1
|
Elsner J, Xu Y, Goldberg ED, Ivanovic F, Dines A, Giannini S, Sirringhaus H, Blumberger J. Thermoelectric transport in molecular crystals driven by gradients of thermal electronic disorder. SCIENCE ADVANCES 2024; 10:eadr1758. [PMID: 39441918 PMCID: PMC11498209 DOI: 10.1126/sciadv.adr1758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Thermoelectric materials convert a temperature gradient into a voltage. This phenomenon is relatively well understood for inorganic materials but much less so for organic semiconductors (OSs). These materials present a challenge because the strong thermal fluctuations of electronic coupling between the molecules result in partially delocalized charge carriers that cannot be treated with traditional theories for thermoelectricity. Here, we develop a quantum dynamical simulation approach revealing in atomistic detail how the charge carrier wave function moves along a temperature gradient in an organic molecular crystal. We find that the wave function propagates from hot to cold in agreement with the experiment, and we obtain a Seebeck coefficient in good agreement with experimental measurements that are also reported in this work. Detailed analysis reveals that gradients in thermal electronic disorder play an important role in determining the magnitude of the Seebeck coefficient, opening unexplored avenues for the design of OSs with improved Seebeck coefficients.
Collapse
Affiliation(s)
- Jan Elsner
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, UK
| | - Yucheng Xu
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | | | - Filip Ivanovic
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, UK
| | - Aaron Dines
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, UK
| | - Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, UK
- Institute for the Chemistry of OrganoMetallic Compounds, National Research Council (ICCOM-CNR), I-56124 Pisa, Italy
| | | | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Runeson JE, Drayton TJG, Manolopoulos DE. Charge transport in organic semiconductors from the mapping approach to surface hopping. J Chem Phys 2024; 161:144102. [PMID: 39377321 DOI: 10.1063/5.0226001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
We describe how to simulate charge diffusion in organic semiconductors using a recently introduced mixed quantum-classical method, the mapping approach to surface hopping. In contrast to standard fewest-switches surface hopping, this method propagates the classical degrees of freedom deterministically on the most populated adiabatic electronic state. This correctly preserves the equilibrium distribution of a quantum charge coupled to classical phonons, allowing one to time-average along trajectories to improve the statistical convergence of the calculation. We illustrate the method with an application to a standard model for the charge transport in the direction of maximum mobility in crystalline rubrene. Because of its consistency with the equilibrium distribution, the present method gives a time-dependent diffusion coefficient that plateaus correctly to a long-time limiting value. The resulting mobility is somewhat higher than that of the relaxation time approximation, which uses a phenomenological relaxation parameter to obtain a non-zero diffusion coefficient from a calculation with static phonon disorder. However, it is very similar to the mobility obtained from Ehrenfest dynamics, at least in the parameter regimes we have investigated here. This is somewhat surprising because Ehrenfest dynamics overheats the electronic subsystem and is, therefore, inconsistent with the equilibrium distribution.
Collapse
Affiliation(s)
- Johan E Runeson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas J G Drayton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
3
|
Zhou L, Gao X, Shuai Z. A stochastic Schrödinger equation and matrix product state approach to carrier transport in organic semiconductors with nonlocal electron-phonon interaction. J Chem Phys 2024; 161:084118. [PMID: 39212211 DOI: 10.1063/5.0221143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Evaluation of the charge transport property of organic semiconductors requires exact quantum dynamics simulation of large systems. We present a numerically nearly exact approach to investigate carrier transport dynamics in organic semiconductors by extending the non-Markovian stochastic Schrödinger equation with complex frequency modes to a forward-backward scheme and by solving it using the matrix product state (MPS) approach. By utilizing the forward-backward formalism for noise generation, the bath correlation function can be effectively treated as a temperature-independent imaginary part, enabling a more accurate decomposition with fewer complex frequency modes. Using this approach, we study the carrier transport and mobility in the one-dimensional Peierls model, where the nonlocal electron-phonon interaction is taken into account. The reliability of this approach was validated by comparing carrier diffusion motion with those obtained from the hierarchical equations of motion method across various parameter regimes of the phonon bath. The efficiency was demonstrated by the modest virtual bond dimensions of MPS and the low scaling of the computational time with the system size.
Collapse
Affiliation(s)
- Liqi Zhou
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
4
|
Carey RL, Giannini S, Schott S, Lemaur V, Xiao M, Prodhan S, Wang L, Bovoloni M, Quarti C, Beljonne D, Sirringhaus H. Spin relaxation of electron and hole polarons in ambipolar conjugated polymers. Nat Commun 2024; 15:288. [PMID: 38177094 PMCID: PMC10767019 DOI: 10.1038/s41467-023-43505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The charge-transport properties of conjugated polymers have been studied extensively for opto-electronic device applications. Some polymer semiconductors not only support the ambipolar transport of electrons and holes, but do so with comparable carrier mobilities. This opens the possibility of gaining deeper insight into the charge-transport physics of these complex materials via comparison between electron and hole dynamics while keeping other factors, such as polymer microstructure, equal. Here, we use field-induced electron spin resonance spectroscopy to compare the spin relaxation behavior of electron and hole polarons in three ambipolar conjugated polymers. Our experiments show unique relaxation regimes as a function of temperature for electrons and holes, whereby at lower temperatures electrons relax slower than holes, but at higher temperatures, in the so-called spin-shuttling regime, the trend is reversed. On the basis of theoretical simulations, we attribute this to differences in the delocalization of electron and hole wavefunctions and show that spin relaxation in the spin shuttling regimes provides a sensitive probe of the intimate coupling between charge and structural dynamics.
Collapse
Affiliation(s)
- Remington L Carey
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Samuele Giannini
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
- Institute of Chemistry of OrganoMetallic Compounds, National Research Council (ICCOM-CNR), I-56124, Pisa, Italy
| | - Sam Schott
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Mingfei Xiao
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Suryoday Prodhan
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX, UK
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Michelangelo Bovoloni
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | | |
Collapse
|
5
|
Baxter JM, Koay CS, Xu D, Cheng SW, Tulyagankhodjaev JA, Shih P, Roy X, Delor M. Coexistence of Incoherent and Ultrafast Coherent Exciton Transport in a Two-Dimensional Superatomic Semiconductor. J Phys Chem Lett 2023; 14:10249-10256. [PMID: 37938804 DOI: 10.1021/acs.jpclett.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Fully leveraging the remarkable properties of low-dimensional semiconductors requires developing a deep understanding of how their structure and disorder affect the flow of electronic energy. Here, we study exciton transport in single crystals of the two-dimensional superatomic semiconductor CsRe6Se8I3, which straddles a photophysically rich yet elusive intermediate electronic-coupling regime. Using femtosecond scattering microscopy to directly image exciton transport in CsRe6Se8I3, we reveal the rare coexistence of coherent and incoherent exciton transport, leading to either persistent or transient electronic delocalization depending on temperature. Notably, coherent excitons exhibit ballistic transport at speeds approaching an extraordinary 1600 km/s over 300 fs. Such fast transport is mediated by J-aggregate-like superradiance, owing to the anisotropic structure and long-range order of CsRe6Se8I3. Our results establish superatomic crystals as ideal platforms for studying the intermediate electronic-coupling regime in highly ordered environments, in this case displaying long-range electronic delocalization, ultrafast energy flow, and a tunable dual transport regime.
Collapse
Affiliation(s)
- James M Baxter
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christie S Koay
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Petra Shih
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Hsu TC, Wu BX, Lin RT, Chien CJ, Yeh CY, Chang TH. Electron-phonon interaction toward engineering carrier mobility of periodic edge structured graphene nanoribbons. Sci Rep 2023; 13:5781. [PMID: 37031224 PMCID: PMC10082836 DOI: 10.1038/s41598-023-32655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Graphene nanoribbons have many extraordinary electrical properties and are the candidates for semiconductor industry. In this research, we propose a design of Coved GNRs with periodic structure ranged from 4 to 8 nm or more, of which the size is within practical feature sizes by advanced lithography tools. The carrier transport properties of Coved GNRs with the periodic coved shape are designed to break the localized electronic state and reducing electron-phonon scattering. In this way, the mobility of Coved GNRs can be enhanced by orders compared with the zigzag GNRs in same width. Moreover, in contrast to occasional zero bandgap transition of armchair and zigzag GNRs without precision control in atomic level, the Coved GNRs with periodic edge structures can exclude the zero bandgap conditions, which makes practical the mass production process. The designed Coved-GNRs is fabricated over the Germanium (110) substrate where the graphene can be prepared in the single-crystalline and single-oriented formants and the edge of GNRs is later repaired under "balanced condition growth" and we demonstrate that the propose coved structures are compatible to current fabrication facility.
Collapse
Affiliation(s)
- Teng-Chin Hsu
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Bi-Xian Wu
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Rong-Teng Lin
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Chia-Jen Chien
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Yeh
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsuan Chang
- Graduate Institute of Electronics Engineering (GIEE), National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
8
|
Navamani K, Rajkumar K. Generalization on Entropy-Ruled Charge and Energy Transport for Organic Solids and Biomolecular Aggregates. ACS OMEGA 2022; 7:27102-27115. [PMID: 35967056 PMCID: PMC9366796 DOI: 10.1021/acsomega.2c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
Herein, a generalized version of the entropy-ruled charge and energy transport mechanism for organic solids and biomolecular aggregates is presented. The effects of thermal disorder and electric field on electronic transport in molecular solids have been quantified by entropy, which eventually varies with respect to the typical disorder (static or dynamic). Based on our previous differential entropy (h s )-driven charge transport method, we explore the nonsteady carrier energy flux principle for soft matter systems from small organic solids to macrobiomolecular aggregates. Through this principle, the synergic nature of charge and energy transport in different organic systems is addressed. In this work, entropy is the key parameter to classify whether the carrier dynamics is in a nonsteady or steady state. Besides that, we also propose the formulation for unifying the hopping and band transport, which provides the relaxation time-hopping rate relation and the relaxation time-effective mass ratio. The calculated disorder drift time (or entropy-weighted carrier drift time) for hole transport in an alkyl-substituted triphenylamine (TPA) molecular device is 9.3 × 10-7 s, which illustrates nuclear dynamics-coupled charge transfer kinetics. The existence of nonequilibrium transport is anticipated while the carrier dynamics is in the nonsteady state, which is further examined from the rate of traversing potential in octupolar molecules. Our entropy-ruled Einstein model connects the adiabatic band and nonadiabatic hopping transport mechanisms. The logarithmic current density at different electric field-assisted site energy differences provides information about the typical transport (whether trap-free diffusion or trap-assisted recombination) in molecular devices, which reflects in the Navamani-Shockley diode equation.
Collapse
Affiliation(s)
- Karuppuchamy Navamani
- Department
of Physics, Centre for Research and Development
(CFRD), KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Kanakaraj Rajkumar
- Department
of Physics, Indian Institute of Technology
Madras, Chennai 600036, India
| |
Collapse
|
9
|
Ten Brink M, Gräber S, Hopjan M, Jansen D, Stolpp J, Heidrich-Meisner F, Blöchl PE. Real-time non-adiabatic dynamics in the one-dimensional Holstein model: Trajectory-based vs exact methods. J Chem Phys 2022; 156:234109. [PMID: 35732530 DOI: 10.1063/5.0092063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We benchmark a set of quantum-chemistry methods, including multitrajectory Ehrenfest, fewest-switches surface-hopping, and multiconfigurational-Ehrenfest dynamics, against exact quantum-many-body techniques by studying real-time dynamics in the Holstein model. This is a paradigmatic model in condensed matter theory incorporating a local coupling of electrons to Einstein phonons. For the two-site and three-site Holstein model, we discuss the exact and quantum-chemistry methods in terms of the Born-Huang formalism, covering different initial states, which either start on a single Born-Oppenheimer surface, or with the electron localized to a single site. For extended systems with up to 51 sites, we address both the physics of single Holstein polarons and the dynamics of charge-density waves at finite electron densities. For these extended systems, we compare the quantum-chemistry methods to exact dynamics obtained from time-dependent density matrix renormalization group calculations with local basis optimization (DMRG-LBO). We observe that the multitrajectory Ehrenfest method, in general, only captures the ultrashort time dynamics accurately. In contrast, the surface-hopping method with suitable corrections provides a much better description of the long-time behavior but struggles with the short-time description of coherences between different Born-Oppenheimer states. We show that the multiconfigurational Ehrenfest method yields a significant improvement over the multitrajectory Ehrenfest method and can be converged to the exact results in small systems with moderate computational efforts. We further observe that for extended systems, this convergence is slower with respect to the number of configurations. Our benchmark study demonstrates that DMRG-LBO is a useful tool for assessing the quality of the quantum-chemistry methods.
Collapse
Affiliation(s)
- M Ten Brink
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - S Gräber
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - M Hopjan
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D Jansen
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - J Stolpp
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - F Heidrich-Meisner
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - P E Blöchl
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Xie H, Xu X, Wang L, Zhuang W. Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model. J Chem Phys 2022; 156:154116. [PMID: 35459287 DOI: 10.1063/5.0085759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron-phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched-compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.
Collapse
Affiliation(s)
- Hua Xie
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoliang Xu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
11
|
Qiu J, Lu Y, Wang L. Multilayer Subsystem Surface Hopping Method for Large-Scale Nonadiabatic Dynamics Simulation with Hundreds of Thousands of States. J Chem Theory Comput 2022; 18:2803-2815. [PMID: 35380833 DOI: 10.1021/acs.jctc.2c00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a multilayer subsystem surface hopping (MSSH) method to deal with nonadiabatic dynamics in large-scale systems. A small subsystem instead of the full system is adopted for surface hopping and is updated on-the-fly to achieve a reliable description of important adiabatic states and the wave function evolution. Additional subsystems for molecular dynamics and statistical description are introduced to further improve the simulation reliability. The global flux hopping probabilities with optimal state assignments are utilized to treat the complex surface crossings. As demonstrated in a series of one- and two-dimensional Holstein models with up to hundreds of thousands of states, MSSH shows weak parameter dependence in all investigated systems. Especially, the computational costs are reduced by 2-6 orders of magnitude compared to traditional surface hopping simulations in full systems, and size-independent results are achieved with a large time-step size of 2-5 fs. The new method is compatible with different decoherence correction strategies and achieves a much better balance between efficiency and reliability, thus promising for applications in general charge and exciton dynamics simulations.
Collapse
Affiliation(s)
- Jing Qiu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yao Lu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Giannini S, Blumberger J. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Acc Chem Res 2022; 55:819-830. [PMID: 35196456 PMCID: PMC8928466 DOI: 10.1021/acs.accounts.1c00675] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Organic semiconductors (OSs) are an exciting
class of materials
that have enabled disruptive technologies in this century including
large-area electronics, flexible displays, and inexpensive solar cells.
All of these technologies rely on the motion of electrical charges
within the material and the diffusivity of these charges critically
determines their performance. In this respect, it is remarkable that
the nature of the charge transport in these materials has puzzled
the community for so many years, even for apparently simple systems
such as molecular single crystals: some experiments would better fit
an interpretation in terms of a localized particle picture, akin to
molecular or biological electron transfer, while others are in better
agreement with a wave-like interpretation, more akin to band transport
in metals. Exciting recent progress in the theory and simulation
of charge
carrier transport in OSs has now led to a unified understanding of
these disparate findings, and this Account will review one of these
tools developed in our laboratory in some detail: direct charge carrier
propagation by quantum-classical nonadiabatic molecular dynamics.
One finds that even in defect-free crystals the charge carrier can
either localize on a single molecule or substantially delocalize over
a large number of molecules depending on the relative strength of
electronic couplings between the molecules, reorganization, or charge
trapping energy of the molecule and thermal fluctuations of electronic
couplings and site energies, also known as electron–phonon
couplings. Our simulations predict that in molecular OSs exhibiting
some of
the highest measured charge mobilities to date, the charge carrier
forms “flickering” polarons, objects that are delocalized
over 10–20 molecules on average and that constantly change
their shape and extension under the influence of thermal disorder.
The flickering polarons propagate through the OS by short (≈10
fs long) bursts of the wave function that lead to an expansion of
the polaron to about twice its size, resulting in spatial displacement,
carrier diffusion, charge mobility, and electrical conductivity. Arguably
best termed “transient delocalization”, this mechanistic
scenario is very similar to the one assumed in transient localization
theory and supports its assertions. We also review recent applications
of our methodology to charge transport in disordered and nanocrystalline
samples, which allows us to understand the influence of defects and
grain boundaries on the charge propagation. Unfortunately, the
energetically favorable packing structures of
typical OSs, whether molecular or polymeric, places fundamental constraints
on charge mobilities/electronic conductivity compared to inorganic
semiconductors, which limits their range of applications. In this
Account, we review the design rules that could pave the way for new
very high-mobility OS materials and we argue that 2D covalent organic
frameworks are one of the most promising candidates to satisfy them. We conclude that our nonadiabatic dynamics method is a powerful
approach for predicting charge carrier transport in crystalline and
disordered materials. We close with a brief outlook on extensions
of the method to exciton transport, dissociation, and recombination.
This will bring us a step closer to an understanding of the birth,
survival, and annihiliation of charges at interfaces of optoelectronic
devices.
Collapse
Affiliation(s)
- Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Kumagai S, Ishii H, Watanabe G, Yu CP, Watanabe S, Takeya J, Okamoto T. Nitrogen-Containing Perylene Diimides: Molecular Design, Robust Aggregated Structures, and Advances in n-Type Organic Semiconductors. Acc Chem Res 2022; 55:660-672. [PMID: 35157436 DOI: 10.1021/acs.accounts.1c00548] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ConspectusOrganic semiconductors (OSCs) have attracted much attention because of their potential applications for flexible and printed electronic devices and thus have been extensively investigated in a variety of research fields, such as organic chemistry, solid-state physics, and device physics and engineering. Organic thin-film transistors (OTFTs), a class of OSC-based devices, have been expected to be an alternative of silicon-based metal oxide semiconductor field-effect transistors (MOSFETs), which is the indispensable element for most of the current electronic devices. However, the noncovalently aggregated, van der Waals solid nature of the OSCs, by contrast to covalently bound silicon, conventionally exhibits lower carrier mobilities, limiting the practical applications of OTFTs. In particular, electron-transporting (i.e., n-type) OSCs lag behind their hole-transporting (p-type) counterparts in carrier mobility and ambient stability as OTFTs. This is primarily because of the difficulty in achieving compatibility between the aggregated structure exhibiting excellent carrier mobility and that with enough electron affinity. Recent understandings of carrier transport in OSCs explain that large and two-dimensionally isotropic transfer integrals coupled with small fluctuations are crucial for high carrier mobilities. In addition, from a practical point of view, the compatibility with practical device processes is highly required. Rational molecular design principles, therefore, are still demanded for developing OSCs and OTFTs toward high-end device applications.Herein, we will show our recent progress in the development of n-type OSCs with the key π-electron core (π-core) of benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) on the basis of single-crystal OTFT technologies and the band-transport model enabled by two-dimensional molecular packing arrangements. The critical point is the introduction of electronegative nitrogen atoms into the π-core: the nitrogen atoms in BQQDI not only deepen the molecular orbital energies but also allow hydrogen-bonding-like attractive intermolecular interactions to control the aggregated structures, unlike the conventional role of the nitrogen introduced into OSCs only for the former role. Hence, the BQQDI analogues exhibit air-stable OTFT behavior and two-dimensional brickwork packing structures. Specifically, phenethyl-substituted analogue (PhC2-BQQDI) has been shown as the first principal BQQDI-based material, demonstrating solution-processable thin-film single crystals, fewer anisotropic transfer integrals, and an effective suppression of molecular motions, leading to band-like electron-transport properties and stress-durable n-channel OTFT performances, in conjunction with the support of computational calculations. Insights into more fundamental points of view have been found by side-chain derivatization and OTFT studies on polycrystalline and single-crystal films. We hope that this Account provides readers with new strategies for designing high-performance OSCs by two-dimensional control of the aggregated structures.
Collapse
Affiliation(s)
- Shohei Kumagai
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Hiroyuki Ishii
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Craig P. Yu
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shun Watanabe
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- MANA, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 205-0044, Japan
| | - Toshihiro Okamoto
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Dilmurat R, Prodhan S, Wang L, Beljonne D. Thermally activated intra-chain charge transport in high charge-carrier mobility copolymers. J Chem Phys 2022; 156:084115. [DOI: 10.1063/5.0082569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disordered or even seemingly amorphous, donor–acceptor type, conjugated copolymers with high charge-carrier mobility have emerged as a new class of functional materials, where transport along the conjugated backbone is key. Here, we report on non-adiabatic molecular dynamics simulations of charge-carrier transport along chains of poly (indacenodithiophene-co-benzothiadiazole), within a model Hamiltonian parameterized against first-principles calculations. We predict thermally activated charge transport associated with a slightly twisted ground-state conformation, on par with experimental results. Our results also demonstrate that the energy mismatch between the hole on the donor vs the acceptor units of the copolymer drives localization of the charge carriers and limits the intra-chain charge-carrier mobility. We predict that room-temperature mobility values in excess of 10 cm2 V−1 s−1 can be achieved through proper chemical tuning of the component monomer units.
Collapse
Affiliation(s)
- Rishat Dilmurat
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
| | - Suryoday Prodhan
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
| |
Collapse
|
15
|
Wang Z, Dong J, Qiu J, Wang L. All-Atom Nonadiabatic Dynamics Simulation of Hybrid Graphene Nanoribbons Based on Wannier Analysis and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22929-22940. [PMID: 35100503 DOI: 10.1021/acsami.1c22181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trajectory surface hopping combined with ab initio electronic structure calculations is a popular and powerful approach for on-the-fly nonadiabatic dynamics simulations. For large systems, however, this remains a significant challenge because of the unaffordable computational cost of large-scale electronic structure calculations. Here, we present an efficient divide-and-conquer approach to construct the system Hamiltonian based on Wannier analysis and machine learning. In detail, the large system under investigation is first decomposed into small building blocks, and then all possible segments formed by building blocks within a cutoff distance are found out. Ab initio molecular dynamics is carried out to generate a sequence of geometries for each equivalent segment with periodicity. The Hamiltonian matrices in the maximum localized Wannier function (MLWF) basis are obtained for all geometries and utilized to train artificial neural networks (ANNs) for the structure-dependent Hamiltonian elements. Taking advantage of the orthogonality and spatial locality of MLWFs, the one-electron Hamiltonian of a large system at arbitrary geometry can be directly constructed by the trained ANNs. As demonstrations, we study charge transport in a zigzag graphene nanoribbon (GNR), a coved GNR, and a series of hybrid GNRs with a state-of-the-art surface hopping method. The interplay between delocalized and localized states is found to determine the electron dynamics in hybrid GNRs. Our approach has successfully studied GNRs with >10 000 atoms, paving the way for efficient and reliable all-atom nonadiabatic dynamics simulation of general systems.
Collapse
Affiliation(s)
- Zedong Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiawei Dong
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jing Qiu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Wang H, Shi HY, Yuan XJ, Zhao JF, Bu HX, Hu GC. Spin-Dependent Polaron Dynamics in Organic Ferromagnets. J Phys Chem Lett 2022; 13:614-621. [PMID: 35019650 DOI: 10.1021/acs.jpclett.1c03344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spin-dependent polaron dynamics in organic ferromagnets under driven electric fields are investigated by using the extended Su-Schrieffer-Heeger (SSH) model coupled with a nonadiabatic dynamics method. It is found that the spin-down polaron with the same spin orientation as the radicals drifts faster than the spin-up one under the same driven electric field. In an applicable range of driven electric fields, the velocity of the spin-down polaron is about 3.4 times that of the spin-up one. The dynamical property of the polaron with each spin (up or down) is asymmetric upon the reversal of the driven electric fields. The diverse dynamical properties of polarons with specific spins can be attributed to the spin nondegenerate polaron energy levels, the dipole moment generated by the asymmetrical polaron charge distributions and the strong electron-lattice coupling in organic ferromagnets. Our findings are expected to be useful for improving organic ferromagnet based spintronic devices.
Collapse
Affiliation(s)
- Hui Wang
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Hong-Yan Shi
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Xiao-Juan Yuan
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Jing-Fen Zhao
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Hong-Xia Bu
- College of Physics and Electronic Engineering, Qilu Normal University, Zhangqiu 250200, People's Republic of China
| | - Gui-Chao Hu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250100, People's Republic of China
| |
Collapse
|
17
|
Abstract
Surface hopping has seen great success in describing molecular phenomena where electronic excitations tend to be localized, but its application to materials with band-like electronic properties has remained limited. Here, we derive a formulation of fewest-switches surface hopping where both the quantum and classical equations of motion are solved entirely in terms of reciprocal-space coordinates. The resulting method is directly compatible with band structure calculations and allows for the efficient description of band-like phenomena by means of a truncation of the Brillouin zone. Using the Holstein and Peierls models as examples, we demonstrate the formal equivalence between real-space and reciprocal-space surface hopping and assess their accuracy against mean-field mixed quantum-classical dynamics and numerically exact results. Having very similar equations of motion, reciprocal-space surface hopping can be straightforwardly incorporated in existing (real-space) surface hopping implementations.
Collapse
Affiliation(s)
- Alex Krotz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
18
|
van der Lee A, Polentarutti M, Roche GH, Dautel OJ, Wantz G, Castet F, Muccioli L. Temperature-Dependent Structural Phase Transition in Rubrene Single Crystals: The Missing Piece from the Charge Mobility Puzzle? J Phys Chem Lett 2022; 13:406-411. [PMID: 34986305 DOI: 10.1021/acs.jpclett.1c03221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate structural models for rubrene, the benchmark organic semiconductor, derived from synchrotron X-ray data in the temperature range of 100-300 K, show that its cofacially stacked tetracene backbone units remain blocked with respect to each other upon cooling to 200 K and start to slip below that temperature. The release of the blocked slippage occurs at approximately the same temperature as the hole mobility crossover. The blocking between 200 and 300 K is caused by a negative correlation between the relatively small thermal expansion along the crystallographic b-axis and the relatively large widening of the angle between herringbone-stacked tetracene units. DFT calculations reveal that this blocked slippage is accompanied by a discontinuity in the variation with temperature of the electronic couplings associated with hole transport between cofacially stacked tetracene backbones.
Collapse
Affiliation(s)
- Arie van der Lee
- IEM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maurizio Polentarutti
- Elettra, Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Gilles H Roche
- ICGM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Université de Bordeaux, IMS, CNRS, UMR 5218, Bordeaux INP, ENSCBP, 33405 Talence, France
| | - Olivier J Dautel
- ICGM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Guillaume Wantz
- Université de Bordeaux, IMS, CNRS, UMR 5218, Bordeaux INP, ENSCBP, 33405 Talence, France
| | - Frédéric Castet
- Université de Bordeaux, Institut des Sciences Moléculaires (UMR5255 CNRS), 351 cours de la Libération, F-33405 Talence, France
| | - Luca Muccioli
- Department of Industrial Chemistry, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
19
|
Dettmann MA, Cavalcante LSR, Magdaleno C, Masalkovaitė K, Vong D, Dull JT, Rand BP, Daemen LL, Goldman N, Faller R, Moulé AJ. Comparing the Expense and Accuracy of Methods to Simulate Atomic Vibrations in Rubrene. J Chem Theory Comput 2021; 17:7313-7320. [PMID: 34818006 DOI: 10.1021/acs.jctc.1c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atomic vibrations can inform about materials properties from hole transport in organic semiconductors to correlated disorder in metal-organic frameworks. Currently, there are several methods for predicting these vibrations using simulations, but the accuracy-efficiency tradeoffs have not been examined in depth. In this study, rubrene is used as a model system to predict atomic vibrational properties using six different simulation methods: density functional theory, density functional tight binding, density functional tight binding with a Chebyshev polynomial-based correction, a trained machine learning model, a pretrained machine learning model called ANI-1, and a classical forcefield model. The accuracy of each method is evaluated by comparison to the experimental inelastic neutron scattering spectrum. All methods discussed here show some accuracy across a wide energy region, though the Chebyshev-corrected tight-binding method showed the optimal combination of high accuracy with low expense. We then offer broad simulation guidelines to yield efficient, accurate results for inelastic neutron scattering spectrum prediction.
Collapse
Affiliation(s)
- Makena A Dettmann
- University of California Davis, Davis, California 95616, United States
| | | | - Corina Magdaleno
- University of California Davis, Davis, California 95616, United States
| | | | - Daniel Vong
- University of California Davis, Davis, California 95616, United States
| | - Jordan T Dull
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Barry P Rand
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Luke L Daemen
- Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nir Goldman
- University of California Davis, Davis, California 95616, United States.,Lawrence Livermore National Lab, Livermore, California 94550, United States
| | - Roland Faller
- University of California Davis, Davis, California 95616, United States
| | - Adam J Moulé
- University of California Davis, Davis, California 95616, United States
| |
Collapse
|
20
|
Prodhan S, Giannini S, Wang L, Beljonne D. Long-Range Interactions Boost Singlet Exciton Diffusion in Nanofibers of π-Extended Polymer Chains. J Phys Chem Lett 2021; 12:8188-8193. [PMID: 34415752 DOI: 10.1021/acs.jpclett.1c02275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Raising the distance covered by singlet excitons during their lifetimes to values maximizing light absorption (a few hundred nm) would solve the exciton diffusion bottleneck issue and lift the constraint for fine (∼10 nm) phase segregation in bulk heterojunction organic solar cells. In that context, the recent report of highly ordered conjugated polymer nanofibers featuring singlet exciton diffusion length, LD, in excess of 300 nm is both appealing and intriguing [Jin, X.; et al. Science 2018, 360 (6391), 897-900]. Here, on the basis of nonadiabatic molecular dynamics simulations, we demonstrate that singlet exciton diffusion in poly(3-hexylthiophene) (P3HT) fibers is highly sensitive to the interplay between delocalization along the polymer chains and long-range interactions along the stacks. Remarkably, the diffusion coefficient is predicted to rocket by 3 orders of magnitude when going beyond nearest-neighbor intermolecular interactions in fibers of extended (30-mer) polymer chains and to be resilient to interchain energetic and positional disorders.
Collapse
Affiliation(s)
- Suryoday Prodhan
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| | - Samuele Giannini
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| |
Collapse
|
21
|
Sneyd AJ, Fukui T, Paleček D, Prodhan S, Wagner I, Zhang Y, Sung J, Collins SM, Slater TJA, Andaji-Garmaroudi Z, MacFarlane LR, Garcia-Hernandez JD, Wang L, Whittell GR, Hodgkiss JM, Chen K, Beljonne D, Manners I, Friend RH, Rao A. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. SCIENCE ADVANCES 2021; 7:7/32/eabh4232. [PMID: 34348902 PMCID: PMC8336960 DOI: 10.1126/sciadv.abh4232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 05/12/2023]
Abstract
Efficient energy transport is desirable in organic semiconductor (OSC) devices. However, photogenerated excitons in OSC films mostly occupy highly localized states, limiting exciton diffusion coefficients to below ~10-2 cm2/s and diffusion lengths below ~50 nm. We use ultrafast optical microscopy and nonadiabatic molecular dynamics simulations to study well-ordered poly(3-hexylthiophene) nanofiber films prepared using living crystallization-driven self-assembly, and reveal a highly efficient energy transport regime: transient exciton delocalization, where energy exchange with vibrational modes allows excitons to temporarily re-access spatially extended states under equilibrium conditions. We show that this enables exciton diffusion constants up to 1.1 ± 0.1 cm2/s and diffusion lengths of 300 ± 50 nm. Our results reveal the dynamic interplay between localized and delocalized exciton configurations at equilibrium conditions, calling for a re-evaluation of exciton dynamics and suggesting design rules to engineer efficient energy transport in OSC device architectures not based on restrictive bulk heterojunctions.
Collapse
Affiliation(s)
- Alexander J Sneyd
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Tomoya Fukui
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - David Paleček
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Suryoday Prodhan
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| | - Isabella Wagner
- MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6010, New Zealand
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Jooyoung Sung
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Sean M Collins
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas J A Slater
- Electron Physical Science Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, UK
| | | | - Liam R MacFarlane
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - J Diego Garcia-Hernandez
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Linjun Wang
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6010, New Zealand
| | - Kai Chen
- MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6010, New Zealand
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium.
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada.
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Richard H Friend
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Akshay Rao
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
22
|
Madhu M, Ramakrishnan R, Vijay V, Hariharan M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor-Acceptor Conjugates. Chem Rev 2021; 121:8234-8284. [PMID: 34133137 DOI: 10.1021/acs.chemrev.1c00078] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.
Collapse
Affiliation(s)
- Meera Madhu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Vishnu Vijay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
23
|
Stoeckel MA, Olivier Y, Gobbi M, Dudenko D, Lemaur V, Zbiri M, Guilbert AAY, D'Avino G, Liscio F, Migliori A, Ortolani L, Demitri N, Jin X, Jeong YG, Liscio A, Nardi MV, Pasquali L, Razzari L, Beljonne D, Samorì P, Orgiu E. Analysis of External and Internal Disorder to Understand Band-Like Transport in n-Type Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007870. [PMID: 33629772 DOI: 10.1002/adma.202007870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low-frequency (<a-few-hundred cm-1 ), which makes it difficult to assess them experimentally. Hitherto, this has prevented the identification of clear molecular design rules to control and reduce dynamic disorder. In addition, the disorder can also be external, being controlled by the gate insulator dielectric properties. Here a comprehensive study of charge transport in two closely related n-type molecular organic semiconductors using a combination of temperature-dependent inelastic neutron scattering and photoelectron spectroscopy corroborated by electrical measurements, theory, and simulations is reported. Unambiguous evidence that ad hoc molecular design enables the electron charge carriers to be freed from both internal and external disorder to ultimately reach band-like electron transport is provided.
Collapse
Affiliation(s)
- Marc-Antoine Stoeckel
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Yoann Olivier
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, Mons, B-7000, Belgium
| | - Marco Gobbi
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Dmytro Dudenko
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, Mons, B-7000, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, Mons, B-7000, Belgium
| | - Mohamed Zbiri
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Anne A Y Guilbert
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
| | - Gabriele D'Avino
- Grenoble Alpes University, CNRS Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble, 38042, France
| | - Fabiola Liscio
- CNR - IMM Sezione di Bologna, Via P. Gobetti 101, Bologna, 40129, Italy
| | - Andrea Migliori
- CNR - IMM Sezione di Bologna, Via P. Gobetti 101, Bologna, 40129, Italy
| | - Luca Ortolani
- CNR - IMM Sezione di Bologna, Via P. Gobetti 101, Bologna, 40129, Italy
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste, I-34149, Italy
| | - Xin Jin
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blv. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Young-Gyun Jeong
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blv. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Andrea Liscio
- CNR - Institute for Microelectronic and Microsystems (IMM) Section of Roma-CNR, Via del fosso del cavaliere 100, Roma, 00133, Italy
| | - Marco-Vittorio Nardi
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, IMEM-CNR, Sezione di Trento, Via alla Cascata 56/C, Povo, Trento, 38100, Italy
| | - Luca Pasquali
- Istituto Officina dei Materiali, IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, Basovizza, Trieste, 34149, Italy
- Dipartimento di Ingegneria E. Ferrari, Università di Modena e Reggio Emilia, via Vivarelli 10, Modena, 41125, Italy
- Department of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - Luca Razzari
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blv. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, Mons, B-7000, Belgium
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Emanuele Orgiu
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blv. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| |
Collapse
|
24
|
Freixas VM, White AJ, Nelson T, Song H, Makhov DV, Shalashilin D, Fernandez-Alberti S, Tretiak S. Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence. J Phys Chem Lett 2021; 12:2970-2982. [PMID: 33730495 DOI: 10.1021/acs.jpclett.1c00266] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum-classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.
Collapse
Affiliation(s)
- Victor M Freixas
- Universidad Nacional de Quilmes, Roque Saénz Peña 352, B1876BXD Bernal, Argentina
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | | | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
25
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Peng X, Li Q, Shuai Z. Influences of dynamic and static disorder on the carrier mobility of BTBT-C12 derivatives: a multiscale computational study. NANOSCALE 2021; 13:3252-3262. [PMID: 33533394 DOI: 10.1039/d0nr08320h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The role of dynamic and static disorder has been widely discussed for carrier transport in organic semiconductors. In this work, we apply a multiscale approach by combining molecular dynamics simulations, quantum mechanics calculations and kinetic Monte-Carlo simulations to study the influence of dynamic and static disorder on the hole mobility of four didodecyl[1]benzothieno[3,2-b]benzothiophene (BTBT-C12) isomers. It is found that the dynamic disorder of transfer integral tends to decrease the mobility for quasi-1D (quasi one-dimensional) BTBT1 and BTBT4 isomers and increase the mobility for 2D (two-dimensional) BTBT2 and BTBT3 isomers, while the dynamic disorder of site energy tends to decrease mobility for all the four isomers; however, the reduction in 2D molecules is much less than that in quasi-1D molecules. Results show that trap defects could reduce the mobility for both the quasi-1D and 2D molecular structures significantly, even to several orders of magnitude. In addition, our work also reveals that there might exist two kinds of oxidation defects of the scatter type for the concerned isomers, which thus leads to greater reduction in mobility for the quasi-1D molecular structures than the 2D molecular structures. The study shows that the 2D molecular structures are favored over the quasi-1D or 1D molecular structure, and it is expected that these results could be used to shed light on device design in organic electronics.
Collapse
Affiliation(s)
- Xingliang Peng
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | |
Collapse
|
27
|
Wei YC, Shen SW, Wu CH, Ho SY, Zhang Z, Wu CI, Chou PT. Through-Space Exciton Delocalization in Segregated HJ-Crystalline Molecular Aggregates. J Phys Chem A 2021; 125:943-953. [DOI: 10.1021/acs.jpca.0c09075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Shin-Wei Shen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Cheng-Ham Wu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Ssu-Yu Ho
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| |
Collapse
|
28
|
Temen S, Akimov AV. A Simple Solution to Trivial Crossings: A Stochastic State Tracking Approach. J Phys Chem Lett 2021; 12:850-860. [PMID: 33427475 DOI: 10.1021/acs.jpclett.0c03428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a new state tracking algorithm based on a stochastic state reassignment that reflects the quantum mechanical interpretation of the state time-overlaps. We assess the new method with a range of model Hamiltonians and demonstrate that it yields the results generally consistent with the deterministic min-cost algorithm. However, the stochastic state tracking algorithm reduces magnitudes of the state population fluctuations as the quantum system evolves toward its equilibrium. The new algorithm facilitates the thermalization of quantum state populations and suppresses the population revivals and oscillations near the equilibrium in many-state systems. The new stochastic algorithm has a favorable computational scaling, is easy to implement due to its conceptual transparency, and treats various types of state identity changes (trivial or avoided crossings and any intermediate cases) on equal footing.
Collapse
Affiliation(s)
- Story Temen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
29
|
Abstract
When nonadiabatic dynamics are described on the basis of trajectories, severe trajectory branching occurs when the nuclear wave packets on some potential energy surfaces are reflected while those on the remaining surfaces are not. As a result, the traditional Ehrenfest mean field (EMF) approximation breaks down. In this study, two versions of the branching corrected mean field (BCMF) method are proposed. Namely, when trajectory branching is identified, BCMF stochastically selects either the reflected or the nonreflected group to build the new mean field trajectory or splits the mean field trajectory into two new trajectories with the corresponding weights. As benchmarked in six standard model systems and an extensive model base with two hundred diverse scattering models, BCMF significantly improves the accuracy while retaining the high efficiency of the traditional EMF. In fact, BCMF closely reproduces the exact quantum dynamics in all investigated systems, thus highlighting the essential role of branching correction in nonadiabatic dynamics simulations of general systems.
Collapse
Affiliation(s)
- Jiabo Xu
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Pérez‐Jiménez ÁJ, Sancho‐García JC. Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Shuai Z, Li W, Ren J, Jiang Y, Geng H. Applying Marcus theory to describe the carrier transports in organic semiconductors: Limitations and beyond. J Chem Phys 2020; 153:080902. [PMID: 32872875 DOI: 10.1063/5.0018312] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Marcus theory has been successfully applied to molecular design for organic semiconductors with the aid of quantum chemistry calculations for the molecular parameters: the intermolecular electronic coupling V and the intramolecular charge reorganization energy λ. The assumption behind this is the localized nature of the electronic state for representing the charge carriers, being holes or electrons. As far as the quantitative description of carrier mobility is concerned, the direct application of Marcus semiclassical theory usually led to underestimation of the experimental data. A number of effects going beyond such a semiclassical description will be introduced here, including the quantum nuclear effect, dynamic disorder, and delocalization effects. The recently developed quantum dynamics simulation at the time-dependent density matrix renormalization group theory is briefly discussed. The latter was shown to be a quickly emerging efficient quantum dynamics method for the complex system.
Collapse
Affiliation(s)
- Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100084 Beijing, People's Republic of China
| | - Hua Geng
- Department of Chemistry, Capital Normal University, 100048 Beijing, People's Republic of China
| |
Collapse
|
32
|
Prodhan S, Qiu J, Ricci M, Roscioni OM, Wang L, Beljonne D. Design Rules to Maximize Charge-Carrier Mobility along Conjugated Polymer Chains. J Phys Chem Lett 2020; 11:6519-6525. [PMID: 32692920 DOI: 10.1021/acs.jpclett.0c01793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of polymeric materials displaying high charge-carrier mobility values despite poor interchain structural order has spawned a renewal of interest in the identification of structure-property relationships pertaining to the transport of charges along conjugated polymer chains and the subsequent design of optimized architectures. Here, we present the results of intrachain charge transport simulations obtained by applying a robust surface hopping algorithm to a phenomenological Hamiltonian parametrized against first-principles simulations. Conformational effects are shown to provide a clear signature in the temperature-dependent charge-carrier mobility that complies with recent experimental observations. We further contrast against molecular crystals the evolution with electronic bandwidth and electron-phonon interactions of the room-temperature mobility in polymers, showing that intrachain charge-carrier mobility values in excess of 100 cm2/(V s) can be achieved through a proper chemical engineering of the backbones.
Collapse
Affiliation(s)
- Suryoday Prodhan
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| | - Jing Qiu
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | | | - Linjun Wang
- Center for Chemistry of Novel & High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons 7000, Belgium
| |
Collapse
|
33
|
Kan H, Miao Y, Qiu S, Zhang G, Ren J, Wang C, Hu G. Weak-field polaron dynamics in organic ferromagnets. Phys Chem Chem Phys 2020; 22:15707-15715. [PMID: 32618973 DOI: 10.1039/d0cp01872d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a nonadiabatic dynamical method the polaron dynamics in organic ferromagnets with spin radicals is investigated under weak electric fields. The results reveal two novel phenomena different from those in normal polymers due to the existence of spin radicals. One is that the velocity of the polaron is asymmetric upon the reversal of the applied electric field, which is explained from the asymmetric polarity of the polaron charge density in different directions of the field, and hence its effect on the lattice distortion. The other is the 'intermittent rebound' of the polaron, where the polaron intermittently moves against the electric field force during a short interval behaving like a negative current. The details of lattice distortion and charge distribution of the polaron during the process have been revealed. We further found that there exist different critical fields for the above two phenomena. With an increase of the electric field, the 'intermittent rebound' of the polaron vanishes first and subsequently the asymmetric polaron velocity. This work demonstrates the unique properties of polaron transport in organic ferromagnets, and will be helpful in the future design of organic ferromagnetic devices.
Collapse
Affiliation(s)
- Hongjun Kan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250100, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Malone W, Nebgen B, White A, Zhang Y, Song H, Bjorgaard JA, Sifain AE, Rodriguez-Hernandez B, Freixas VM, Fernandez-Alberti S, Roitberg AE, Nelson TR, Tretiak S. NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:5771-5783. [DOI: 10.1021/acs.jctc.0c00248] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Walter Malone
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Nebgen
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander White
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Josiah A. Bjorgaard
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E. Sifain
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, United States
| | | | - Victor M. Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tammie R. Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
35
|
Li W, Ren J, Shuai Z. Finite-Temperature TD-DMRG for the Carrier Mobility of Organic Semiconductors. J Phys Chem Lett 2020; 11:4930-4936. [PMID: 32492339 DOI: 10.1021/acs.jpclett.0c01072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A large number of nonadiabatic dynamical studies have been applied to reveal the nature of carrier transport in organic semiconductors with different approximations. We present here a "nearly exact" graphical-process-unit-based finite-temperature time-dependent density matrix renormalization group (TD-DMRG) method to evaluate the carrier mobility in organic semiconductors, as described by the electron-phonon model, in particular, in rubrene crystal, one of the prototypical organic semiconductors, with parameters derived from first-principles. We find that (i) TD-DMRG is a general and robust method that can bridge the gap between hopping and band pictures, covering a wide range of electronic coupling strengths and (ii) with realistic parameters, TD-DMRG is able to account for the experimentally observed "band-like" transport behavior (∂μ/∂T < 0) in rubrene. We further study the long-standing puzzle of the isotope effect for charge transport and unambiguously demonstrate that the negative isotope effect (∂μ/∂m < 0 where m is the atomic mass) should be universal.
Collapse
Affiliation(s)
- Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
36
|
Nematiaram T, Troisi A. Modeling charge transport in high-mobility molecular semiconductors: Balancing electronic structure and quantum dynamics methods with the help of experiments. J Chem Phys 2020; 152:190902. [DOI: 10.1063/5.0008357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tahereh Nematiaram
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Alessandro Troisi
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
37
|
Asher M, Angerer D, Korobko R, Diskin-Posner Y, Egger DA, Yaffe O. Anharmonic Lattice Vibrations in Small-Molecule Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908028. [PMID: 32003507 DOI: 10.1002/adma.201908028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/26/2019] [Indexed: 06/10/2023]
Abstract
The intermolecular lattice vibrations in small-molecule organic semiconductors have a strong impact on their functional properties. Existing models treat the lattice vibrations within the harmonic approximation. In this work, polarization-orientation (PO) Raman measurements are used to monitor the temperature-evolution of the symmetry of lattice vibrations in anthracene and pentacene single crystals. Combined with first-principles calculations, it is shown that at 10 K, the lattice dynamics of the crystals are indeed harmonic. However, as the temperature is increased, specific lattice modes gradually lose their PO dependence and become more liquid-like. This finding is indicative of a dynamic symmetry breaking of the crystal structure and shows clear evidence of the strongly anharmonic nature of these vibrations. Pentacene also shows an apparent phase transition between 80 and 150 K, indicated by a change in the vibrational symmetry of one of the lattice modes. These findings lay the groundwork for accurate predictions of the electronic properties of high-mobility organic semiconductors at room temperature.
Collapse
Affiliation(s)
- Maor Asher
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel Angerer
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Institute of Theoretical Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Roman Korobko
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - David A Egger
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Omer Yaffe
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
38
|
Schweicher G, Garbay G, Jouclas R, Vibert F, Devaux F, Geerts YH. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905909. [PMID: 31965662 DOI: 10.1002/adma.201905909] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Indexed: 05/26/2023]
Abstract
The field of organic electronics has been prolific in the last couple of years, leading to the design and synthesis of several molecular semiconductors presenting a mobility in excess of 10 cm2 V-1 s-1 . However, it is also started to recently falter, as a result of doubtful mobility extractions and reduced industrial interest. This critical review addresses the community of chemists and materials scientists to share with it a critical analysis of the best performing molecular semiconductors and of the inherent charge transport physics that takes place in them. The goal is to inspire chemists and materials scientists and to give them hope that the field of molecular semiconductors for logic operations is not engaged into a dead end. To the contrary, it offers plenty of research opportunities in materials chemistry.
Collapse
Affiliation(s)
- Guillaume Schweicher
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Guillaume Garbay
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Rémy Jouclas
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - François Vibert
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Félix Devaux
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Yves H Geerts
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| |
Collapse
|
39
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
40
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
41
|
Carof A, Giannini S, Blumberger J. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm. Phys Chem Chem Phys 2019; 21:26368-26386. [PMID: 31793569 DOI: 10.1039/c9cp04770k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Charge transport in high mobility organic semiconductors is in an intermediate regime between small polaron hopping and band transport limits. We have recently shown that surface hopping non-adiabatic molecular dynamics is a powerful method for prediction of charge transport mechanisms in organic materials and for near-quantitative prediction of charge mobilities at room temperature where the effects of nuclear zero-point motion and tunneling are still relatively small [S. Giannini et al., Nat. Commun., 2019, 10, 3843]. Here we assess and critically discuss the extensions to Tully's original method that have led to this success: (i) correction for missing electronic decoherence, (ii) detection of trivial crossings and (iii) removal of decoherence correction-induced spurious charge transfer. If any one of these corrections is not included, the charge mobility diverges with system size, each for different physical reasons. Yet if they are included, convergence with system size, detailed balance and good internal consistency are achieved.
Collapse
Affiliation(s)
- Antoine Carof
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | - Samuele Giannini
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK. and Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| |
Collapse
|
42
|
Ginsberg NS, Tisdale WA. Spatially Resolved Photogenerated Exciton and Charge Transport in Emerging Semiconductors. Annu Rev Phys Chem 2019; 71:1-30. [PMID: 31756129 DOI: 10.1146/annurev-physchem-052516-050703] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review recent advances in the characterization of electronic forms of energy transport in emerging semiconductors. The approaches described all temporally and spatially resolve the evolution of initially localized populations of photogenerated excitons or charge carriers. We first provide a comprehensive background for describing the physical origin and nature of electronic energy transport both microscopically and from the perspective of the observer. We introduce the new family of far-field, time-resolved optical microscopies developed to directly resolve not only the extent of this transport but also its potentially temporally and spatially dependent rate. We review a representation of examples from the recent literature, including investigation of energy flow in colloidal quantum dot solids, organic semiconductors, organic-inorganic metal halide perovskites, and 2D transition metal dichalcogenides. These examples illustrate how traditional parameters like diffusivity are applicable only within limited spatiotemporal ranges and how the techniques at the core of this review,especially when taken together, are revealing a more complete picture of the spatiotemporal evolution of energy transport in complex semiconductors, even as a function of their structural heterogeneities.
Collapse
Affiliation(s)
- Naomi S Ginsberg
- Department of Chemistry and Department of Physics, University of California, Berkeley, California 94720, USA; .,Material Sciences Division and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Kavli Energy NanoSciences Institute, Berkeley, California 94720, USA
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
43
|
Giannini S, Carof A, Ellis M, Yang H, Ziogos OG, Ghosh S, Blumberger J. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat Commun 2019; 10:3843. [PMID: 31451687 PMCID: PMC6710274 DOI: 10.1038/s41467-019-11775-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Charge carrier transport in organic semiconductors is at the heart of many revolutionary technologies ranging from organic transistors, light-emitting diodes, flexible displays and photovoltaic cells. Yet, the nature of charge carriers and their transport mechanism in these materials is still unclear. Here we show that by solving the time-dependent electronic Schrödinger equation coupled to nuclear motion for eight organic molecular crystals, the excess charge carrier forms a polaron delocalized over up to 10-20 molecules in the most conductive crystals. The polaron propagates through the crystal by diffusive jumps over several lattice spacings at a time during which it expands more than twice its size. Computed values for polaron size and charge mobility are in excellent agreement with experimental estimates and correlate very well with the recently proposed transient localization theory.
Collapse
Affiliation(s)
- Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK
| | - Antoine Carof
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK
| | - Matthew Ellis
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK
| | - Hui Yang
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK
| | - Orestis George Ziogos
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK
| | - Soumya Ghosh
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, UK.
- Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, D-85748, Garching, Germany.
| |
Collapse
|
44
|
Lee EMY, Willard AP. Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function. J Chem Theory Comput 2019; 15:4332-4343. [PMID: 31305997 PMCID: PMC6750758 DOI: 10.1021/acs.jctc.9b00302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In
an adiabatic mixed quantum-classical simulation, the avoided
crossing of weakly coupled eigenstates can lead to unphysical discontinuities
in wave function dynamics, otherwise known as the trivial crossing
problem. A standard solution to the trivial crossing problem eliminates
spatial discontinuities in wave function dynamics by imposing changes
to the eigenstate of the wave function. In this paper, we show that
this solution has the side effect of introducing transient discontinuities
in the nodal symmetry of the wave function. We present an alternative
solution to the trivial crossing problem that preserves both the spatial
and nodal structure of the adiabatic wave function. By considering
a model of exciton dynamics on conjugated polymer systems, we show
that failure to preserve wave function symmetry yields exciton dynamics
that depends unphysically on polymer system size. We demonstrate that
our symmetry-preserving solution to the trivial crossing problem yields
more realistic dynamics and can thus improve the accuracy of simulations
of larger systems that are prone to the trivial crossing problem.
Collapse
Affiliation(s)
- Elizabeth M Y Lee
- Pritzker School of Molecular Engineering , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Adam P Willard
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
45
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
46
|
Lian M, Wang YC, Ke Y, Zhao Y. Non-Markovian stochastic Schrödinger equation in k-space toward the calculation of carrier dynamics in organic semiconductors. J Chem Phys 2019; 151:044115. [DOI: 10.1063/1.5096219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Man Lian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Chen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaling Ke
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
47
|
Yan Y, Xu M, Liu Y, Shi Q. Theoretical study of charge carrier transport in organic molecular crystals using the Nakajima-Zwanzig-Mori generalized master equation. J Chem Phys 2019; 150:234101. [DOI: 10.1063/1.5096214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| |
Collapse
|
48
|
Abstract
We present a subspace surface hopping strategy to deal with complex surface crossings in nonadiabatic dynamics. By focusing on only important adiabatic states, we make subspace crossing correction (SCC) in the framework of the standard fewest switches surface hopping (FSSH) and the global flux surface hopping (GFSH). The resulting SCC-FSSH and SCC-GFSH approaches show much better performance than the counterparts using all adiabatic states for surface hopping. As demonstrated in a series of Holstein models with up to over 1000 molecular sites, both SCC-FSSH and SCC-GFSH show excellent size independence with a large time step size of 1 fs. Especially, SCC-GFSH does not refer to nonadiabatic couplings at all and gives a more proper description of superexchange, and thus, it is promising for realistic applications with complex potential energy surfaces.
Collapse
Affiliation(s)
- Jing Qiu
- Center for Chemistry of Novel & High-Performance Materials , and Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Xin Bai
- Center for Chemistry of Novel & High-Performance Materials , and Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Linjun Wang
- Center for Chemistry of Novel & High-Performance Materials , and Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
49
|
Dong J, Wu C. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps. J Chem Phys 2019; 150:044903. [PMID: 30709264 DOI: 10.1063/1.5066563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show a crossover from coherent to incoherent behavior of charge transport in crystalline organic semiconductors by considering the effect of shallow traps within the dynamical disorder model. The mixed quantum-classical system is treated by the Ehrenfest dynamics method complementing with instantaneous decoherence corrections and energy relaxation, which has been shown to properly make the system close to equilibrium. The shallow traps, which are incorporated by a static diagonal disorder, are shown to play a central role in the crossover. Temperature dependence of charge-carrier mobility is shown to be changed from being negative to positive with the strength of shallow traps increasing, which implies that there is a crossover from hopping to band-like transport. A higher electric field helps to recover the charge-carrier band-like transport behavior from the traps-caused hopping transport. In this way, a unified physical picture of the charge transport in crystalline organic semiconductors is proposed.
Collapse
Affiliation(s)
- Jingjuan Dong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Changqin Wu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
50
|
Jiang Y, Geng H, Li W, Shuai Z. Understanding Carrier Transport in Organic Semiconductors: Computation of Charge Mobility Considering Quantum Nuclear Tunneling and Delocalization Effects. J Chem Theory Comput 2019; 15:1477-1491. [DOI: 10.1021/acs.jctc.8b00779] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuqian Jiang
- Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100084, People’s Republic of China
| | - Hua Geng
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|