1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Erić V, Li X, Dsouza L, Huijser A, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Jansen TLC. Observation of Dark States in Two-Dimensional Electronic Spectra of Chlorosomes. J Phys Chem B 2024; 128:3575-3584. [PMID: 38569137 PMCID: PMC11033866 DOI: 10.1021/acs.jpcb.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Observations of low-lying dark states in several photosynthetic complexes challenge our understanding of the mechanisms behind their efficient energy transfer processes. Computational models are necessary for providing novel insights into the nature and function of dark states, especially since these are not directly accessible in spectroscopy experiments. Here, we will focus on signatures of dark-type states in chlorosomes, a light-harvesting complex from green sulfur bacteria well-known for uniting a broad absorption band with very efficient energy transfer. In agreement with experiments, our simulations of two-dimensional electronic spectra capture the ultrafast exciton transfer occurring in 100s of femtoseconds within a single chlorosome cylinder. The sub-100 fs process corresponds to relaxation within the single-excitation manifold in a single chlorosome tube, where all initially created populations in the bright exciton states are quickly transferred to dark-type exciton states. Structural inhomogeneities on the local scale cause a redistribution of the oscillator strength, leading to the emergence of these dark-type exciton states, which dominate ultrafast energy transfer. The presence of the dark-type exciton states suppresses energy loss from an isolated chlorosome via fluorescence quenching, as observed experimentally. Our results further question whether relaxation to dark-exciton states is a leading process or merely competes with transfer to the baseplate within the photosynthetic apparatus of green sulfur bacteria.
Collapse
Affiliation(s)
- Vesna Erić
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Xinmeng Li
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
| | - Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan
5, 7522 NB Enschede, The Netherlands
| | - Alfred R. Holzwarth
- Department
of Biophysical Chemistry, Max Planck Institute
for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Frehan SK, Dsouza L, Li X, Eríc V, Jansen TLC, Mul G, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Huijser A. Photon Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of Chlorobium tepidum and the Role of Supramolecular Dynamics. J Phys Chem B 2023; 127:7581-7589. [PMID: 37611240 PMCID: PMC10493955 DOI: 10.1021/acs.jpcb.3c05282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/09/2023] [Indexed: 08/25/2023]
Abstract
The antenna complex of green sulfur bacteria, the chlorosome, is one of the most efficient supramolecular systems for efficient long-range exciton transfer in nature. Femtosecond transient absorption experiments provide new insight into how vibrationally induced quantum overlap between exciton states supports highly efficient long-range exciton transfer in the chlorosome of Chlorobium tepidum. Our work shows that excitation energy is delocalized over the chlorosome in <1 ps at room temperature. The following exciton transfer to the baseplate occurs in ∼3 to 5 ps, in line with earlier work also performed at room temperature, but significantly faster than at the cryogenic temperatures used in previous studies. This difference can be attributed to the increased vibrational motion at room temperature. We observe a so far unknown impact of the excitation photon energy on the efficiency of this process. This dependency can be assigned to distinct optical domains due to structural disorder, combined with an exciton trapping channel competing with exciton transfer toward the baseplate. An oscillatory transient signal damped in <1 ps has the highest intensity in the case of the most efficient exciton transfer to the baseplate. These results agree well with an earlier computational finding of exciton transfer driven by low-frequency rotational motion of molecules in the chlorosome. Such an exciton transfer process belongs to the quantum coherent regime, for which the Förster theory for intermolecular exciton transfer does not apply. Our work hence strongly indicates that structural flexibility is important for efficient long-range exciton transfer in chlorosomes.
Collapse
Affiliation(s)
- Sean K. Frehan
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Xinmeng Li
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Vesna Eríc
- Zernike
Institute of Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute of Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guido Mul
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Alfred R. Holzwarth
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Erić V, Castro JL, Li X, Dsouza L, Frehan SK, Huijser A, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Jansen TLC. Ultrafast Anisotropy Decay Reveals Structure and Energy Transfer in Supramolecular Aggregates. J Phys Chem B 2023; 127:7487-7496. [PMID: 37594912 PMCID: PMC10476209 DOI: 10.1021/acs.jpcb.3c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Chlorosomes from green bacteria perform the most efficient light capture and energy transfer, as observed among natural light-harvesting antennae. Hence, their unique functional properties inspire developments in artificial light-harvesting and molecular optoelectronics. We examine two distinct organizations of the molecular building blocks as proposed in the literature, demonstrating how these organizations alter light capture and energy transfer, which can serve as a mechanism that the bacteria utilize to adapt to changes in light conditions. Spectral simulations of polarization-resolved two-dimensional electronic spectra unravel how changes in the helicity of chlorosomal aggregates alter energy transfer. We show that ultrafast anisotropy decay presents a spectral signature that reveals contrasting energy pathways in different chlorosomes.
Collapse
Affiliation(s)
- Vesna Erić
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Jorge Luis Castro
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Xinmeng Li
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
| | - Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Sean K. Frehan
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Alfred R. Holzwarth
- Department
of Biophysical Chemistry, Max Planck Institute
for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Erić V, Li X, Dsouza L, Frehan SK, Huijser A, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Jansen TLC. Manifestation of Hydrogen Bonding and Exciton Delocalization on the Absorption and Two-Dimensional Electronic Spectra of Chlorosomes. J Phys Chem B 2023; 127:1097-1109. [PMID: 36696537 PMCID: PMC9923760 DOI: 10.1021/acs.jpcb.2c07143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chlorosomes are supramolecular aggregates that contain thousands of bacteriochlorophyll molecules. They perform the most efficient ultrafast excitation energy transfer of all natural light-harvesting complexes. Their broad absorption band optimizes light capture. In this study, we identify the microscopic sources of the disorder causing the spectral width and reveal how it affects the excited state properties and the optical response of the system. We combine molecular dynamics, quantum chemical calculations, and response function calculations to achieve this goal. The predicted linear and two-dimensional electronic spectra are found to compare well with experimental data reproducing all key spectral features. Our analysis of the microscopic model reveals the interplay of static and dynamic disorder from the molecular perspective. We find that hydrogen bonding motifs are essential for a correct description of the spectral line shape. Furthermore, we find that exciton delocalization over tens to hundreds of molecules is consistent with the two-dimensional electronic spectra.
Collapse
Affiliation(s)
- Vesna Erić
- University
of Groningen, Zernike Institute
for Advanced Materials, 9747
AG Groningen, The Netherlands
| | - Xinmeng Li
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
| | - Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Sean K. Frehan
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Alfred R. Holzwarth
- Department
of Biophysical Chemistry, Max Planck Institute
for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas L. C. Jansen
- University
of Groningen, Zernike Institute
for Advanced Materials, 9747
AG Groningen, The Netherlands,
| |
Collapse
|
6
|
Wang YC, Zhao Y. Diagrammatic quantum Monte Carlo toward the calculation of transport properties in disordered semiconductors. J Chem Phys 2022; 156:204116. [DOI: 10.1063/5.0091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new diagrammatic quantum Monte Carlo approach is proposed to deal with the imaginary time propagator involving both dynamic disorder (i.e., electron–phonon interactions) and static disorder of local or nonlocal nature in a unified and numerically exact way. The establishment of the whole framework relies on a general reciprocal-space expression and a generalized Wick’s theorem for the static disorder. Since the numerical cost is independent of the system size, various physical quantities, such as the thermally averaged coherence, Matsubara one-particle Green’s function, and current autocorrelation function, can be efficiently evaluated in the thermodynamic limit (infinite in the system size). The validity and performance of the proposed approach are systematically examined in a broad parameter regime. This approach, combined with proper numerical analytic continuation methods and first-principles calculations, is expected to be a versatile tool toward the calculation of various transport properties, such as mobilities in realistic semiconductors involving multiple electronic energy bands, high-frequency optical and low-frequency acoustic phonons, different forms of dynamic and static disorders, and anisotropy.
Collapse
Affiliation(s)
- Yu-Chen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
7
|
Li X, Buda F, de Groot HJ, Sevink GJA. The role of chirality and plastic crystallinity in the optical and mechanical properties of chlorosomes. iScience 2022; 25:103618. [PMID: 35005556 PMCID: PMC8719020 DOI: 10.1016/j.isci.2021.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
The most efficient light-harvesting antennae found in nature, chlorosomes, are molecular tubular aggregates (TMAs) assembled by pigments without protein scaffolds. Here, we discuss a classification of chlorosomes as a unique tubular plastic crystal and we attribute the robust energy transfer in chlorosomes to this unique nature. To systematically study the role of supramolecular tube chirality by molecular simulation, a role that has remained unresolved, we share a protocol for generating realistic tubes at atomic resolution. We find that both the optical and the mechanical behavior are strongly dependent on chirality. The optical-chirality relation enables a direct interpretation of experimental spectra in terms of overall tube chirality. The mechanical response shows that the overall chirality regulates the hardness of the tube and provides a new characteristic for relating chlorosomes to distinct chirality. Our protocol also applies to other TMA systems and will inspire other systematic studies beyond lattice models. Classifies chlorosomes in terms of a tubular plastic crystal phase Clarifies the unique strategy of chlorosomes for harvesting and transporting energy Presents a protocol for building atom-resolved helical tube structures Maps tube chirality directly to measurable optical and mechanical responses
Collapse
Affiliation(s)
- Xinmeng Li
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, P.O.Box 1033, Blindern, Oslo, 0315 Oslo, Norway
- Corresponding author
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
| | - Huub J.M. de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
| | - G. J. Agur Sevink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
- Corresponding author
| |
Collapse
|
8
|
Shibu A, Middleton C, Kwiatkowski CO, Kaushal M, Gillen JH, Walter MG. Self-Assembly-Directed Exciton Diffusion in Solution-Processable Metalloporphyrin Thin Films. Molecules 2021; 27:35. [PMID: 35011266 PMCID: PMC8746414 DOI: 10.3390/molecules27010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
The study of excited-state energy diffusion has had an important impact in the development and optimization of organic electronics. For instance, optimizing excited-state energy migration in the photoactive layer in an organic solar cell device has been shown to yield efficient solar energy conversion. Despite the crucial role that energy migration plays in molecular electronic device physics, there is still a great deal to be explored to establish how molecular orientation impacts energy diffusion mechanisms. In this work, we have synthesized a new library of solution-processable, Zn (alkoxycarbonyl)phenylporphyrins containing butyl (ZnTCB4PP), hexyl (ZnTCH4PP), 2-ethylhexyl (ZnTCEH4PP), and octyl (ZnTCO4PP) alkoxycarbonyl groups. We establish that, by varying the length of the peripheral alkyl chains on the metalloporphyrin macrocycle, preferential orientation and molecular self-assembly is observed in solution-processed thin films. The resultant arrangement of molecules consequently affects the electronic and photophysical characteristics of the metalloporphyrin thin films. The various molecular arrangements in the porphyrin thin films and their resultant impact were determined using UV-Vis absorption spectroscopy, steady-state and time-resolved fluorescence emission lifetimes, and X-ray diffraction in thin films. The films were doped with C60 quencher molecules and the change in fluorescence was measured to derive a relative quenching efficiency. Using emission decay, relative quenching efficiency, and dopant volume fraction as input, insights on exciton diffusion coefficient and exciton diffusion lengths were obtained from a Monte Carlo simulation. The octyl derivative (ZnTCO4PP) showed the strongest relative fluorescence quenching and, therefore, the highest exciton diffusion coefficient (5.29 × 10-3 cm2 s-1) and longest exciton diffusion length (~81 nm). The octyl derivative also showed the strongest out-of-plane stacking among the metalloporphyrins studied. This work demonstrates how molecular self-assembly can be used to modulate and direct exciton diffusion in solution-processable metalloporphyrin thin films engineered for optoelectronic and photonic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael G. Walter
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA; (A.S.); (C.M.); (C.O.K.); (M.K.); (J.H.G.)
| |
Collapse
|
9
|
Cui X, Yan Y, Wei J. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex. J Phys Chem B 2021; 125:11884-11892. [PMID: 34669415 DOI: 10.1021/acs.jpcb.1c06844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of pigment-protein coupling in the dynamics of photosynthetic energy transport in chromophoric complexes has not been fully understood. The excitation energy transfer in the photosynthetic system is tremendously efficient. In particular, we investigate the excitation energy transport in the Fenna-Matthews-Olson (FMO) complex. The exciton dynamics and excitation energy transfer (EET) depend on the interaction between the excited chromophores and their environment. Most theoretical models believe that all bacteriochlorophyll-a (BChla) sites are surrounded by the same local protein environment, which is contradicted by the structural analysis of the FMO complex. Based on different values of pigment-protein coupling for different sites, measured in the adiabatic limit, we have theoretically investigated the effect of the heterogeneous local protein environment on the EET process. By the realistic and site-dependent model of the system-bath couplings, the results show that this interaction may have a critical value for the coherent energy-transfer process. Furthermore, we verify that the two transport pathways are coherent and stable to the important parameter reorganization energy of environmental interactions. The quantum dynamical simulations show that the correlation fluctuation keeps the oscillation of the coherent excitation on a long timescale. In addition, due to the inhomogeneous pigment-protein coupling, different BChl sites have asymmetric excitation oscillation timescales.
Collapse
Affiliation(s)
- XueYan Cui
- Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
| | - YiJing Yan
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - JianHua Wei
- Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
| |
Collapse
|
10
|
Abstract
The ability of certain materials to discriminate between two opposite light polarizations is the basic principle behind several technologies such as liquid crystal displays and three-dimensional glasses. While there are numerous forms of light polarization, only linear and circular polarizations, which have wave motion in a flat sheet or helix, respectively, are typically used. Here, we utilize trochoidal polarizations with cartwheeling wave motion. We demonstrate that single gold nanorod dimers can discriminate between trochoidal fields rotating in opposite directions, which we term trochoidal dichroism. Trochoidal dichroism forms an additional classification of polarized light–matter interaction and could inspire the development of optical studies uniquely sensitive to molecules with cartwheeling charge motion, potentially relevant for probing key light-harvesting antennas. Matter’s sensitivity to light polarization is characterized by linear and circular polarization effects, corresponding to the system’s anisotropy and handedness, respectively. Recent investigations into the near-field properties of evanescent waves have revealed polarization states with out-of-phase transverse and longitudinal oscillations, resulting in trochoidal, or cartwheeling, field motion. Here, we demonstrate matter’s inherent sensitivity to the direction of the trochoidal field and name this property trochoidal dichroism. We observe trochoidal dichroism in the differential excitation of bonding and antibonding plasmon modes for a system composed of two coupled dipole scatterers. Trochoidal dichroism constitutes the observation of a geometric basis for polarization sensitivity that fundamentally differs from linear and circular dichroism. It could also be used to characterize molecular systems, such as certain light-harvesting antennas, with cartwheeling charge motion upon excitation.
Collapse
|
11
|
Li X, Buda F, de Groot HJM, Sevink GJA. Dynamic Disorder Drives Exciton Transfer in Tubular Chlorosomal Assemblies. J Phys Chem B 2020; 124:4026-4035. [PMID: 32343578 PMCID: PMC7246976 DOI: 10.1021/acs.jpcb.0c00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chlorosomes stand out for their highly efficient excitation energy transfer (EET) in extreme low light conditions. Yet, little is known about the EET when a chlorosome is excited to a pure state that is an eigenstate of the exciton Hamiltonian. In this work, we consider the dynamic disorder in the intermolecular electronic coupling explicitly by calculating the electronic coupling terms in the Hamiltonian using nuclear coordinates that are taken from molecular dynamics simulation trajectories. We show that this dynamic disorder is capable of driving the evolution of the exciton, being a stationary state of the initial Hamiltonian. In particular, long-distance excitation energy transfer between domains of high exciton population and oscillatory behavior of the population in the site basis are observed, in line with two-dimensional electronic spectroscopy studies. We also found that in the high exciton population domains, their population variation is correlated with their overall coupling strength. Analysis in a reference state basis shows that such dynamic disorder, originating from thermal energy, creates a fluctuating landscape for the exciton and promotes the EET process. We propose such dynamic disorder as an important microscopic origin for the high efficient EET widely observed in different types of chlorosomes, bioinspired tubular aggregates, or other light-harvesting complexes.
Collapse
Affiliation(s)
- Xinmeng Li
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco Buda
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Huub J M de Groot
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - G J Agur Sevink
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
12
|
Morales-Curiel LF, León-Montiel RDJ. Photochemical dynamics under incoherent illumination: Light harvesting in self-assembled molecular J-aggregates. J Chem Phys 2020; 152:074304. [PMID: 32087656 DOI: 10.1063/1.5130572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transport phenomena in organic, self-assembled molecular J-aggregates have long attracted a great deal of attention due to their potential role in designing novel organic photovoltaic devices. A large number of theoretical and experimental studies have been carried out describing excitonic energy transfer in J-aggregates under the assumption that excitons are induced by a coherent laser-light source or initialized by a localized excitation on a particular chromophore. However, these assumptions may not provide an accurate description to assess the efficiency of J-aggregates, particularly as building blocks of organic solar cells. Under natural conditions, J-aggregates would be subjected to an incoherent source of light (as is sunlight), which would illuminate the whole photosynthetic complex rather than a single molecule. In this work, we present the first study of the efficiency of photosynthetic energy transport in self-assembled molecular aggregates under incoherent sunlight illumination. By making use of a minimalistic model of a cyanine dye J-aggregate, we demonstrate that long-range transport efficiency is enhanced when exciting the aggregate with incoherent light. Our results thus support the conclusion that J-aggregates are, indeed, excellent candidates for devices where efficient long-range incoherently induced exciton transport is desired, such as in highly efficient organic solar cells.
Collapse
Affiliation(s)
- Luis Felipe Morales-Curiel
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Ciudad de México, Mexico
| | - Roberto de J León-Montiel
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Ciudad de México, Mexico
| |
Collapse
|
13
|
Jang SJ. Robust and Fragile Quantum Effects in the Transfer Kinetics of Delocalized Excitons between B850 Units of LH2 Complexes. J Phys Chem Lett 2018; 9:6576-6583. [PMID: 30383380 DOI: 10.1021/acs.jpclett.8b02641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aggregates of light harvesting 2 (LH2) complexes form the major exciton-relaying domain in the photosynthetic unit of purple bacteria. Application of a generalized master equation to pairs of the B850 units of LH2 complexes, where excitons predominantly reside, provides quantitative information on how the inter-LH2 exciton transfer depends on the distance, relative rotational angle, and the relative energies of the two LH2s. The distance dependence demonstrates significant enhancement of the rate due to quantum delocalization of excitons, the qualitative nature of which remains robust against the disorder. The angle dependence reflects isotropic nature of exciton transfer, which remains similar for the ensemble of disorder. The variation of the rate on relative excitation energies of LH2 exhibits resonance peaks, which, however, is fragile as the disorder becomes significant. Overall, the average transfer times between two LH2s are estimated to be in the range of 4-25 ps for physically plausible inter-LH2 distances.
Collapse
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry , Queens College, City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States
| |
Collapse
|
14
|
Jiang S, Xie Y, Lan Z. The role of the charge-transfer states in the ultrafast excitonic dynamics of the DTDCTB dimers embedded in a crystal environment. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Li X, Buda F, de Groot HJ, Sevink GJA. Contrasting Modes of Self-Assembly and Hydrogen-Bonding Heterogeneity in Chlorosomes of Chlorobaculum tepidum. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:14877-14888. [PMID: 30258522 PMCID: PMC6150686 DOI: 10.1021/acs.jpcc.8b01790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Chlorosome antennae form an interesting class of materials for studying the role of structural motifs and dynamics in nonadiabatic energy transfer. They perform robust and highly quantum-efficient transfer of excitonic energy while allowing for compositional variation and completely lacking the usual regulatory proteins. Here, we first cast the geometrical analysis for ideal tubular scaffolding models into a formal framework, to relate effective helical properties of the assembly structures to established characterization data for various types of chlorosomes. This analysis shows that helicity is uniquely defined for chlorosomes composed of bacteriochlorophyll (BChl) d and that three chiral angles are consistent with the nuclear magnetic resonance (NMR) and electron microscope data for BChl c, including two novel ones that are at variance with current interpretations of optical data based on perfect cylindrical symmetry. We use this information as a starting point for investigating dynamic and static heterogeneity at the molecular level by unconstrained molecular dynamics. We first identify a rotational degree of freedom, along the Mg-OH coordination bond, that alternates along the syn-anti stacks and underlies the (flexible) curvature on a larger scale. Because rotation directly relates to the formation or breaking of interstack hydrogen bonds of the O-H···O=C structural motif along the syn-anti stacks, we analyzed the relative fractions of hydrogen-bonded and the nonbonded regions, forming stripe domains in otherwise spectroscopically homogeneous curved slabs. The ratios 7:3 for BChl c and 9:1 for BChl d for the two distinct structural components agree well with the signal intensities determined by NMR. In addition, rotation with curvature-independent formation of stripe domains offers a viable explanation for the localization and dispersion of exciton states over two fractions, as observed in single chlorosome fluorescence decay studies.
Collapse
|
16
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
17
|
Wan Y, Stradomska A, Knoester J, Huang L. Direct Imaging of Exciton Transport in Tubular Porphyrin Aggregates by Ultrafast Microscopy. J Am Chem Soc 2017; 139:7287-7293. [DOI: 10.1021/jacs.7b01550] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wan
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anna Stradomska
- School
of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Jasper Knoester
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
4, 9747AG Groningen, The Netherlands
| | - Libai Huang
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Rich CC, Lindberg KA, Krummel AT. Phase Acrobatics: The Influence of Excitonic Resonance and Gold Nonresonant Background on Heterodyne-Detected Vibrational Sum Frequency Generation Emission. J Phys Chem Lett 2017; 8:1331-1337. [PMID: 28267336 DOI: 10.1021/acs.jpclett.7b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We show how heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy can discriminate between the excitonic and monomeric properties of a helical, nanotube molecular aggregate by monitoring the phase of the VSFG emission associated with different polarization configurations. By keeping track of the "phase acrobatics" associated with the added phase of the nonresonant SFG emission of gold as well as that of the double-resonance conditions achieved when the SF frequency is resonant with an electronic exciton transition, we discover that for aggregates of tetra(sulfonatophenyl)porphyrin (TSPP) the PPP-polarized spectra exhibit double-resonance conditions while SSP-polarized spectra exhibit resonance only with the ground-state vibration. Along with observed shifts in the vibrational frequency, intensity differences, and sign flips in the imaginary second-order susceptibility, χs,Im(2), we conclude that PPP-polarized HD-VSFG spectra reflect the delocalized, excitonic nature of the molecular aggregate, while the SSP-polarized HD-VSFG spectra measure the localized, monomeric nature of the molecular subunits. It is implied from this study that HD-VSFG spectroscopy can be uniquely utilized to measure the excitonic and monomeric properties associated with molecular assemblies for a single sample.
Collapse
Affiliation(s)
- Christopher C Rich
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Kathryn A Lindberg
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Amber T Krummel
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
19
|
Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria. Sci Rep 2017; 7:45245. [PMID: 28345621 PMCID: PMC5366913 DOI: 10.1038/srep45245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.
Collapse
|
20
|
Chuang C, Lee CK, Moix JM, Knoester J, Cao J. Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition. PHYSICAL REVIEW LETTERS 2016; 116:196803. [PMID: 27232033 DOI: 10.1103/physrevlett.116.196803] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 05/03/2023]
Abstract
The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality.
Collapse
Affiliation(s)
- Chern Chuang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chee Kong Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jeremy M Moix
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Abstract
The design of optimal light-harvesting (supra)molecular systems and materials is one of the most challenging frontiers of science. Theoretical methods and computational models play a fundamental role in this difficult task, as they allow the establishment of structural blueprints inspired by natural photosynthetic organisms that can be applied to the design of novel artificial light-harvesting devices. Among theoretical strategies, the application of quantum chemical tools represents an important reality that has already reached an evident degree of maturity, although it still has to show its real potentials. This Review presents an overview of the state of the art of this strategy, showing the actual fields of applicability but also indicating its current limitations, which need to be solved in future developments.
Collapse
Affiliation(s)
- Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
22
|
Molina RA, Benito-Matías E, Somoza AD, Chen L, Zhao Y. Superradiance at the localization-delocalization crossover in tubular chlorosomes. Phys Rev E 2016; 93:022414. [PMID: 26986369 DOI: 10.1103/physreve.93.022414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 06/05/2023]
Abstract
We study the effect of disorder on spectral properties of tubular chlorosomes in green sulfur bacteria Cf. aurantiacus. Employing a Frenkel-exciton Hamiltonian with diagonal and off-diagonal disorder consistent with spectral and structural studies, we analyze excitonic localization and spectral statistics of the chlorosomes. A size-dependent localization-delocalization crossover is found to occur as a function of the excitonic energy. The crossover energy region coincides with the more optically active states with maximized superradiance and is, consequently, more conducive for energy transfer.
Collapse
Affiliation(s)
- Rafael A Molina
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, Madrid 28006, Spain
| | | | - Alejandro D Somoza
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Lipeng Chen
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
23
|
Somoza Márquez A, Chen L, Sun K, Zhao Y. Probing ultrafast excitation energy transfer of the chlorosome with exciton–phonon variational dynamics. Phys Chem Chem Phys 2016; 18:20298-311. [DOI: 10.1039/c5cp06491k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excitation energy transfer of the chlorosome is investigated using exciton–phonon variational dynamics revealing ultrafast energy relaxation and exciton delocalization on a 100 fs scale.
Collapse
Affiliation(s)
| | - Lipeng Chen
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Kewei Sun
- School of Science
- Hangzhou Dianzi University
- Hangzhou 310018
- China
| | - Yang Zhao
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
24
|
Kell A, Chen J, Jassas M, Tang JKH, Jankowiak R. Alternative Excitonic Structure in the Baseplate (BChl a-CsmA Complex) of the Chlorosome from Chlorobaculum tepidum. J Phys Chem Lett 2015; 6:2702-2707. [PMID: 26266851 DOI: 10.1021/acs.jpclett.5b01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the photosynthetic green sulfur bacterium Chlorobaculum tepidum, the baseplate mediates excitation energy transfer from the light-harvesting chlorosome to the Fenna-Matthews-Olson (FMO) complex and subsequently toward the reaction center (RC). Literature data suggest that the baseplate is a 2D lattice of BChl a-CsmA dimers. However, recently, it has been proposed, using 2D electronic spectroscopy (2DES) at 77 K, that at least four excitonically coupled BChl a are in close contact within the baseplate structure [ Dostál , J. ; et al., J. Phys. Chem. Lett. 2014 , 5 , 1743 ]. This finding is tested via hole burning (HB) spectroscopy (5 K). Our results indicate that the four excitonic states identified by 2DES likely correspond to contamination of the baseplate with the FMO antenna and possibly the RC. In contrast, HB reveals a different excitonic structure of the baseplate chromophores, where excitation is transferred to a localized trap state near 818 nm via exciton hopping, which leads to emission near 826 nm.
Collapse
Affiliation(s)
| | | | | | - Joseph Kuo-Hsiang Tang
- ‡Department of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | | |
Collapse
|
25
|
Hoehn RD, Nichols D, Neven H, Kais S. Neuroreceptor activation by vibration-assisted tunneling. Sci Rep 2015; 5:9990. [PMID: 25909758 PMCID: PMC4408984 DOI: 10.1038/srep09990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/20/2015] [Indexed: 11/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute a large family of receptor proteins
that sense molecular signals on the exterior of a cell and activate signal
transduction pathways within the cell. Modeling how an agonist activates such a
receptor is fundamental for an understanding of a wide variety of physiological
processes and it is of tremendous value for pharmacology and drug design. Inelastic
electron tunneling spectroscopy (IETS) has been proposed as a model for the
mechanism by which olfactory GPCRs are activated by a bound agonist. We apply this
hyothesis to GPCRs within the mammalian nervous system using quantum chemical
modeling. We found that non-endogenous agonists of the serotonin receptor share a
particular IET spectral aspect both amongst each other and with the serotonin
molecule: a peak whose intensity scales with the known agonist potencies. We propose
an experiential validation of this model by utilizing lysergic acid dimethylamide
(DAM-57), an ergot derivative, and its deuterated isotopologues; we also provide
theoretical predictions for comparison to experiment. If validated our theory may
provide new avenues for guided drug design and elevate methods of in silico
potency/activity prediction.
Collapse
Affiliation(s)
- Ross D Hoehn
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - David Nichols
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | - Sabre Kais
- 1] Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA [2] Department of Physics, Purdue University, West Lafayette, IN 47907, USA [3] Department of Physics, Purdue University, West Lafayette, IN 47907, USA [4] Qatar Environment and Energy Research Institute, Qatar Foundation, Doha, Qatar
| |
Collapse
|
26
|
Sawaya NPD, Huh J, Fujita T, Saikin SK, Aspuru-Guzik A. Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. NANO LETTERS 2015; 15:1722-1729. [PMID: 25694170 DOI: 10.1021/nl504399d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are efficient light-harvesting antennas containing up to hundreds of thousands of bacteriochlorophyll molecules. With massively parallel computer hardware, we use a nonperturbative stochastic Schrödinger equation, while including an atomistically derived spectral density, to study excitonic energy transfer in a realistically sized chlorosome model. We find that fast short-range delocalization leads to robust long-range transfer due to the antennae's concentric-roll structure. Additionally, we discover anomalous behavior arising from different initial conditions, and outline general considerations for simulating excitonic systems on the nanometer to micrometer scale.
Collapse
Affiliation(s)
- Nicolas P D Sawaya
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | | | |
Collapse
|
27
|
Megow J, Röhr MIS, Schmidt am Busch M, Renger T, Mitrić R, Kirstein S, Rabe JP, May V. Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates. Phys Chem Chem Phys 2015; 17:6741-7. [DOI: 10.1039/c4cp05945j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Van der Waals interaction causes energy splitting in the optical spectrum of a double-walled tubular J-aggregate.
Collapse
Affiliation(s)
- Jörg Megow
- Institut für Chemie
- Universität Potsdam
- D-14476 Potsdam
- F. R. Germany
| | - Merle I. S. Röhr
- Institut für Physikalische und Theoretische Chemie
- Universität Würzburg
- D-97074 Würzburg
- F. R. Germany
| | | | - Thomas Renger
- Institut für Theoretische Physik
- Johannes Kepler Universität Linz
- AT-4040 Linz
- Austria
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie
- Universität Würzburg
- D-97074 Würzburg
- F. R. Germany
| | - Stefan Kirstein
- Institut für Physik
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- F. R. Germany
| | - Jürgen P. Rabe
- Institut für Physik
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- F. R. Germany
- IRIS Adlershof
| | - Volkhard May
- Institut für Physik
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- F. R. Germany
| |
Collapse
|
28
|
Jang S, Hoyer S, Fleming G, Whaley KB. Generalized master equation with non-Markovian multichromophoric Förster resonance energy transfer for modular exciton densities. PHYSICAL REVIEW LETTERS 2014; 113:188102. [PMID: 25396397 DOI: 10.1103/physrevlett.113.188102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Indexed: 06/04/2023]
Abstract
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.
Collapse
Affiliation(s)
- Seogjoo Jang
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center, City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, USA
| | - Stephan Hoyer
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Graham Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
29
|
León-Montiel RDJ, Kassal I, Torres JP. Importance of Excitation and Trapping Conditions in Photosynthetic Environment-Assisted Energy Transport. J Phys Chem B 2014; 118:10588-94. [DOI: 10.1021/jp505179h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Roberto de J. León-Montiel
- ICFO−Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Ivan Kassal
- Centre
for Engineered Quantum Systems, Centre for Quantum Computation and
Communication Technology, and School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
| | - Juan P. Torres
- ICFO−Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
- Department
of Signal Theory and Communications, Campus Nord D3, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
| |
Collapse
|
30
|
Fujita T, Huh J, Aspuru-Guzik A. A stochastic reorganizational bath model for electronic energy transfer. J Chem Phys 2014; 140:244103. [DOI: 10.1063/1.4883862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Li H, Nieman R, Aquino AJA, Lischka H, Tretiak S. Comparison of LC-TDDFT and ADC(2) Methods in Computations of Bright and Charge Transfer States in Stacked Oligothiophenes. J Chem Theory Comput 2014; 10:3280-9. [DOI: 10.1021/ct500072f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Li
- Theoretical Division,
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Reed Nieman
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Adélia J. A. Aquino
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- Institute
for Theoretical Chemistry, University of Vienna, Währingerstrasse
17, A-1090, Vienna, Austria
| | - Sergei Tretiak
- Theoretical Division,
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated
Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
32
|
Fujita T, Huh J, Saikin SK, Brookes JC, Aspuru-Guzik A. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2014; 120:273-289. [PMID: 24504540 DOI: 10.1007/s11120-014-9978-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.
Collapse
Affiliation(s)
- Takatoshi Fujita
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA,
| | | | | | | | | |
Collapse
|
33
|
Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light. Sci Rep 2014; 4:5057. [PMID: 24862580 PMCID: PMC4033924 DOI: 10.1038/srep05057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/06/2014] [Indexed: 11/08/2022] Open
Abstract
Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures – photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculumtepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean.
Collapse
|
34
|
Avalle M, Serafini A. Noisy quantum cellular automata for quantum versus classical excitation transfer. PHYSICAL REVIEW LETTERS 2014; 112:170403. [PMID: 24836223 DOI: 10.1103/physrevlett.112.170403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Indexed: 06/03/2023]
Abstract
We introduce a class of noisy quantum cellular automata on a qubit lattice that includes all classical Markov chains, as well as maps where quantum coherence between sites is allowed to build up over time. We apply such a construction to the problem of excitation transfer through 1D lattices, and compare the performance of classical and quantum dynamics with equal local transition probabilities. Our discrete approach has the merits of stripping down the complications of the open system dynamics, of clearly isolating coherent effects, and of allowing for an exact treatment of conditional dynamics, all while capturing a rich variety of dynamical behaviors.
Collapse
Affiliation(s)
- Michele Avalle
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alessio Serafini
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
35
|
Valleau S, Saikin SK, Ansari-Oghol-Beig D, Rostami M, Mossallaei H, Aspuru-Guzik A. Electromagnetic study of the chlorosome antenna complex of Chlorobium tepidum. ACS NANO 2014; 8:3884-3894. [PMID: 24641680 DOI: 10.1021/nn500759k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Green sulfur bacteria are an iconic example of nature's adaptation: thriving in environments of extremely low photon density, the bacterium ranks itself among the most efficient natural light-harvesting organisms. The photosynthetic antenna complex of this bacterium is a self-assembled nanostructure, ≈60 × 150 nm, made of bacteriochlorophyll molecules. We study the system from a computational nanoscience perspective by using electrodynamic modeling with the goal of understanding its role as a nanoantenna. Three different nanostructures, built from two molecular packing moieties, are considered: a structure built of concentric cylinders of aggregated bacteriochlorophyll d monomers, a single cylinder of bacteriochlorophyll c monomers, and a model for the entire chlorosome. The theoretical model captures both coherent and incoherent components of exciton transfer. The model is employed to extract optical spectra, concentration and depolarization of electromagnetic fields within the chlorosome, and fluxes of energy transfer for the structures. The second model nanostructure shows the largest field enhancement. Further, field enhancement is found to be more sensitive to dynamic noise rather than structural disorder. Field depolarization, however, is similar for all structures. This indicates that the directionality of transfer is robust to structural variations, while on the other hand, the intensity of transfer can be tuned by structural variations.
Collapse
Affiliation(s)
- Stéphanie Valleau
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | |
Collapse
|
36
|
Jun S, Yang C, Isaji M, Tamiaki H, Kim J, Ihee H. Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2014; 5:1386-1392. [PMID: 26269984 DOI: 10.1021/jz500328w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are the most efficient photosynthetic light-harvesting complexes found in nature and consist of many bacteriochlorophyll (BChl) molecules self-assembled into supramolecular aggregates. Here we elucidate the presence and the origin of coherent oscillations in chlorosome at cryogenic temperature using 2D electronic spectroscopy. We observe coherent oscillations of multiple frequencies superimposed on the ultrafast amplitude decay of 2D spectra. Comparison of oscillatory features in the rephasing and nonrephasing 2D spectra suggests that an oscillation of 620 cm(-1) frequency arises from electronic coherence. However, this coherent oscillation can be enhanced by vibronic coupling with intermolecular vibrations of BChl aggregate, and thus it might originate from vibronic coherence rather than pure electronic coherence. Although the 620 cm(-1) oscillation dephases rapidly, the electronic (or vibronic) coherence may still take part in the initial step of energy transfer in chlorosome, which is comparably fast.
Collapse
Affiliation(s)
- Sunhong Jun
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Cheolhee Yang
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Megumi Isaji
- §Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- §Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jeongho Kim
- ∥Department of Chemistry, Inha University, Incheon 402-751, Republic of Korea
| | - Hyotcherl Ihee
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- ‡Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| |
Collapse
|
37
|
Tang JKH, Saikin SK, Pingali SV, Enriquez MM, Huh J, Frank HA, Urban VS, Aspuru-Guzik A. Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys J 2014; 105:1346-56. [PMID: 24047985 DOI: 10.1016/j.bpj.2013.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022] Open
Abstract
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.
Collapse
|
38
|
Jun S, Kim TW, Yang C, Isaji M, Tamiaki H, Ihee H, Kim J. Ultrafast Energy Transfer in Chlorosome Probed by Femtosecond Pump-Probe Polarization Anisotropy. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.3.703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Wang L, Prezhdo OV. A Simple Solution to the Trivial Crossing Problem in Surface Hopping. J Phys Chem Lett 2014; 5:713-719. [PMID: 26270842 DOI: 10.1021/jz500025c] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface hopping studies on supramolecular and nanoscale systems suffer severely from the trivial crossing problem, arising due to high density of adiabatic potential energy surfaces. We present a straightforward solution to the problem by introducing a self-consistency test to the well-known fewest switches surface hopping (FSSH) procedure. If the test is failed, the hopping probabilities are corrected with a simple procedure. The novel self-consistent fewest switches surface hopping (SC-FSSH) approach is applied to the Holstein Hamiltonian to study the time-dependence of the electron population. Already in the five-state system, SC-FSSH allows us to reduce the simulation time 10(4)-fold to achieve the FSSH accuracy. The reliable performance and simple formulation of SC-FSSH greatly expands the applicability range of the surface hopping method.
Collapse
Affiliation(s)
- Linjun Wang
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
40
|
Pan K, Boulais E, Yang L, Bathe M. Structure-based model for light-harvesting properties of nucleic acid nanostructures. Nucleic Acids Res 2014; 42:2159-70. [PMID: 24311563 PMCID: PMC3936709 DOI: 10.1093/nar/gkt1269] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022] Open
Abstract
Programmed self-assembly of DNA enables the rational design of megadalton-scale macromolecular assemblies with sub-nanometer scale precision. These assemblies can be programmed to serve as structural scaffolds for secondary chromophore molecules with light-harvesting properties. Like in natural systems, the local and global spatial organization of these synthetic scaffolded chromophore systems plays a crucial role in their emergent excitonic and optical properties. Previously, we introduced a computational model to predict the large-scale 3D solution structure and flexibility of nucleic acid nanostructures programmed using the principle of scaffolded DNA origami. Here, we use Förster resonance energy transfer theory to simulate the temporal dynamics of dye excitation and energy transfer accounting both for overall DNA nanostructure architecture as well as atomic-level DNA and dye chemical structure and composition. Results are used to calculate emergent optical properties including effective absorption cross-section, absorption and emission spectra and total power transferred to a biomimetic reaction center in an existing seven-helix double stranded DNA-based antenna. This structure-based computational framework enables the efficient in silico evaluation of nucleic acid nanostructures for diverse light-harvesting and photonic applications.
Collapse
Affiliation(s)
- Keyao Pan
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Etienne Boulais
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lun Yang
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark Bathe
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Huh J, Saikin SK, Brookes JC, Valleau S, Fujita T, Aspuru-Guzik A. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. J Am Chem Soc 2014; 136:2048-57. [PMID: 24405318 DOI: 10.1021/ja412035q] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales.
Collapse
Affiliation(s)
- Joonsuk Huh
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | |
Collapse
|
42
|
Akimov AV, Prezhdo OV. Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherence Effects, Multiexcitonic States, and Field-Matter Interaction. J Chem Theory Comput 2014; 10:789-804. [DOI: 10.1021/ct400934c] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexey V. Akimov
- Department
of Chemistry, University of Rochester, Rochester, New York 14627
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York, 11973
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627
| |
Collapse
|
43
|
Viani L, Corbella M, Curutchet C, O'Reilly EJ, Olaya-Castro A, Mennucci B. Molecular basis of the exciton–phonon interactions in the PE545 light-harvesting complex. Phys Chem Chem Phys 2014; 16:16302-11. [DOI: 10.1039/c4cp01477d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A fully polarizable QM/MM approach is used in combination with classical MD simulations to predict the pigment-dependent spectral densities of the PE545 antenna complex and account for their effects on the exciton dynamics.
Collapse
Affiliation(s)
- Lucas Viani
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56126 Pisa, Italy
| | - Marina Corbella
- Departament de Fisicoquímica
- Facultat de Farmàcia
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - Carles Curutchet
- Departament de Fisicoquímica
- Facultat de Farmàcia
- Universitat de Barcelona
- 08028 Barcelona, Spain
| | - Edward J. O'Reilly
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT, UK
| | | | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56126 Pisa, Italy
| |
Collapse
|
44
|
Orf GS, Blankenship RE. Chlorosome antenna complexes from green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 116:315-31. [PMID: 23761131 DOI: 10.1007/s11120-013-9869-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.
Collapse
Affiliation(s)
- Gregory S Orf
- Departments of Chemistry and Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | | |
Collapse
|
45
|
Rivera E, Montemayor D, Masia M, Coker DF. Influence of Site-Dependent Pigment–Protein Interactions on Excitation Energy Transfer in Photosynthetic Light Harvesting. J Phys Chem B 2013; 117:5510-21. [DOI: 10.1021/jp4011586] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eva Rivera
- Department
of Physics, and Complex
Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Daniel Montemayor
- Department
of Physics, and Complex
Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marco Masia
- Institut für Physikalische
und Theoretische Chemie, Goethe Universität Frankfurt, Max von Laue Str. 7, D-60438 Frankfurt am Main, Germany, and Dipartimento
di Chimica e Farmacia, Universita’ degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston,
Massachusetts 02215, United States
| |
Collapse
|
46
|
Kassal I, Yuen-Zhou J, Rahimi-Keshari S. Does Coherence Enhance Transport in Photosynthesis? J Phys Chem Lett 2013; 4:362-367. [PMID: 26281724 DOI: 10.1021/jz301872b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent observations of coherence in photosynthetic complexes have led to the question of whether quantum effects can occur in vivo, not under femtosecond laser pulses but in incoherent sunlight and at steady state, and, if so, whether the coherence explains the high exciton transfer efficiency. We introduce the distinction between state coherence and process coherence and show that although some photosynthetic pathways are partially coherent processes, photosynthesis in nature proceeds through stationary states. This distinction allows us to rule out several mechanisms of transport enhancement in sunlight. In particular, although they are crucial for understanding exciton transport, neither wavelike motion nor microscopic coherence, on their own, enhance the efficiency. By contrast, two partially coherent mechanisms-ENAQT and supertransfer-can enhance transport even in sunlight and thus constitute motifs for the optimization of artificial sunlight harvesting. Finally, we clarify the importance of ultrafast spectroscopy in understanding incoherent processes.
Collapse
Affiliation(s)
- Ivan Kassal
- †Centre for Engineered Quantum Systems, ‡Centre for Quantum Computing and Communication Technology, and ¶School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia
| | - Joel Yuen-Zhou
- †Centre for Engineered Quantum Systems, ‡Centre for Quantum Computing and Communication Technology, and ¶School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia
| | - Saleh Rahimi-Keshari
- †Centre for Engineered Quantum Systems, ‡Centre for Quantum Computing and Communication Technology, and ¶School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|