1
|
Milyutin Y, Abud-Hawa M, Kloper-Weidenfeld V, Mansour E, Broza YY, Shani G, Haick H. Fabricating and printing chemiresistors based on monolayer-capped metal nanoparticles. Nat Protoc 2021; 16:2968-2990. [PMID: 34012107 DOI: 10.1038/s41596-021-00528-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/23/2021] [Indexed: 02/03/2023]
Abstract
Chemiresistors that are based on monolayer-capped metal nanoparticles (MCNPs) have been used in a wide variety of innovative sensing applications, including detection and monitoring of diagnostic markers in body fluids, explosive materials, environmental contaminations and food quality control. The sensing mechanism is based on reversible swelling or aggregation and/or changes in dielectric constant of the MCNPs. In this protocol, we describe a procedure for producing MCNP-based chemiresistive sensors that is reproducible from device to device and from batch to batch. The approach relies on three main steps: (i) controlled synthesis of gold MCNPs, (ii) fabrication of electrodes that are surrounded with a microbarrier ring to confine the deposited MCNP solution and (iii) a tailor-made drying process to enable evaporation of solvent residues from the MCNP sensing layer to prevent a coffee-ring effect. Application of this approach has been shown to produce devices with ±1.5% variance-a value consistent with the criterion for commercial sensors-as well as long shelf life and stability. Fabrication of chemical sensors based on dodecanethiol- or 2-ethylhexanethiol-capped MCNPs with this approach provides high sensitivity and accuracy in the detection of volatile organic compounds (e.g., octane and decane), toxic gaseous species (e.g., HCl and NH3) in air and simulated mixtures of lung and gastric cancer from exhaled breath.
Collapse
Affiliation(s)
- Yana Milyutin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Manal Abud-Hawa
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Viki Kloper-Weidenfeld
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elias Mansour
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gidi Shani
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
3
|
Xie Z, Ramakrishnam Raju MV, Stewart AC, Nantz MH, Fu XA. Imparting sensitivity and selectivity to a gold nanoparticle chemiresistor through thiol monolayer functionalization for sensing acetone. RSC Adv 2018; 8:35618-35624. [PMID: 30555687 PMCID: PMC6238108 DOI: 10.1039/c8ra06137h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Chemiresistor-based gas sensors for detection of target volatile organic compounds (VOCs) in air face common challenges of poor sensitivity and selectivity as well as suffering from interference by other constituent gases and/or humidity. This work demonstrates that functionalizing gold nanoparticles (AuNPs) with a designed thiol monolayer improves sensitivity and selectivity of the derived AuNPs gas sensor. We report the synthesis and application of a thiol ligand fitted with both a urea motif and a tert-butyl end group for functionalizing AuNPs. The AuNPs sensor prepared using the urea thiol ligand demonstrated significantly increased acetone sensing in comparison with tested commercially available thiol-functionalized AuNPs. The sensor worked under ambient temperature and high humidity conditions, and demonstrated a linear relationship between the sensor response and the common logarithm of analyte concentration.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Chemical Engineering Department, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | - Andrew C Stewart
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Xiao-An Fu
- Chemical Engineering Department, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
4
|
Yang Y, Cornwell LB, Ibañez FJ, Zamborini FP. Chemiresistor Arrays Prepared by Simple and Fast Vapor‐Phase Thiol Place‐Exchange Functionalization of Gold Monolayer‐Protected Cluster Films. ChemElectroChem 2016. [DOI: 10.1002/celc.201600314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Yang
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Laura B. Cornwell
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Francisco J. Ibañez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Universidad Nacional de La Plata (CONICET) Sucursal 4 Casilla de Correo 16 1900 La Plata Argentina
| | | |
Collapse
|
5
|
Abstract
Thiols are important molecules in the environment and in biological processes. Cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H2S) play critical roles in a variety of physiological and pathological processes. The selective detection of thiols using reaction-based probes and sensors is very important in basic research and in disease diagnosis. This review focuses on the design of fluorescent and colorimetric probes and sensors for thiol detection. Thiol detection methods include probes and labeling agents based on nucleophilic addition and substitution, Michael addition, disulfide bond or Se-N bond cleavage, metal-sulfur interactions and more. Probes for H2S are based on nucleophilic cyclization, reduction and metal sulfide formation. Thiol probe and chemosensor design strategies and mechanism of action are discussed in this review.
Collapse
|
6
|
Olichwer N, Leib EW, Halfar AH, Petrov A, Vossmeyer T. Cross-linked gold nanoparticles on polyethylene: resistive responses to tensile strain and vapors. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6151-61. [PMID: 23127867 DOI: 10.1021/am301780b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this study, coatings of cross-linked gold nanoparticles (AuNPs) on flexible polyethylene (PE) substrates were prepared via layer-by-layer deposition and their application as strain gauges and chemiresistors was investigated. Special emphasis was placed on characterizing the influence of strain on the chemiresistive responses. The coatings were deposited using amine stabilized AuNPs (4 and 9 nm diameter) and 1,9-nonanedithiol (NDT) or pentaerythritol tetrakis(3-mercaptopropionate) (PTM) as cross-linkers. To prepare films with homogeneous optical appearance, it was necessary to treat the substrates with oxygen plasma directly before film assembly. SEM images revealed film thicknesses between ∼60 and ∼90 nm and a porous nanoscale morphology. All films showed ohmic I-V characteristics with conductivities ranging from 1 × 10⁻⁴ to 1 × 10⁻² Ω⁻¹ cm⁻¹, depending on the structure of the linker and the nanoparticle size. When up to 3% strain was induced their resistance increased linearly and reversibly (gauge factors: ∼20). A comparative SEM investigation indicated that the stress induced formation and extension of nanocracks are important components of the signal transduction mechanism. Further, all films responded with a reversible increase in resistance when dosed with toluene, 4-methyl-2-pentanone, 1-propanol or water vapor (concentrations: 50-10 000 ppm). Films deposited onto high density PE substrates showed much faster response-recovery dynamics than films deposited onto low density PE. The chemical selectivity of the coatings was controlled by the chemical nature of the cross-linkers, with the highest sensitivities (∼1 × 10⁻⁵ ppm⁻¹) measured with analytes of matching solubility. The response isotherms of all film/vapor pairs could be fitted using a Langmuir-Henry model suggesting selective and bulk sorption. Under tensile stress (1% strain) all chemiresistors showed a reversible increase in their response amplitudes (∼30%), regardless of the analytes' permittivity. Taking into consideration the thermally activated tunneling model for charge transport, this behavior was assigned to stress induced formation of nanocracks, which enhance the films' ability to swell in lateral direction during analyte sorption.
Collapse
Affiliation(s)
- Natalia Olichwer
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2810] [Impact Index Per Article: 216.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Ibañez FJ, Zamborini FP. Chemiresistive sensing with chemically modified metal and alloy nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:174-202. [PMID: 22052721 DOI: 10.1002/smll.201002232] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/31/2011] [Indexed: 05/31/2023]
Abstract
This review describes the use of chemically modified pure and alloyed metal nanoparticles for chemiresistive sensing applications. Chemically modified metal nanoparticles consist of a pure or alloyed metallic core with some type of chemical coating. Researchers have studied the electronic properties of 1D, 2D, and 3D assemblies of chemically modified metal nanoparticles, and even single individual nanoparticles. The interaction with the analyte alters the conductivity of the sensitive material, providing a signal to measure the analyte concentration. This review focuses on chemiresistive sensing of a wide variety of gas- and liquid-phase analytes with metal nanoparticles coated with organothiols, ions, polymers, surfactants, and biomolecules. Different strategies used to incorporate chemically modified nanoparticles into chemiresistive sensing devices are reviewed, focusing on the different types of metal and alloy compositions, coatings, methods of assembly, and analytes (vapors, gases, liquids, biological materials), along with other important factors.
Collapse
Affiliation(s)
- Francisco J Ibañez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, Sucursal 4 Casilla de Correo 16 (1900) La Plata, Argentina.
| | | |
Collapse
|
9
|
Müller KH, Chow E, Wieczorek L, Raguse B, Cooper JS, Hubble LJ. Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution. Phys Chem Chem Phys 2011; 13:18208-16. [DOI: 10.1039/c1cp20242a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Xu H, Bi X, Ngo X, Yang KL. Principles of detecting vaporous thiols using liquid crystals and metal ion microarrays. Analyst 2009; 134:911-5. [DOI: 10.1039/b810048a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Alkylthiol-functionalized gold nanoparticles for sensing organic vapours: The connection between the adsorption isotherm and the sensor resistance. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Affiliation(s)
- Amir Zabet-Khosousi
- Lash Miller Chemical Laboratories, University of Toronto, Ontario M5S 3H6, Canada
| | - Al-Amin Dhirani
- Lash Miller Chemical Laboratories, University of Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Ibañez FJ, Zamborini FP. Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles. ACS NANO 2008; 2:1543-1552. [PMID: 19206357 DOI: 10.1021/nn800109q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here we describe the chemiresistive sensing of volatile organic compounds (VOCs) with films of chemically synthesized approximately 4 nm diameter Au and AuAg alloy nanoparticles (NPs) stabilized by a surfactant, tetraoctylammonium bromide (TOABr). The chemiresistive sensing properties were measured over a concentration range of 100 to 0.04% saturation for methanol (MeOH), ethanol (EtOH), 2-propanol (IPA), and toluene (Tol) vapor analytes and compared directly to the chemiresistive sensing properties of films of 1.6 nm diameter hexanethiolate (C6S)-coated Au monolayer-protected clusters (MPCs). Films of TOABr-stabilized Au NPs exhibit the opposite response compared to those of C6S-coated Au MPCs. The details are unclear, but the mechanism likely involves changes in capacitive charging in the film or improved conductive pathways through the Au NPs upon incorporation of VOCs into the film for the former as opposed to the well-known change in electron hopping conductivity for the latter. This leads to a decrease in resistance in the presence of VOCs for TOABr Au as opposed to an increase for C6S Au. The TOABr Au sensors are more sensitive, especially for polar analytes, and have greater long-term stability compared to C6S Au. The limit of detection (LOD) for films of TOABr-coated Au NPs is 3, 2, 12, and 37 ppm for IPA, MeOH, EtOH, and Tol, respectively, as compared to 106, 326, 242, and 48 for C6S Au. Films of TOABr-stabilized AuAg alloy NPs exhibit the same type of response, but the sensitivity decreases dramatically with increasing Ag content, showing that the metal composition of the NPs in the film plays a role in the sensing properties, which has not been well-recognized in the literature.
Collapse
Affiliation(s)
- Francisco J Ibañez
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
14
|
Ibañez FJ, Gowrishetty U, Crain MM, Walsh KM, Zamborini FP. Chemiresistive Vapor Sensing with Microscale Films of Gold Monolayer Protected Clusters. Anal Chem 2005; 78:753-61. [PMID: 16448048 DOI: 10.1021/ac051347t] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the stability, conductivity, and vapor-sensing properties of microcontact-printed films of 1.6-nm average diameter hexanethiolate-coated gold monolayer protected clusters (C6 Au MPCs). The C6 Au MPCs were stamped into parallel lines (approximately 1.2 microm wide and 400 nm thick) across two Au electrodes separated by a 1-microm gap. The chemiresistive vapor-sensing properties were measured for saturated toluene and 2-propanol vapors. As-prepared patterned Au MPC films were unstable in the presence of saturated toluene vapor, and their current response was irreversible. Chemically linking the films with vapor-phase hexanedithiol greatly improves their stability and leads to reversible responses. The extent of Au MPC cross-linking and vapor response to organic vapors varies with different exposure times to dithiol vapor. The response to toluene changed from 61 to 8% for exposures of 1 and 60 min, respectively, which is likely due to greater film flexibility with less dithiol exposure. The current measured through the films varies from 10(-11) to 10(-3) Angstroms as a function of the temperature between 250 and 320 degrees C, which correlates with the loss of organic material as measured by FT-IR spectroscopy and the change in thickness and width of the film as measured by atomic force microscopy. The vapor-sensing properties vary with temperature, current, and organic content in the film, which are all interrelated. Response to toluene decreased with increasing temperature and conductivity, while the response to 2-propanol was less predictable. Reducing the size of vapor-sensing devices based on Au MPCs is important for creating highly portable devices that can simultaneously detect multiple analytes. This work demonstrates a simple method for reducing the size of such devices down to the microscale and describes methods for maximizing response, stability, and reversibility.
Collapse
|
15
|
Ahn H, Chandekar A, Kang B, Sung C, Whitten JE. Comparison of Solubility and Vapor Sensing Properties of Methyl‐ and Thiophene‐Terminated Alkanethiol‐Protected Gold Nanoparticle Films. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2005. [DOI: 10.1080/10601320500228923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Sidhaye DS, Kashyap S, Sastry M, Hotha S, Prasad BLV. Gold nanoparticle networks with photoresponsive interparticle spacings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7979-84. [PMID: 16089409 DOI: 10.1021/la051125q] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photoresponsive gold nanoparticle networks were prepared by functionalizing them with azobenzene derivatives. A network can be formed when a linker molecule constituting the azobenzene moiety suitably derivatized on either side with gold surface sensitive groups such as thiols and amines is added to the nanoparticle solution. It is shown that the interparticle spacing in the networks could be controlled by the reversible trans-cis isomerization of the azobenzene moiety induced by UV and visible light, respectively. The photoinduced variation in the interparticle spacings is inferred by the changes in the optical spectra of the gold nanoparticles which display a red or blue shift in the surface plasmon resonance peak depending on a decrease or increase in the interparticle spacing, respectively. Transmission electron microscopy images are in consonance with the evidence from the optical spectra.
Collapse
Affiliation(s)
- Deepti S Sidhaye
- Nanoscience Group, Materials Chemistry Division, and Combi Chem-Bio Resource Center, Division of Organic Chemistry: Synthesis, National Chemical Laboratory, Pune 411 008, India
| | | | | | | | | |
Collapse
|
17
|
Lewis NS. Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors. Acc Chem Res 2004; 37:663-72. [PMID: 15379582 DOI: 10.1021/ar030120m] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arrays of broadly cross-reactive vapor sensors provide a man-made implementation of an olfactory system, in which an analyte elicits a response from many receptors and each receptor responds to a variety of analytes. Pattern recognition methods are then used to detect analytes based on the collective response of the sensor array. With the use of this architecture, arrays of chemically sensitive resistors made from composites of conductors and insulating organic polymers have been shown to robustly classify, identify, and quantify a diverse collection of organic vapors, even though no individual sensor responds selectively to a particular analyte. The properties and functioning of these arrays are inspired by advances in the understanding of biological olfaction, and in turn, evaluation of the performance of the man-made array provides suggestions regarding some of the fundamental odor detection principles of the mammalian olfactory system.
Collapse
Affiliation(s)
- Nathan S Lewis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|