteins suggests the possibility of realizing and exploiting light-initiated quantum dynamics in synthetic molecular devices based on electronic energy transfer. Inspired by the field of molecular logic, we focus this discussion on the prospect of using quantum coherence to control the direction of energy flow in a molecular circuit. As a prototype system we consider a circuit consisting of three chromophores that deliver energy to two trap chromophores. Our aim is to control to which trap the energy is more likely to be delivered. This is achieved by switching one of the circuit chromophores ON and OFF from the system, such that the direction of energy flow substantially changes from the ON and OFF states of the circuit. We find that quantum coherence can allow a significant ability to direct energy transfer in the circuit. However, when realistic levels of noise are added, quantum coherence only slightly improves the ability to direct electronic energy in comparison to a classical hopping mechanism.
Collapse
Affiliation(s)
- Francesca Fassioli
- Lash Miller Chemical Laboratories, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George St., Toronto, Canada
| | | | | |
Collapse
|
32
|
West BA, Molesky BP, Giokas PG, Moran AM. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides. J Phys Chem Lett 2013; 4:1404-1409. [PMID: 23878622 PMCID: PMC3714110 DOI: 10.1021/jz400438m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.
Collapse
Affiliation(s)
- Andrew F. Fidler
- Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ved P. Singh
- Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Phillip D. Long
- Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Peter D. Dahlberg
- Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Gregory S. Engel
- Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
34
|
Kolli A, O'Reilly EJ, Scholes GD, Olaya-Castro A. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J Chem Phys 2013; 137:174109. [PMID: 23145719 DOI: 10.1063/1.4764100] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.
Collapse
Affiliation(s)
- Avinash Kolli
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
35
|
|
36
|
Turner DB, Scholes GD. Electronic and Vibrational Coherences in Algal Light-Harvesting Proteins. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134108004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Richards GH, Curmi PMG, Wilk KE, Quiney HM, Davis JA. Coherence dynamics in light-harvesting complexes with two-colour spectroscopy. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Turner DB, Howey DJ, Sutor EJ, Hendrickson RA, Gealy MW, Ulness DJ. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis. J Phys Chem A 2012; 117:5926-54. [PMID: 23176195 DOI: 10.1021/jp310477y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.
Collapse
Affiliation(s)
- Daniel B Turner
- Department of Chemistry, Institute for Optical Sciences, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Turner DB, Dinshaw R, Lee KK, Belsley MS, Wilk KE, Curmi PMG, Scholes GD. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys Chem Chem Phys 2012; 14:4857-74. [PMID: 22374579 DOI: 10.1039/c2cp23670b] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent measurements using two-dimensional electronic spectroscopy (2D ES) have shown that the initial dynamic response of photosynthetic proteins can involve quantum coherence. We show how electronic coherence can be differentiated from vibrational coherence in 2D ES. On that basis we conclude that both electronic and vibrational coherences are observed in the phycobiliprotein light-harvesting complex PC645 from Chroomonas sp. CCMP270 at ambient temperature. These light-harvesting antenna proteins of the cryptophyte algae are suspended in the lumen, where the pH drops significantly under sustained illumination by sunlight. Here we measured 2D ES of PC645 at increasing levels of acidity to determine if the change in pH affects the quantum coherence; quantitative analysis reveals that the dynamics are insensitive to the pH change.
Collapse
Affiliation(s)
- Daniel B Turner
- Department of Chemistry, Institute for Optical Sciences, and Centre for Quantum Information and Quantum Control, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|