1
|
Paulin JA, Lopez-Aguilar JE, Fouconnier B, Vargas RO, Lopez-Serrano F. Revisiting the Flory–Rehner equation: taking a closer look at the Flory–Huggins interaction parameter and its functionality with temperature and concentration with NIPA as a case example. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Sbeih S, Mohanty PS, Morrow MR, Yethiraj A. Structural parameters of soft PNIPAM microgel particles as a function of crosslink density. J Colloid Interface Sci 2019; 552:781-793. [DOI: 10.1016/j.jcis.2019.05.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
3
|
Chen S, Yong X. Dissipative particle dynamics modeling of hydrogel swelling by osmotic ensemble method. J Chem Phys 2018; 149:094904. [DOI: 10.1063/1.5045100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shensheng Chen
- Department of Mechanical Engineering, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA
| | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA
- Institute for Materials Research, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA
| |
Collapse
|
4
|
Jones CD, Steed JW. Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 2018; 45:6546-6596. [PMID: 27711667 DOI: 10.1039/c6cs00435k] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in the field of supramolecular chemistry have made it possible, in many situations, to reliably engineer soft materials to address a specific technological problem. Particularly exciting are "smart" gels that undergo reversible physical changes on exposure to remote, non-invasive environmental stimuli. This review explores the development of gels which are transformed by heat, light and ultrasound, as well as other mechanical inputs, applied voltages and magnetic fields. Focusing on small-molecule gelators, but with reference to organic polymers and metal-organic systems, we examine how the structures of gelator assemblies influence the physical and chemical mechanisms leading to thermo-, photo- and mechano-switchable behaviour. In addition, we evaluate how the unique and versatile properties of smart materials may be exploited in a wide range of applications, including catalysis, crystal growth, ion sensing, drug delivery, data storage and biomaterial replacement.
Collapse
Affiliation(s)
| | - Jonathan W Steed
- Department of Chemistry, Durham University, South Road, DH1 3LE, UK.
| |
Collapse
|
5
|
|
6
|
Lu B, Tarn MD, Pamme N, Georgiou TK. Fabrication of tailorable pH responsive cationic amphiphilic microgels on a microfluidic device for drug release. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingyuan Lu
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX United Kingdom
| | - Mark D. Tarn
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX United Kingdom
| | - Nicole Pamme
- School of Mathematics and Physical Sciences; University of Hull; HU6 7RX United Kingdom
| | - Theoni K. Georgiou
- Department of Materials; Imperial College London, Royal School of Mines, Exhibition Road; London SW7 2AZ United Kingdom
| |
Collapse
|
7
|
Tian Y, Grishkewich N, Bromberg L, Hatton TA, Tam KC. Cross-linked Pluronic-g-Polyacrylic acid microgel system for the controlled release of doxorubicin in pharmaceutical formulations. Eur J Pharm Biopharm 2017; 114:230-238. [PMID: 28126393 DOI: 10.1016/j.ejpb.2017.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
The binding of doxorubicin (DOX) to cross-linked Pluronic F127-g-PAA-EGDMA and L92-g-PAA-EGDMA microgels at different alpha (α) and salt concentrations was investigated using isothermal titration calorimetric (ITC), optical and scanning electron microscopic techniques (SEM). We seek to elucidate the mechanisms of interaction and the release of DOX from cross-linked microgels composed of Pluronic and poly(acrylic acid). The ITC results indicated a high binding affinity of DOX to the microgel, which is a function of salt concentrations due to the impact of electrostatic shielding on the DOX-binding process. Applying the polyelectrolyte theory allows the decoupling of the Gibbs free energy of binding that describes the role of non-electrostatic interaction of DOX and the microgel. The presence of DOX within the microgel resulted in the collapse of the microgel due to charge shielding, π-π interactions and self-association of polymer-bound DOX molecules. The diffusion of DOX through the microgel is controlled by the dissociation of COO-/DOX+ coupling pairs.
Collapse
Affiliation(s)
- Y Tian
- Singapore-MIT Alliance, Singapore; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - N Grishkewich
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - L Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - T Alan Hatton
- Singapore-MIT Alliance, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kam C Tam
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
8
|
Lu B, Tarn MD, Pamme N, Georgiou TK. Microfluidically fabricated pH-responsive anionic amphiphilic microgels for drug release. J Mater Chem B 2016; 4:3086-3093. [DOI: 10.1039/c5tb02378e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel amphiphilic microgels with hydrophobic and hydrophilic monomer units on the polymer chains were fabricated with an on-chip polymerisation methodology using a novel chip design.
Collapse
Affiliation(s)
- B. Lu
- Department of Chemistry
- University of Hull
- Hull
- UK
| | - M. D. Tarn
- Department of Chemistry
- University of Hull
- Hull
- UK
| | - N. Pamme
- Department of Chemistry
- University of Hull
- Hull
- UK
| | | |
Collapse
|
9
|
Lu B, Tarn MD, Pamme N, Georgiou TK. Tailoring pH-responsive acrylic acid microgels with hydrophobic crosslinks for drug release. J Mater Chem B 2015; 3:4524-4529. [DOI: 10.1039/c5tb00222b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic microgels that were able to encapsulate and release both hydrophobic and hydrophilic moieties were fabricated via a new methodology using a lab-on-a-chip device.
Collapse
Affiliation(s)
- B. Lu
- Department of Chemistry
- University of Hull
- Hull
- UK
| | - M. D. Tarn
- Department of Chemistry
- University of Hull
- Hull
- UK
| | - N. Pamme
- Department of Chemistry
- University of Hull
- Hull
- UK
| | | |
Collapse
|
10
|
Lee SM, Bae YC. Enhanced solvation effect of re-collapsing behavior for cross-linked PMMA particle gel in aqueous alcohol solutions. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Quesada-Pérez M, Maroto-Centeno JA, Martín-Molina A. Effect of the Counterion Valence on the Behavior of Thermo-Sensitive Gels and Microgels: A Monte Carlo Simulation Study. Macromolecules 2012. [DOI: 10.1021/ma3014959] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física,
Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700, Linares, Jaén, Spain
| | - José Alberto Maroto-Centeno
- Departamento de Física,
Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700, Linares, Jaén, Spain
| | - Alberto Martín-Molina
- Grupo de Física de Fluidos
y Biocoloides, Departamento de Física Aplicada, Facultad de
Ciencias, Universidad de Granada, 18071
Granada, Spain
| |
Collapse
|
12
|
Quesada-Pérez M, Ramos J, Forcada J, Martín-Molina A. Computer simulations of thermo-sensitive microgels: Quantitative comparison with experimental swelling data. J Chem Phys 2012; 136:244903. [DOI: 10.1063/1.4729946] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Yan H, Jin B. Influence of environmental solution pH and microstructural parameters on mechanical behavior of amphoteric pH-sensitive hydrogels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:36. [PMID: 22623036 DOI: 10.1140/epje/i2012-12036-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/25/2012] [Accepted: 04/25/2012] [Indexed: 06/01/2023]
Abstract
Amphoteric hydrogels contain both ionizable acidic and basic groups attached on the polymer chains, which can change their volume in response to the slight alteration of the surrounding environmental p H. In this paper, a theory of equilibrium swelling of amphoteric p H-sensitive hydrogels which is an extension of the formalism proposed by Marcombe et al. and a new hybrid free-energy density function of amphoteric hydrogels composed of the Edwards-Vilgis slip-link model and the Flory-Huggins solution theory as well as the contributions of mixing the mobile ions with the solvent, and dissociating the acidic and basic groups are presented for the prediction of the influence of environmental solution p H, microstructural parameters and geometric constraints on mechanical behavior. The calculations were modeled on chitosan-genipin gels, and the results were compared to experimental data. Numerical calculations show that the model is able to predict the dependence of swelling on p H and crosslinker qualitatively well and quantitatively close to the experimental data. Each gel shows minimal swelling at low p H but an increase in swelling until a maximum was reached; for most of the p H range, a good fit was achieved except for where the maximum swelling occurs; for experimental data, the maximum swelling appears at about pH = 4 , but for modeled data the maximum swelling appears between pH = 4 and pH = 6 ; each gel swell decreasing with increasing crosslinker concentration was also successfully predicted. The calculated results also show that microstructural parameters and geometric constraints have a significant impact on the mechanical behavior of the amphoteric hydrogels; the gel swells less when the network is more densely entangled and the maximum swelling ratio of the gels under biaxial constraint is only about one-third of the maximum when the gels swell freely. The theory developed here is valuable for the design and optimization of a drug delivery system.
Collapse
Affiliation(s)
- Huixian Yan
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 200092 Shanghai, China
| | | |
Collapse
|
14
|
Alf ME, Hatton TA, Gleason KK. Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.07.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Akhoury A, Bromberg L, Hatton TA. Redox-responsive gels with tunable hydrophobicity for controlled solubilization and release of organics. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1167-1174. [PMID: 21410169 DOI: 10.1021/am200002b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hydrophobicity of the chemical environment within a redox-responsive polymer gel synthesized by copolymerization of hydroxybutyl methacrylate (HBMA) and vinylferrocene (VF) can be controlled by tuning the oxidation state of the redox-responsive moiety, ferrocene. When ferrocene is in the uncharged reduced state, the gel is hydrophobic and selectively extracts butanol from aqueous solution. Upon oxidation to ferricenium ions, charge is induced at the ferrocene sites making the gel hydrophilic, with a reduced capacity for butanol relative to water. Equilibrium distribution coefficients and separation factors provide quantitative evidence for this changing preference for butanol depending on oxidation state. The selection of the monomer constituting the polymer backbone, HBMA, was based on an initial screening using the Hansen solubility parameters of commercially available monomers. The effect of the various constituents of the gel on the gel's butanol extraction ability has been ascertained experimentally.
Collapse
Affiliation(s)
- Abhinav Akhoury
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
16
|
Zhou W, An X, Gong J, Shen W, Chen Z, Wang X. Synthesis, characteristics, and phase behavior of a thermosensitive and pH-sensitive polyelectrolyte. J Appl Polym Sci 2011. [DOI: 10.1002/app.33833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Temperature and pH-responsive properties of poly(styrene-co-maleic anhydride)-grafting poly(oxypropylene)-amines. J Colloid Interface Sci 2009; 336:82-9. [DOI: 10.1016/j.jcis.2009.03.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/21/2022]
|
18
|
Mu QS, Zhao XB, Lu JR, Armes SP, Lewis AL, Thomas RK. pH-Responsive Nanoaggregation of Diblock Phosphorylcholine Copolymers. J Phys Chem B 2008; 112:9652-9. [DOI: 10.1021/jp710365u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Q. S. Mu
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - X. B. Zhao
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - J. R. Lu
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - S. P. Armes
- Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - A. L. Lewis
- Biocompatibles UK Limited, Chapman House, Farnham Business Park, Weydon Lane, Farnham, Surrey GU9 8QL, United Kingdom
| | - R. K. Thomas
- Physical and Theoretical Chemistry Laboratory, The University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
19
|
Qiao Y, Zhang S, Lin O, Deng L, Dong A. Stabilized micelles of amphoteric polyurethane formed by thermoresponsive micellization in HCl aqueous solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:3122-3126. [PMID: 18294012 DOI: 10.1021/la703281g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The thermoresponsive micellization behavior of amphoteric polyurethane (APU) was studied in HCl aqueous solution (pH 2.0) through light scattering, transmission electron microscopy, and fluorescent measurement. When APU concentration is high enough, nonreversible assembly of macromolecules can be observed with temperature decreasing from 25 to 4 degrees C. However, micelles reaching equilibrium at 4 degrees C can self-assemble reversibly in the temperature range of 4-55 degrees C. According to our research, we found it is the temperature sensitivity of the poly(propylene oxide) (PPO) segments that leads to the reassembly of APU at lower temperature. We proposed that core-shell-corona micelles ultimately form with hydrophobic core, PPO shell, and hydrophilic corona when temperature increases from 4 to 25 degrees C. This structure is very stable and does not change at higher temperatures (25-55 degrees C). That provides a new way to obtain stable micelles with small size and narrow size distribution at higher concentration of APU.
Collapse
Affiliation(s)
- Yong Qiao
- School of Material Science and Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | |
Collapse
|
20
|
Abstract
Oral administration of anticancer agents is preferred by patients for its convenience and potential for use in outpatient and palliative setting. In addition, oral administration facilitates a prolonged exposure to the cytotoxic agents. Enhancement of bioavailability of emerging cytotoxic agents is a pre-requisite for successful development of oral modes of cancer treatment. Over the last decade, our studies have focused specifically on the utilization of large (MW>10(5)) and non-degradable polymers in oral chemotherapy. A family of block-graft copolymers of the poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) Pluronic(R) polyethers and poly(acrylic acid) (PAA) bound by carbon-carbon bonds emerged, wherein both polymeric components are generally recognized as safe. Animal studies with Pluronic-PAA copolymers demonstrated that these molecules are excreted when administered orally and do not absorb into the systemic circulation. The Pluronic-PAA copolymers are surface-active and self-assemble, at physiological pH, into intra- and intermolecular micelles with hydrophobic cores of dehydrated PPO and multilayered coronas of hydrophilic PEO and partially ionized PAA segments. These micelles efficiently solubilize hydrophobic drugs such as paclitaxel and steroids and protect molecules such as camptothecins from the hydrolytic reactions. High surface activity of the Pluronic-PAA copolymers in water results in interactions with cell membranes and suppression of the membrane pumps such as P-glycoprotein. The ionizable carboxyls in the micellar corona facilitate mucoadhesion that enhances the residence time of the micelles and solubilized drugs in the gastrointestinal tract. Large payloads of the Pluronic-PAA micelles with weakly basic and water-soluble drugs such as doxorubicin and its analogs, mitomycin C, mitoxantrone, fluorouracil, and cyclophosphamide are achieved through electrostatic interactions with the micellar corona. Mechanical and physical properties of the Pluronic-PAA powders, blends, and micelles allow for formulation procedures where an active is simply dispersed into an aqueous Pluronic-PAA micellar formulation followed by optional lyophilization and processing into a ready dosage form. We review a number of in vivo and in vitro experiments demonstrating that that the oral administration of the cytotoxics formulated with the Pluronic-PAA copolymer micelles results in enhanced drug bioavailability.
Collapse
|
21
|
Li F, Ketelaar T, Cohen Stuart MA, Sudhölter EJR, Leermakers FAM, Marcelis ATM. Gentle immobilization of nonionic polymersomes on solid substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:76-82. [PMID: 18052397 DOI: 10.1021/la702546b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Vesicles from Pluronic L121 (PEO5-PPO68-PEO5) triblock copolymers were first stabilized by a permanent interpenetrating polymer network and then gently immobilized onto a glass or mica surface. Fluorescence-labeled micrometer-sized vesicles were visualized with confocal laser scanning microscopy, and smaller sized capsules, around 100 nm, were probed by liquid atomic force microscopy. The immobilized vesicles were weakly attached to a negatively charged surface via negatively charged polyelectrolytes in combination with Mg2+ ions and can be reversibly detached from the surface by slightly elevated temperatures. To illustrate that the immobilized vesicles remain responsive to external stimuli, we show that it is possible to transform their shape from spherical to cylindrical by introducing a second Pluronic, namely, P123 (PEO20-PPO70-PEO20). The detailed transition process has been recorded in real time by confocal laser scanning microscopy. Electron microscopy studies confirmed that a similar morphology change also occurs in the bulk.
Collapse
Affiliation(s)
- Feng Li
- Laboratory of Organic Chemistry, Laboratory of Physical Chemistry and Colloid Science, and Laboratory of Plant Cell Biology, Wageningen University, Dreijenplein 8, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Ma WD, Xu H, Wang C, Nie SF, Pan WS. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm 2007; 350:247-56. [PMID: 17961940 DOI: 10.1016/j.ijpharm.2007.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/25/2007] [Accepted: 09/03/2007] [Indexed: 11/30/2022]
Abstract
To prolong the precorneal resident time and improve ocular bioavailability of the drug, Pluronic F127-g-poly(acrylic acid) copolymers were studied as in situ gelling vehicle for ophthalmic drug delivery system. The rheological properties and in vitro drug release of Pluronic-g-PAA copolymer gels were investigated. The rheogram and in vitro drug release studies indicated that the drug release rates decreased as acrylic acid/Pluronic molar ratio and copolymer solution concentration increased. But the drug concentration had no obvious effect on drug release. The release rates of the drug from such copolymer gels were mainly dependent on the gel dissolution. In vivo resident experiments showed the drug resident time and the total resident amount in rabbit's conjunctiveal sac increased by 5.0 and 2.6 folds for in situ gel, compared with eye drops. The decreased loss angle at body temperature and prolonged precorneal resident time also indicated that the copolymer gels had bioadhesive properties. These in vivo experimental results, along with the rheological properties and in vitro drug release studies, demonstrated that in situ gels containing Pluronic-g-PAA copolymer may significantly prolong the drug resident time and thus improve bioavailability. Pluronic-g-PAA copolymer can be a promising in situ gelling vehicle for ophthalmic drug delivery system.
Collapse
Affiliation(s)
- Wen-Di Ma
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, PC 110016, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
A novel approach toward improvements of oral chemotherapeutic formulations has evolved, which combines solubilisation (molecular dispersion) of the hydrophobic anticancer drugs in micelles attached to large macromolecules or microparticles. The large size of the macromolecules or microgels prevents the gel components from being transported into the systemic circulation. The discussed gels comprise copolymers of poly(acrylic acid) (PAA) and Pluronic surfactants, linked via C-C bonds. The Pluronic-PAA copolymers are non-irritating when administered orally. The micelles formed in the Pluronic-PAA solutions and in crosslinked microgels can be loaded with chemotherapeutic drugs and then released in contact with the intestine. The microgels are collapsed at the acidic pH of the stomach and expand, thus releasing the loaded drugs at the pH of the lower gastrointestinal tract. Yet the microgels are mucoadhesive and enable longer retention time and prolonged release in the colon. Ease of preparation and formulation of the drugs with the Pluronic-PAA polymers and gels may enable the wider use of oral chemotherapy, resulting in a better patient compliance and improved quality of life of the patients.
Collapse
Affiliation(s)
- Lev Bromberg
- Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Jin X, Hsieh YL. pH-responsive swelling behavior of poly(vinyl alcohol)/poly(acrylic acid) bi-component fibrous hydrogel membranes. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.04.066] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Bromberg L, Temchenko M, Alakhov V, Hatton TA. Kinetics of swelling of polyether-modified poly(acrylic acid) microgels with permanent and degradable cross-links. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:1590-1598. [PMID: 15697312 DOI: 10.1021/la047893j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spherical particles of 50-100 mum size composed of poly(acrylic acid) networks covalently bonded to Pluronic polyether copolymers were tested for swelling in aqueous media. The microgels were cross-linked either by permanent ethylene glycol dimethacrylate (EGDMA) cross-links alone or by EDGMA together with reversible disulfide or biodegradable azoaromatic cross-links. Optimum conditions for a rapid, diffusion-limited swelling of the pH- and temperature-sensitive microgels with nondegradable cross-links were found. The microgels cross-linked by disulfide groups and equilibrium-swollen in the buffer solution exhibited degradation-limited kinetics of swelling under physiological conditions, with a first-order reaction constant, k(1), linearly proportional to the concentration of reducing agents such as dithiotreitol and tris(2-carboxyethyl)phosphine (TCEP). A severalfold faster swelling in the presence of more powerful reducing agent, TCEP, was observed, indicating the chemical specificity of the microgel swelling. The reoxidation of the thiol groups into disulfide cross-links by sodium hypochlorite led to the restoration of the microgels' diameter measured prior to the reduction-reoxidation cycle, which confirms the shape memory of the microgels. Enzymatically degradable azoaromatic cross-links enabled slow microgel swelling due to degradation of the cross-links by azoreductases from the rat intestinal cecum. The low rate of swelling of the Pluronic-containing microgels can enable sustained drug release in colon-specific drug delivery.
Collapse
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
27
|
Bromberg L, Temchenko M, Alakhov V, Hatton TA. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. Int J Pharm 2004; 282:45-60. [PMID: 15336381 DOI: 10.1016/j.ijpharm.2004.05.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 05/24/2004] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
Transient rheological properties and mucoadhesion of hydrogels composed of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO, or Pluronic) block copolymers and poly(acrylic acid) were explored. Nine Pluronic copolymers ranging in nominal molecular weight and PPO/PEO content were grafted to PAA through C-C bonds, with or without the use of divinyl cross-linker, ethylene glycol dimethacrylate (EGDMA). The hydrogel elasticity increased with the PPO content in the copolymers, as well as in the presence of EGDMA. Tensile tests were conducted to measure the fracture strength and the work of adhesion between the hydrogels and rat intestinal tissue. The fracture strength was proportional to the gel pseudoequilibrium modulus and depended on the nominal length of the PPO segments in the parent Pluronic copolymer. The work of mucoadhesion and gel cohesion declined with the loss angle measured in oscillatory shear experiments. The length of the PEO segments in Pluronic affected the work of adhesion. Applications of the Pluronic-PAA gels as vehicles in oral drug delivery are discussed. The longest Pluronic copolymers bonded to PAA resulted in copolymeric gels with strongest mucoadhesive properties.
Collapse
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|