1
|
Choi Y, Ha H, Kim J, Seo HG, Choi H, Jeong B, Yoo J, Crumlin EJ, Henkelman G, Kim HY, Jung W. Unveiling Direct Electrochemical Oxidation of Methane at the Ceria/Gas Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403626. [PMID: 39152931 DOI: 10.1002/adma.202403626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Solid oxide fuel cells (SOFCs) stand out in sustainable energy systems for their unique ability to efficiently utilize hydrocarbon fuels, particularly those from carbon-neutral sources. CeO2-δ (ceria) based oxides embedded in SOFCs are recognized for their critical role in managing hydrocarbon activation and carbon coking. However, even for the simplest hydrocarbon molecule, CH4, the mechanism of electrochemical oxidation at the ceria/gas interface is not well understood and the capability of ceria to electrochemically oxidize methane remains a topic of debate. This lack of clarity stems from the intricate design of standard metal/oxide composite electrodes and the complex nature of electrode reactions involving multiple chemical and electrochemical steps. This study presents a Sm-doped ceria thin-film model cell that selectively monitors CH4 direct-electro-oxidation on the ceria surface. Using impedance spectroscopy, operando X-ray photoelectron spectroscopy, and density functional theory, it is unveiled that ceria surfaces facilitate C─H bond cleavage and that H2O formation is key in determining the overall reaction rate at the electrode. These insights effectively address the longstanding debate regarding the direct utilization of CH4 in SOFCs. Moreover, these findings pave the way for an optimized electrode design strategy, essential for developing high-performance, environmentally sustainable fuel cells.
Collapse
Affiliation(s)
- Yoonseok Choi
- High Temperature Electrolysis Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 34101, Republic of Korea
| | - Hyunwoo Ha
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Jinwook Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34129, Republic of Korea
| | - Han Gil Seo
- Department of Materials Science and Engineering, Dankook University, Chungnam, 31116, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Beomgyun Jeong
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - JeongDo Yoo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34129, Republic of Korea
| | - Ethan J Crumlin
- Advanced Light Sources, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Lin L, Mu R, Fu Q. Oxygen Vacancy Activates the Second-Nearest-Neighbor Lattice Oxygen for Oxidation Reaction. J Phys Chem Lett 2024; 15:9369-9373. [PMID: 39240332 DOI: 10.1021/acs.jpclett.4c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Oxygen vacancies on the oxide surface are regarded to play critical roles in catalytic oxidation reactions because they can alter the electronic and geometric properties of oxide catalysts. However, the effects of the oxygen vacancy on the CO oxidation activity of the surrounding lattice oxygen have remained elusive. In this work, using high-pressure scanning tunneling microscopy we identify that oxygen vacancy can activate surface lattice oxygen on the Mn3O4 thin layer. It is found that CO reacts with the lattice oxygen located at the second-nearest-neighbor position to the original oxygen vacancies more easily than that at the closest position and at the defect-free surface. This can be ascribed to the lower formation energy of the oxygen vacancies. Our study provides atomic-level insights into the promoting effect of oxygen vacancies on catalytic oxidation reactions.
Collapse
Affiliation(s)
- Yijing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Liu D, Zhu H, Gong X, Yuan S, Ma H, He P, Fan Y, Zhao W, Ren H, Guo W. Understanding and controlling the formation of single-atom site from supported Cu 10 cluster by tuning CeO 2 reducibility: Theoretical insight into the Gd-doping effect on electronic metal-support interaction. J Colloid Interface Sci 2024; 661:720-729. [PMID: 38320408 DOI: 10.1016/j.jcis.2024.01.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Controlling the formation of single-atom (SA) sites from supported metal clusters is an important and interesting issue to effectively improve the catalytic performance of heterogeneous catalysts. For extensively studied CO oxidation over metal/CeO2 systems, the SA formation and stabilization under reaction conditions is generally attributed to CO adsorption, however, the pivotal role played by the reducible CeO2 support and the underlying electronic metal-support interaction (EMSI) are not yet fully understood. Based on a ceria-supported Cu10 catalyst model, we performed density functional theory calculations to investigate the intrinsic SA formation mechanism and discussed the synergistic effect of Gd-doped CeO2 and CO adsorption on the SA formation. The CeO2 reducibility is tuned with doped Gd content ranging from 12.5 % ∼ 25 %. Based on ab initio thermodynamic and ab initio molecular dynamics, the critical condition for SA formation was identified as 21.875 % Gd-doped CeO2 with CO-saturated adsorption on Cu10. Electronic analysis revealed that the open-shell lattice Oδ- (δ < 2) generated by Gd doping facilitates the charge transfer from the bottom-corner Cu (Cubc) to CeO2. The CO-saturated adsorption further promotes this charge transfer process and enhances the EMSI between Cubc and CeO2, leading to the disintegration of Cubc from Cu10 and subsequent formation of the active SA site.
Collapse
Affiliation(s)
- Dongyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Xiaoxiao Gong
- State Key Laboratory of Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 10083, PR China
| | - Saifei Yuan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Ping He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yucheng Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| |
Collapse
|
4
|
Bunjaku O, Florenski J, Wischnat J, Klemm E, Safonova OV, van Slageren J, Estes DP. Understanding the Reducibility of CeO 2 Surfaces by Proton-Electron Transfer from CpCr(CO) 3H. Inorg Chem 2024; 63:7512-7519. [PMID: 38598679 DOI: 10.1021/acs.inorgchem.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
CeO2 is a popular material in heterogeneous catalysis, molecular sensors, and electronics and owes many of its special properties to the redox activity of Ce, present as both Ce3+ and Ce4+. However, the reduction of CeO2 with H2 (thought to occur through proton-electron transfer (PET) giving Ce3+ and new OH bonds) is poorly understood due to the high reduction temperatures necessary and the ill-defined nature of the hydrogen atom sources typically used. We have previously shown that transition-metal hydrides with weak M-H bonds react with reducible metal oxides at room temperature by PET. Here, we show that CpCr(CO)3H (1) transfers protons and electrons to CeO2 due to its weak Cr-H bond. We can titrate CeO2 with 1 and measure not only the number of surface Ce3+ sites formed (in agreement with X-ray absorption spectroscopy) but also the lower limit of the hydrogen atom adsorption free energy (HAFE). The results match the extent of reduction achieved from H2 treatment and hydrogen spillover on CeO2 in a wide range of applications.
Collapse
Affiliation(s)
- Osman Bunjaku
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Jan Florenski
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Jonathan Wischnat
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Elias Klemm
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Olga V Safonova
- Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen, Switzerland
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| | - Deven P Estes
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany
| |
Collapse
|
5
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Liu Y, Li Y, Yu Q, Roy S, Yu X. Review of Theoretical and Computational Studies of Bulk and Single Atom Catalysts for H 2 S Catalytic Conversion. Chemphyschem 2024; 25:e202300732. [PMID: 38146966 DOI: 10.1002/cphc.202300732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
Catalytic conversion of hydrogen sulfide (H2 S) plays a vital role in environmental protection and safety production. In this review, recent theoretical advances for catalytic conversion of H2 S are systemically summarized. Firstly, different mechanisms of catalytic conversion of H2 S are elucidated. Secondly, theoretical studies of catalytic conversion of H2 S on surfaces of metals, metal compounds, and single-atom catalysts (SACs) are systematically reviewed. In the meantime, various strategies which have been adopted to improve the catalytic performance of catalysts in the catalytic conversion of H2 S are also reviewed, mainly including facet morphology control, doped heteroatoms, metal deposition, and defective engineering. Finally, new directions of catalytic conversion of H2 S are proposed and potential strategies to further promote conversion of H2 S are also suggested: including SACs, double atom catalysts (DACs), single cluster catalysts (SCCs), frustrated Lewis pairs (FLPs), etc. The present comprehensive review can provide an insight for the future development of new catalysts for the catalytic conversion of H2 S.
Collapse
Affiliation(s)
- Yubin Liu
- School of Chemical & Environment Sciences, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Yuqiong Li
- School of Chemical & Environment Sciences, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Qi Yu
- School of Materials Science and Engineering, Institute of Graphene at Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Soumendra Roy
- School of Chemical & Environment Sciences, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Xiaohu Yu
- School of Chemical & Environment Sciences, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, 723000, China
| |
Collapse
|
7
|
Bao H, Motobayashi K, Zhang H, Cai W, Ikeda K. In-situ Surface-Enhanced Raman Spectroscopy Reveals a Mars-van Krevelen-Type Gas Sensing Mechanism in Au@SnO 2 Nanoparticle-Based Chemiresistors. J Phys Chem Lett 2023; 14:4113-4118. [PMID: 37129182 DOI: 10.1021/acs.jpclett.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular-level understandings of gas sensing mechanisms of oxide-based chemiresistors are significant for designing high-performance gas sensors; however, the mechanisms are still controversial due to the lack of direct experimental evidence. This work demonstrates efficient in situ surface-enhanced Raman spectroscopy (SERS) tracing of the highly representative SnO2-ethanol gas sensing using Au@SnO2 nanoparticles (NPs), where the Au core and SnO2 shell provide SERS activity and a gas sensing response, respectively. The in situ SERS evidence suggests that the sensing follows a Mars-van Krevelen mechanism rather than the prevailing adsorbed oxygen (AO) model. This mechanism is also observed in sensing other gases based on the Au@SnO2 NPs, showing its universality. This work offers efficient in situ tracing for gas sensing and experimental elucidation of the specific gas sensing mechanism, potentially ending the long-term controversy over the gas sensing mechanisms. Therefore, it is highly significant to this field.
Collapse
Affiliation(s)
- Haoming Bao
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Kenta Motobayashi
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Katsuyoshi Ikeda
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
8
|
Liu JC, Luo L, Xiao H, Zhu J, He Y, Li J. Metal Affinity of Support Dictates Sintering of Gold Catalysts. J Am Chem Soc 2022; 144:20601-20609. [DOI: 10.1021/jacs.2c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin-Cheng Liu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hai Xiao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology China, Hefei, Anhui 230029, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Wang L, Deo S, Mukhopadhyay A, Pantelis NA, Janik MJ, Rioux RM. Emergent Behavior in Oxidation Catalysis over Single-Atom Pd on a Reducible CeO 2 Support via Mixed Redox Cycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linxi Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Shyam Deo
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Ahana Mukhopadhyay
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Nicholas A. Pantelis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Michael J. Janik
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| | - Robert M. Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16801, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania16801, United States
| |
Collapse
|
10
|
Bezkrovnyi O, Bruix A, Blaumeiser D, Piliai L, Schötz S, Bauer T, Khalakhan I, Skála T, Matvija P, Kraszkiewicz P, Pawlyta M, Vorokhta M, Matolínová I, Libuda J, Neyman KM, Kȩpiński L. Metal-Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7916-7936. [PMID: 36117879 PMCID: PMC9476549 DOI: 10.1021/acs.chemmater.2c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.
Collapse
Affiliation(s)
- Oleksii Bezkrovnyi
- W.
Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Albert Bruix
- Departament
de Ciència de Materials i Química Física and
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Dominik Blaumeiser
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Lesia Piliai
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Simon Schötz
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tanja Bauer
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Ivan Khalakhan
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Tomáš Skála
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Peter Matvija
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Piotr Kraszkiewicz
- W.
Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Mirosława Pawlyta
- Materials
Research Laboratory, Silesian University
of Technology, Gliwice 44-100, Poland
| | - Mykhailo Vorokhta
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Iva Matolínová
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000, Prague 8, Czech Republic
| | - Jörg Libuda
- Interface
Research and Catalysis, Erlangen Center for Interface Research and
Catalysis, Friedrich-Alexander Universität
Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Konstantin M. Neyman
- Departament
de Ciència de Materials i Química Física and
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- ICREA
(Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| | - Leszek Kȩpiński
- W.
Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|
11
|
Cipriano LA, Di Liberto G, Pacchioni G. Superoxo and Peroxo Complexes on Single-Atom Catalysts: Impact on the Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis A. Cipriano
- Dipartimento di Scienza dei Materiali, Università di Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano─Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
12
|
Van Dao D, Choi H, Nguyen TTD, Ki SW, Kim GC, Son H, Yang JK, Yu YT, Kim HY, Lee IH. Light-to-Hydrogen Improvement Based on Three-Factored Au@CeO 2/Gr Hierarchical Photocatalysts. ACS NANO 2022; 16:7848-7860. [PMID: 35522525 DOI: 10.1021/acsnano.2c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 entity (graphene outer shell thickness of 2.0 nm) under visible-light irradiation exhibits a colossal achievement (8.0 μmol mgcat-1 h-1), which is 2.2- and 14.3-fold higher than those of binary Au@CeO2 and free-standing CeO2 species, outperforming the currently available catalysts. Yet, it delivers a high maximum quantum yield efficiency of 38.4% at an incident wavelength of 560 nm. These improvements are unambiguously attributed to three indispensable effects: (1) the plasmon resonant energy is light-excited and transferred to produce hot electrons localizing near the surface of Au@CeO2, where (2) the high-surface-area Gr conductive shell will capture them to direct hydrogen evolution reactions, and (3) the active graphene hybridized on the defect-rich surface of Au@CeO2 favorably adsorbs hydrogen atoms, which all bring up thorough insight into the working of a ternary Au@CeO2/Gr catalyst system in terms of light-to-hydrogen conversion.
Collapse
Affiliation(s)
- Dung Van Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thuy T D Nguyen
- Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sang-Woo Ki
- Department of Optical Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Gyu-Cheol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hoki Son
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Kyu Yang
- Department of Optical Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Yeon-Tae Yu
- Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
|
14
|
Yoo M, Kang E, Ha H, Yun J, Choi H, Lee JH, Kim TJ, Min J, Choi JS, Lee KS, Jung N, Kim S, Kim C, Yu YS, Kim HY. Interspersing CeO x Clusters to the Pt-TiO 2 Interfaces for Catalytic Promotion of TiO 2-Supported Pt Nanoparticles. J Phys Chem Lett 2022; 13:1719-1725. [PMID: 35156829 DOI: 10.1021/acs.jpclett.2c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose an interface-engineered oxide-supported Pt nanoparticle-based catalyst with improved low-temperature activity toward CO oxidation. By wet-impregnating 1 wt % Ce on TiO2, we synthesized hybrid oxide support of CeOx-TiO2, in which dense CeOx clusters formed on the surface of TiO2. Then, the Pt/CeOx-TiO2 catalyst was synthesized by impregnating 2 wt % Pt on the CeOx-TiO2 supporting oxide. Pt-CeOx-TiO2 triphase interfaces were eventually formed upon impregnation of Pt on CeOx-TiO2. The Pt-CeOx-TiO2 interfaces open up the interface-mediated Mars-van Krevelen CO oxidation pathway, thus providing additional interfacial reaction sites for CO oxidation. Consequently, the specific reaction rate of Pt/CeOx-TiO2 for CO oxidation was increased by 3.2 times compared with that of Pt/TiO2 at 140 °C. Our results demonstrate a widely applicable and straightforward method of catalytic activation of the interfaces between metal nanoparticles and supporting oxides, which enabled fine-tuning of the catalytic performance of oxide-supported metal nanoparticle classes of heterogeneous catalysts.
Collapse
Affiliation(s)
- Mi Yoo
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunji Kang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunwoo Ha
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jieun Yun
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ju Hyeok Lee
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Jun Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Seok Choi
- KAIST Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34144, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sungtak Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chunjoong Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Sang Yu
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
15
|
Su YQ, Qin YY, Wu T, Wu DY. Structure Sensitivity of Ceria-Supported Au Catalysts for CO Oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Woźniak P, Małecka MA, Kraszkiewicz P, Miśta W, Bezkrovnyi O, Chinchilla L, Trasobares S. Confinement of nano-gold in 3D hierarchically structured gadolinium-doped ceria mesocrystal: synergistic effect of chemical composition and structural hierarchy in CO and propane oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01214f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gadolinium-doped ceria hierarchical gold catalyst shows four-fold TOF increase compared to undoped non-hierarchical system, proving the synergistic effect of doping and structural hierarchy in propane oxidation.
Collapse
Affiliation(s)
- Piotr Woźniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Małgorzata A. Małecka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Piotr Kraszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Włodzimierz Miśta
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Oleksii Bezkrovnyi
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Lidia Chinchilla
- Departamento de Ciencia de los Materiales e Ing. Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Cádiz, Spain
| | - Susana Trasobares
- Departamento de Ciencia de los Materiales e Ing. Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
17
|
Wang ZQ, Chu DR, Zhou H, Wu XP, Gong XQ. Role of Low-Coordinated Ce in Hydride Formation and Selective Hydrogenation Reactions on CeO2 Surfaces. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De-Ren Chu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Research Institute of Chemical Industry, Co., Ltd., 345 Yunling Road(E), Shanghai 200062, China
| | - Hui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
18
|
Affiliation(s)
- Hui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Centre for Computational Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Xin‐Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Centre for Computational Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Xue‐Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Centre for Computational Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
19
|
Yang W, Li J, Cui X, Yang C, Liu Y, Zeng X, Zhang Z, Zhang Q. Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Ziemba M, Schilling C, Ganduglia-Pirovano MV, Hess C. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Acc Chem Res 2021; 54:2884-2893. [PMID: 34137246 PMCID: PMC8264949 DOI: 10.1021/acs.accounts.1c00226] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusBecause ceria (CeO2) is a key ingredient in the formulation of many catalysts, its catalytic roles have received a great amount of attention from experiment and theory. Its primary function is to enhance the oxidation activity of catalysts, which is largely governed by the low activation barrier for creating lattice O vacancies. Such an important characteristic of ceria has been exploited in CO oxidation, methane partial oxidation, volatile organic compound oxidation, and the water-gas shift (WGS) reaction and in the context of automotive applications. A great challenge of such heterogeneously catalyzed processes remains the unambiguous identification of active sites.In oxidation reactions, closing the catalytic cycle requires ceria reoxidation by gas-phase oxygen, which includes oxygen adsorption and activation. While the general mechanistic framework of such processes is accepted, only very recently has an atomic-level understanding of oxygen activation on ceria powders been achieved by combined experimental and theoretical studies using in situ multiwavelength Raman spectroscopy and DFT.Recent studies have revealed that the adsorption and activation of gas-phase oxygen on ceria is strongly facet-dependent and involves different superoxide/peroxide species, which can now be unambiguously assigned to ceria surface sites using the combined Raman and DFT approach. Our results demonstrate that, as a result of oxygen dissociation, vacant ceria lattice sites are healed, highlighting the close relationship of surface processes with lattice oxygen dynamics, which is also of technical relevance in the context of oxygen storage-release applications.A recent DFT interpretation of Raman spectra of polycrystalline ceria enables us to take account of all (sub)surface and bulk vibrational features observed in the experimental spectra and has revealed new findings of great relevance for a mechanistic understanding of ceria-based catalysts. These include the identification of surface oxygen (Ce-O) modes and the quantification of subsurface oxygen defects. Combining these theoretical insights with operando Raman experiments now allows the (sub)surface oxygen dynamics of ceria and noble metal/ceria catalysts to be monitored under the reaction conditions.Applying these findings to Au/ceria catalysts provides univocal evidence for ceria support participation in heterogeneous catalysis. For room-temperature CO oxidation, operando Raman monitoring the (sub)surface defect dynamics clearly demonstrates the dependence of catalytic activity on the ceria reduction state. Extending the combined experimental/DFT approach to operando IR spectroscopy allows the elucidation of the nature of the active gold as (pseudo)single Au+ sites and enables us to develop a detailed mechanistic picture of the catalytic cycle. Temperature-dependent studies highlight the importance of facet-dependent defect formation energies and adsorbate stabilities (e.g., carbonates). While the latter aspects are also evidenced to play a role in the WGS reaction, the facet-dependent catalytic performance shows a correlation with the extent of gold agglomeration. Our findings are fully consistent with a redox mechanism, thus adding a new perspective to the ongoing discussion of the WGS reaction.As outlined above for ceria-based catalysts, closely combining state-of-the-art in situ/operando spectroscopy and theory constitutes a powerful approach to rational catalyst design by providing essential mechanistic information based on an atomic-level understanding of reactions.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Christian Schilling
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - M. Verónica Ganduglia-Pirovano
- Instituto de Catálisis y Petroleoquímica - Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain
| | - Christian Hess
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
21
|
Abdel-Mageed AM, Chen S, Fauth C, Häring T, Bansmann J. Fundamental Aspects of Ceria Supported Au Catalysts Probed by In Situ/Operando Spectroscopy and TAP Reactor Studies. Chemphyschem 2021; 22:1302-1315. [PMID: 33908151 PMCID: PMC8362095 DOI: 10.1002/cphc.202100027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/17/2021] [Indexed: 11/30/2022]
Abstract
The discovery of the activity of dispersed gold nanoparticles three decades ago paved the way for a new era in catalysis. The unusual behavior of these catalysts sparked many questions about their working mechanism. In particular, Au/CeO2 proved to be an efficient catalyst in several reactions such as CO oxidation, water gas shift, and CO2 reduction. Here, by employing findings from operando X‐ray absorption spectroscopy at the near and extended Au and Ce LIII energy edges, we focus on the fundamental aspects of highly active Au/CeO2 catalysts, mainly in the CO oxidation for understanding their complex structure‐reactivity relationship. These results were combined with findings from in situ diffuse reflectance FTIR and Raman spectroscopy, highlighting the changes of adlayer and ceria defects. For a comprehensive understanding, the spectroscopic findings will be supplemented by results of the dynamics of O2 activation obtained from Temporal Analysis of Products (TAP). Merging these results illuminates the complex relationship among the oxidation state, size of the Au nanoparticles, the redox properties of CeO2 support, and the dynamics of O2 activation.
Collapse
Affiliation(s)
- Ali M Abdel-Mageed
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Shilong Chen
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Corinna Fauth
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Thomas Häring
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Joachim Bansmann
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| |
Collapse
|
22
|
Nakagawa N, Ishitobi H, Abe S, Kakinuma M, Koshikawa H, Yamamoto S, Yamaki T. A novel method to enhance the catalytic activity of PtRu on the support using CeO2 by high-energy ion-beam irradiation. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Ziemba M, Ganduglia-Pirovano MV, Hess C. Insight into the mechanism of the water-gas shift reaction over Au/CeO 2 catalysts using combined operando spectroscopies. Faraday Discuss 2021; 229:232-250. [PMID: 33634801 DOI: 10.1039/c9fd00133f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of the low-temperature water-gas shift (LT-WGS) reaction over Au/CeO2 catalysts with different ceria terminations, i.e., (111), (110), and (100) facets, was investigated. Using combined operando Raman and UV-Vis spectroscopy as well as isotope exchange experiments, we are able to draw conclusions about the reducibility behaviour and the exchange of surface oxygen. Additional density functional theory (DFT) calculations facilitate the vibrational bands assignments and enhance the interpretation of the results on a molecular level. A facet-dependent role of gold is observed with respect to the oxygen dynamics, since for the CeO2(111) facet the presence of gold is required to exchange surface oxygen, whereas the CeO2(110) facet requires no gold, as rationalized by the low defect formation energy of this facet. This behaviour suggests that surface properties (termination, stepped surface) may have a strong effect on the reactivity. While the reduction of the support accompanies the reaction, its extent does not directly correlate with activity, highlighting the importance of other properties, such as the dissociative adsorption of water and/or CO2/H2 desorption. The results of our facet-dependent study are consistent with a redox mechanism, as underlined by H218O isotopic exchange experiments demonstrating the ready exchange of surface oxygen.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.
| | - M Verónica Ganduglia-Pirovano
- Instituto de Catálisis y Petroleoquímica - Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain
| | - Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.
| |
Collapse
|
24
|
Chang MW, Zhang L, Davids M, Filot IA, Hensen EJ. Dynamics of gold clusters on ceria during CO oxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Papavasiliou J. Interaction of atomically dispersed gold with hydrothermally prepared copper-cerium oxide for preferential CO oxidation reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Mao Z, Lustemberg PG, Rumptz JR, Ganduglia-Pirovano MV, Campbell CT. Ni Nanoparticles on CeO2(111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongtian Mao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Pablo G. Lustemberg
- Instituto de Fı́sica Rosario (IFIR-CONICET) and Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EKF Rosario, Santa Fe, Argentina
- Instituto de Catálisis y Petroleoquı́mica (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
| | - John R. Rumptz
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | | | - Charles T. Campbell
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
27
|
Jiang Y, Zhu Y, Zhou D, Jiang Z, Si N, Stacchiola D, Niu T. Reversible oxidation and reduction of gold-supported iron oxide islands at room temperature. J Chem Phys 2020; 152:074710. [PMID: 32087652 DOI: 10.1063/1.5136279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Monolayer iron oxides grown on metal substrates have widely been used as model systems in heterogeneous catalysis. By means of ambient-pressure scanning tunneling microscopy (AP-STM), we studied the in situ oxidation and reduction of FeO(111) grown on Au(111) by oxygen (O2) and carbon monoxide (CO), respectively. Oxygen dislocation lines present on FeO islands are highly active for O2 dissociation. X-ray photoelectron spectroscopy measurements distinctly reveal the reversible oxidation and reduction of FeO islands after sequential exposure to O2 and CO. Our AP-STM results show that excess O atoms can be further incorporated on dislocation lines and react with CO, whereas the CO is not strong enough to reduce the FeO supported on Au(111) that is essential to retain the activity of oxygen dislocation lines.
Collapse
Affiliation(s)
- Yixuan Jiang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| | - Yaguang Zhu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Dechun Zhou
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| | - Zhao Jiang
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Nan Si
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| | - Dario Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Tianchao Niu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| |
Collapse
|
28
|
Li Y, Li S, Bäumer M, Ivanova-Shor EA, Moskaleva LV. What Changes on the Inverse Catalyst? Insights from CO Oxidation on Au-Supported Ceria Nanoparticles Using Ab Initio Molecular Dynamics. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
| | - Shikun Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
| | - Marcus Bäumer
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
| | - Elena A. Ivanova-Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center SB RAS”, Krasnoyarsk 660036, Russia
| | - Lyudmila V. Moskaleva
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen 28359, Germany
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
29
|
Ziemba M, Hess C. Influence of gold on the reactivity behaviour of ceria nanorods in CO oxidation: combining operando spectroscopies and DFT calculations. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00392a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this combined Raman/UV-Vis and DFT study, structure-activity relations for CO oxidation over ceria nanorods (with/without gold) with CeO2(110) and CeO2(100) termination are elucidated using ceria nanocubes with CeO2(100) termination as reference.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard Zintl Institute of Inorganic and Physical Chemistry
- Technical University of Darmstadt
- 64287 Darmstadt
- Germany
| | - Christian Hess
- Eduard Zintl Institute of Inorganic and Physical Chemistry
- Technical University of Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
30
|
Doherty F, Wang H, Yang M, Goldsmith BR. Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO2. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01316a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We highlight different aspects of single-atom and nanocluster catalysts for CO2 reduction and CO oxidation, including synthesis, dynamic restructuring, and trends in activity and selectivity.
Collapse
Affiliation(s)
- Francis Doherty
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
- Catalysis Science and Technology Institute
| | - Hui Wang
- International Joint Research Laboratory of Materials Microstructure
- Institute for New Energy Materials & Low Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin
| | - Ming Yang
- Chemical and Materials Systems Laboratory
- General Motors Global Research and Development
- Warren
- USA
- Department of Chemical and Biomolecular Engineering
| | - Bryan R. Goldsmith
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
- Catalysis Science and Technology Institute
| |
Collapse
|
31
|
Oh S, Ha H, Choi H, Jo C, Cho J, Choi H, Ryoo R, Kim HY, Park JY. Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. J Chem Phys 2019; 151:234716. [DOI: 10.1063/1.5131464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sunyoung Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyunwoo Ha
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Hanseul Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Changbum Jo
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jangkeun Cho
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Ryong Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
32
|
Tahini HA, Tan X, Smith SC. Facile CO Oxidation on Oxygen‐functionalized MXenes via the Mars‐van Krevelen Mechanism. ChemCatChem 2019. [DOI: 10.1002/cctc.201901448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hassan A. Tahini
- Integrated Materials Design Laboratory Research School of PhysicsThe Australian National University Canberra ACT 2601 Australia
| | - Xin Tan
- Integrated Materials Design Laboratory Research School of PhysicsThe Australian National University Canberra ACT 2601 Australia
| | - Sean C. Smith
- Integrated Materials Design Laboratory Research School of PhysicsThe Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
33
|
Kim HJ, Jang MG, Shin D, Han JW. Design of Ceria Catalysts for Low‐Temperature CO Oxidation. ChemCatChem 2019. [DOI: 10.1002/cctc.201901787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hyung Jun Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| | - Myeong Gon Jang
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| | - Dongjae Shin
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jeong Woo Han
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
34
|
Liu P, Ling L, Lin H, Wang B. Understanding the Role of Surface Oxygen in Hg Removal on Un-Doped and Mn/Fe-Doped CeO 2 (111). J Comput Chem 2019; 40:2611-2621. [PMID: 31381172 DOI: 10.1002/jcc.26038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 11/11/2022]
Abstract
Effects of surface-adsorbed O and lattice O for the CeO2 (111) surface on Hg removal has been researched. In this work, periodic calculations based on density functional theory (DFT) were performed with the on-site Coulomb interaction. Hg is oxidized to HgO via the surface-adsorbed O by overcoming a Gibbs free energy barrier of 114.1 kJ·mol-1 on the CeO2 (111) surface. Mn and Fe doping reduce the activation Gibbs free energy for the Hg oxidation, and energies of 70.7 and 49.6 kJ·mol-1 are needed on Ce0.96 Mn0.04 O2 (111) and Ce0.96 Fe0.04 O2 (111) surfaces. Additionally, lattice O also plays an important role in Hg removal. Hg cannot be oxidized leading to the formation of HgO on the un-doped CeO2 (111) surface owing to the inertness of lattice O, which can be easily oxidized to HgO on Ce0.96 Mn0.04 O2 (111) and Ce0.96 Fe0.04 O2 (111) surfaces. It can be seen that both surface-adsorbed O and lattice O play important roles in removing Hg. The present study will shed light on understanding and developing Hg removal technology on un-doped and Mn/Fe-doped CeO2 (111) catalysts. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ping Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, People's Republic of China
| | - Lixia Ling
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Hao Lin
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Baojun Wang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| |
Collapse
|
35
|
Zhou H, Zou X, Wu X, Yang X, Li J. Coordination Engineering in Cobalt-Nitrogen-Functionalized Materials for CO 2 Reduction. J Phys Chem Lett 2019; 10:6551-6557. [PMID: 31597421 DOI: 10.1021/acs.jpclett.9b02132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cobalt-nitrogen-functionalized materials have been recognized as promising catalysts for the CO2 reduction reaction because of their superior activity. In order to further improve their activity, we proposed an optimization method through coordination engineering in cobalt-nitrogen-functionalized porphyrin and graphene. By considering a series of derived structures with coordinating nitrogen atoms substituted by carbon or oxygen atoms, a clear activity trend is obtained by constructing a volcano-type plot for activity against adsorption energies of *CO. Detailed electronic structure analysis shows that the enhanced catalytic activity is due to the lacking of π bonding in Co-O bonds compared to Co-C or Co-N bonds in cobalt-centered motifs. This difference allows us to predict the catalytic activity by using the vacancy formation energy of the cobalt atom. Our work provides a general guideline for a rational design of efficient catalysts, which may stimulate further study of coordination engineering for other key energy conversion processes.
Collapse
Affiliation(s)
- Haoqian Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xi Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xin Yang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Jia Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| |
Collapse
|
36
|
Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt 1 atoms. Nat Commun 2019; 10:3808. [PMID: 31444350 PMCID: PMC6707320 DOI: 10.1038/s41467-019-11856-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/08/2019] [Indexed: 11/14/2022] Open
Abstract
Despite the maximized metal dispersion offered by single-atom catalysts, further improvement of intrinsic activity can be hindered by the lack of neighboring metal atoms in these systems. Here we report the use of isolated Pt1 atoms on ceria as “seeds” to develop a Pt-O-Pt ensemble, which is well-represented by a Pt8O14 model cluster that retains 100% metal dispersion. The Pt atom in the ensemble is 100–1000 times more active than their single-atom Pt1/CeO2 parent in catalyzing the low-temperature CO oxidation under oxygen-rich conditions. Rather than the Pt-O-Ce interfacial catalysis, the stable catalytic unit is the Pt-O-Pt site itself without participation of oxygen from the 10–30 nm-size ceria support. Similar Pt-O-Pt sites can be built on various ceria and even alumina, distinguishable by facile activation of oxygen through the paired Pt-O-Pt atoms. Extending this design to other reaction systems is a likely outcome of the findings reported here. Single-atom metal catalysts offer maximized material efficiency, but there is large room to improve the intrinsic activity per metal atom for many reactions. Here, the authors demonstrate that the solution for CO oxidation is to tackle the issue of lacking neighboring Pt atoms in the single-atom Pt1/CeO2 system.
Collapse
|
37
|
Gao Z, Liu X, Li A, Li X, Ding X, Yang W. Bimetallic sites supported on N-doped graphene ((Fe,Co)/N-GN) as a new catalyst for NO oxidation: A theoretical investigation. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Dononelli W, Tomaschun G, Klüner T, Moskaleva LV. Understanding Oxygen Activation on Nanoporous Gold. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilke Dononelli
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Gabriele Tomaschun
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Thorsten Klüner
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Lyudmila V. Moskaleva
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
39
|
Zhao B, Jian Y, Jiang Z, Albilali R, He C. Revealing the unexpected promotion effect of EuO on Pt/CeO2 catalysts for catalytic combustion of toluene. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63292-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Choi Y, Cha SK, Ha H, Lee S, Seo HK, Lee JY, Kim HY, Kim SO, Jung W. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. NATURE NANOTECHNOLOGY 2019; 14:245-251. [PMID: 30778213 DOI: 10.1038/s41565-019-0367-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Highly active metal nanoparticles are desired to serve in high-temperature electrocatalysis, for example, in solid oxide electrochemical cells. Unfortunately, the low thermal stability of nanosized particles and the sophisticated interface requirement for electrode structures to support concurrent ionic and electronic transport make it hard to identify the exact catalytic role of nanoparticles embedded within complex electrode architectures. Here we present an accurate analysis of the reactivity of oxide electrodes boosted by metal nanoparticles, where all particles participate in the reaction. Monodisperse particles (Pt, Pd, Au and Co), 10 nm in size and stable at high temperature (more than 600 °C), are uniformly distributed onto mixed-conducting oxide electrodes as a model electrochemical cell via self-assembled nanopatterning. We identify how the metal catalysts activate hydrogen electrooxidation on the ceria-based electrode surface and quantify how rapidly the reaction rate increases with proper choice of metal. These results suggest an ideal electrode design for high-temperature electrochemical applications.
Collapse
Affiliation(s)
- Yoonseok Choi
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Seung Keun Cha
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon, Republic of Korea
| | - Hyunwoo Ha
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Siwon Lee
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Hyeon Kook Seo
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jeong Yong Lee
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea.
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon, Republic of Korea.
| | - WooChul Jung
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
41
|
CO Oxidation Promoted by a Pt4/TiO2 Catalyst: Role of Lattice Oxygen at the Metal/Oxide Interface. Catal Letters 2018. [DOI: 10.1007/s10562-018-2610-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Valechha D, Megarajan SK, Al-Fatesh A, Jiang H, Labhasetwar N. Low Temperature CO Oxidation Over a Novel Nano-Structured, Mesoporous CeO2 Supported Au Catalyst. Catal Letters 2018. [DOI: 10.1007/s10562-018-2603-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Ha H, Yoon S, An K, Kim HY. Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au–CeO2 Interface. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03539] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hyunwoo Ha
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sinmyung Yoon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwangjin An
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
44
|
Tosoni S, Pacchioni G. Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801082] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sergio Tosoni
- Dipartimento di Scienza dei MaterialiUniversità di Milano Bicocca Via Roberto Cozzi 55 Milano I-20125 Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei MaterialiUniversità di Milano Bicocca Via Roberto Cozzi 55 Milano I-20125 Italy
| |
Collapse
|
45
|
|
46
|
Effect of the morphology on the vapor phase benzene catalytic hydrogenation over Pd/CeO2 catalyst. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Schlexer P, Widmann D, Behm RJ, Pacchioni G. CO Oxidation on a Au/TiO2 Nanoparticle Catalyst via the Au-Assisted Mars–van Krevelen Mechanism. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01751] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philomena Schlexer
- Dipartimento di Scienza dei Materiali, Universitá Milano-Bicocca, Milan I-20125, Italy
| | - Daniel Widmann
- Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - R. Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Universitá Milano-Bicocca, Milan I-20125, Italy
| |
Collapse
|
48
|
Mo S, Zhang Q, Li S, Ren Q, Zhang M, Xue Y, Peng R, Xiao H, Chen Y, Ye D. Integrated Cobalt Oxide Based Nanoarray Catalysts with Hierarchical Architectures: In Situ Raman Spectroscopy Investigation on the Carbon Monoxide Reaction Mechanism. ChemCatChem 2018. [DOI: 10.1002/cctc.201800363] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengpeng Mo
- School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
- Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qi Zhang
- School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| | - Shuangde Li
- Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Quanming Ren
- School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| | - Mingyuan Zhang
- School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| | - Yudong Xue
- Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Ruosi Peng
- School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| | - Hailin Xiao
- School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| | - Yunfa Chen
- Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 P.R. China
- Center for Excellence in Urban Atmospheric Environment; Institute of Urban Environment, Chinese Academy of Sciences; Xiamen 361021 P.R. China
| | - Daiqi Ye
- School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
- Guangdong Provincial Engineering and Technology Research, Centre for Environmental Risk Prevention and Emergency Disposal; South China University of Technology; Guangzhou Higher Education Mega Centre Guangzhou 510006 P.R. China
- Guangdong Provincial Key Laboratory of Atmospheric, Environment and Pollution Control (SCUT); Guangzhou 510006 P.R. China
| |
Collapse
|
49
|
He C, Jiang Z, Ma M, Zhang X, Douthwaite M, Shi JW, Hao Z. Understanding the Promotional Effect of Mn2O3 on Micro-/Mesoporous Hybrid Silica Nanocubic-Supported Pt Catalysts for the Low-Temperature Destruction of Methyl Ethyl Ketone: An Experimental and Theoretical Study. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04461] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi He
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Zeyu Jiang
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Mudi Ma
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Xiaodong Zhang
- Department of Environmental Science and Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China
| | - Mark Douthwaite
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Jian-Wen Shi
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, People’s Republic of China
| |
Collapse
|
50
|
Zhang X, Duan D, Li G, Feng W, Yang S, Sun Z. Monolithic Au/CeO 2 nanorod framework catalyst prepared by dealloying for low-temperature CO oxidation. NANOTECHNOLOGY 2018; 29:095606. [PMID: 29328056 DOI: 10.1088/1361-6528/aaa726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monolithic Au/CeO2 nanorod frameworks (NFs) with porous structure were prepared by dealloying melt-spun Al89.7Ce10Au0.3 ribbons. After calcination in O2, a 3D Au/CeO2 NF catalyst with large surface area was obtained and used for low-temperature CO oxidation. The small Au clusters/nanoparticles (NPs) were in situ supported and highly dispersed on the nanorod surface, creating many nanoscale contact interfaces. XPS results demonstrated that high-concentration oxygen vacancy and Au δ+/Au0 co-existed in the calcined sample. The Au/CeO2 nanorod catalyst calcined at 400 °C exhibited much higher catalytic activity for CO oxidation compared with the dealloyed sample and bare CeO2 nanorods. Moreover, its complete reaction temperature was as low as 91 °C. The designed Au/CeO2 NF catalyst not only possessed extreme sintering resistance but also exhibited high performance owing to the enhanced interaction between the Au clusters/NPs and CeO2 nanorod during calcination.
Collapse
Affiliation(s)
- Xiaolong Zhang
- School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, People's Republic of China
| | | | | | | | | | | |
Collapse
|