1
|
Rimmer S, Spencer P, Nocita D, Sweeney J, Harrison M, Swift T. Chain-Extendable Crosslinked Hydrogels Using Branching RAFT Modification. Gels 2023; 9:gels9030235. [PMID: 36975685 PMCID: PMC10048396 DOI: 10.3390/gels9030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Functional crosslinked hydrogels were prepared from 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA). The acid monomer was incorporated both via copolymerization and chain extension of a branching, reversible addition–fragmentation chain-transfer agent incorporated into the crosslinked polymer gel. The hydrogels were intolerant to high levels of acidic copolymerization as the acrylic acid weakened the ethylene glycol dimethacrylate (EGDMA) crosslinked network. Hydrogels made from HEMA, EGDMA and a branching RAFT agent provide the network with loose-chain end functionality that can be retained for subsequent chain extension. Traditional methods of surface functionalization have the downside of potentially creating a high volume of homopolymerization in the solution. Branching RAFT comonomers act as versatile anchor sites by which additional polymerization chain extension reactions can be carried out. Acrylic acid grafted onto HEMA–EGDMA hydrogels showed higher mechanical strength than the equivalent statistical copolymer networks and was shown to have functionality as an electrostatic binder of cationic flocculants.
Collapse
Affiliation(s)
- Stephen Rimmer
- Department of Chemistry, University of Sheffield, Sheffield S10 2JA, UK
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
- Correspondence: (S.R.); (T.S.); Tel.: +44-0127-423-2323 (S.R. & T.S.)
| | - Paul Spencer
- Faculty of Engineering, University of Bradford, Bradford BD7 1DP, UK
| | - Davide Nocita
- Faculty of Engineering, University of Bradford, Bradford BD7 1DP, UK
| | - John Sweeney
- Faculty of Engineering, University of Bradford, Bradford BD7 1DP, UK
| | - Marcus Harrison
- Department of Chemistry, University of Sheffield, Sheffield S10 2JA, UK
| | - Thomas Swift
- Department of Chemistry, University of Sheffield, Sheffield S10 2JA, UK
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
- Correspondence: (S.R.); (T.S.); Tel.: +44-0127-423-2323 (S.R. & T.S.)
| |
Collapse
|
2
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
3
|
Facile Fabrication of Superwetting PVDF Membrane for Highly Efficient Oil/Water Separation. Polymers (Basel) 2023; 15:polym15020327. [PMID: 36679208 PMCID: PMC9865060 DOI: 10.3390/polym15020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
A novel superhydrophilic and underwater superoleophobic modified PVDF membrane for oil/water separation was fabricated through a modified blending approach. Pluronic F127 and amphiphilic copolymer P (MMA-AA) were directly blended with PVDF as a hydrophilic polymeric additive to prepare membranes via phase inversion induced by immersion precipitation. Then, the as-prepared microfiltration membranes were annealed at 160 °C for a short time and quenched to room temperature. The resultant membranes exhibited contact angles of hexane larger than 150° no matter whether in an acidic or basic environment. For 1, 2-dichloroethane droplets, the membrane surface showed a change from superoleophilic to superoleophobic under water with aqueous solutions with pH values from 2 to 13. This as-prepared membrane has good mechanical strength and can then be applied for oil and water mixture separation.
Collapse
|
4
|
Patnaik P, Sarkar S, Pal S, Chatterjee U. Cu(I) catalyzed ATRP for the preparation of high-performance poly (vinylidene fluoride)-g-poly 2-(dimethylamino)ethyl methacrylate crosslinked anion exchange membranes for enhanced acid recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Kai Fan, Zhou G, Yang H, Chen P, Wu F. Role of Poly(N-vinyl pyrrolidone) Grafted onto Poly(vinylidene fluoride) Powders in the Fabrication and Performance of Microfiltration Membranes. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhou X, Sun Y, Shen S, Li Y, Bai R. Highly Effective Anti-Organic Fouling Performance of a Modified PVDF Membrane Using a Triple-Component Copolymer of P(St x- co-MAA y)- g-fPEG z as the Additive. MEMBRANES 2021; 11:membranes11120951. [PMID: 34940452 PMCID: PMC8707838 DOI: 10.3390/membranes11120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022]
Abstract
In this study, a triple-component copolymer of P(Stx-co-MAAy)-g-fPEGz containing hydrophobic (styrene, St), hydrophilic (methacrylic acid, MAA), and oleophobic (perfluoroalkyl polyethylene glycol, fPEG) segments was synthesized and used as an additive polymer to prepare modified PVDF membrane for enhanced anti-fouling performance. Two compositions of St:MAA at 4:1 and 1:1 for the additive and two blending ratios of the additive:PVDF at 1:9 and 3:7 for the modified membranes were specifically examined. The results showed that the presence of the copolymer additive greatly affected the morphology and performance of the modified PVDF membranes. Especially, in a lower ratio of St to MAA (e.g., St:MAA at 1:1 versus 4:1), the additive polymer and therefore the modified PVDF membrane exhibited both better hydrophilic as well as oleophobic surface property. The prepared membrane can achieve a water contact angle at as low as 48.80° and display an underwater oil contact angle at as high as 160°. Adsorption experiments showed that BSA adsorption (in the concentration range of 0.8 to 2 g/L) on the modified PVDF membrane can be reduced by as much as 93%. From the filtration of BSA solution, HA solution, and oil/water emulsion, it was confirmed that the obtained membrane showed excellent resistance to these organic foulants that are often considered challenging in membrane water treatment. The performance displayed slow flux decay during filtration and high flux recovery after simple water cleaning. The developed membrane can therefore have a good potential to be used in such applications as water and wastewater treatment where protein and other organic pollutants (including oils) may cause severe fouling problems to conventional polymeric membranes.
Collapse
Affiliation(s)
- Xiaoji Zhou
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou 215009, China
| | - Yizhuo Sun
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou 215009, China
| | - Yan Li
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
| | - Renbi Bai
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; (X.Z.); (Y.S.); (S.S.); (Y.L.)
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center for Technology and Material of Water Treatment, Suzhou 215009, China
- Correspondence:
| |
Collapse
|
7
|
Gong HH, Zhang Y, Cheng YP, Lei MX, Zhang ZC. The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2616-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Balasubramaniam A, Manderfeld E, Krause LMK, Wanka R, Schwarze J, Beyer CD, Rosenhahn A. Visible light-induced controlled surface grafting polymerization of hydroxyethyl methacrylate from isopropylthioxanthone semipinacol-terminated organic monolayers. Polym Chem 2021. [DOI: 10.1039/d0py01410a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reaction scheme of the visible light-induced controlled surface grafting polymerization of methacrylate monomers onto organosilane-coated silicon initiated by previously coupled dormant ITXSP groups.
Collapse
Affiliation(s)
| | - Emily Manderfeld
- Analytical Chemistry – Biointerfaces
- Ruhr University Bochum
- 44780 Bochum
- Germany
| | - Lutz M. K. Krause
- Analytical Chemistry – Biointerfaces
- Ruhr University Bochum
- 44780 Bochum
- Germany
| | - Robin Wanka
- Analytical Chemistry – Biointerfaces
- Ruhr University Bochum
- 44780 Bochum
- Germany
| | - Jana Schwarze
- Analytical Chemistry – Biointerfaces
- Ruhr University Bochum
- 44780 Bochum
- Germany
| | - Cindy D. Beyer
- Analytical Chemistry – Biointerfaces
- Ruhr University Bochum
- 44780 Bochum
- Germany
| | - Axel Rosenhahn
- Analytical Chemistry – Biointerfaces
- Ruhr University Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
9
|
Zapsas G, Patil Y, Gnanou Y, Ameduri B, Hadjichristidis N. Poly(vinylidene fluoride)-based complex macromolecular architectures: From synthesis to properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101231] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Saad A, Mills R, Wan H, Mottaleb MA, Ormsbee L, Bhattacharyya D. Thermo-responsive adsorption-desorption of perfluoroorganics from water using PNIPAm hydrogels and pore functionalized membranes. J Memb Sci 2020; 599. [PMID: 32095035 DOI: 10.1016/j.memsci.2020.117821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Perfluorochemicals (PFCs) are emerging contaminants in various water sources. Responsive polymers provide a new avenue for PFC adsorption/desorption from water. Poly-N-isopropylacrylamide's (PNIPAm's) temperature-responsive behavior and hydrophilic/hydrophobic transition is leveraged for reversible adsorption and desorption of PFCs. Adsorption of PFOA (perfluoro-octanoic acid) onto PNIPAm hydrogels yielded Freundlich distribution coefficients (Kd) of 0.073 L/g at 35 °C (above LCST) and 0.026 L/g at 22°C. Kinetic studies yielded second order rate constants (k2) of 0.012 g/mg/h for adsorption and 12.6 g/mg/h for desorption, with initial rates of 28 mg/g/h and 41 mg/g/h, respectively. Interaction parameters of PNIPAm's functional groups in its different conformational states, as well as the hydrophobic fluorinated carbon tails and hydrophilic head groups of PFOA are used to describe relative adsorption. Polyvinylidene difluoride (PVDF) provides a robust membrane structure for the commercial viability of polymeric adsorbents. Temperature swing adsorption of PFOA using PNIPAm functionalized PVDF membrane pores showed consistent adsorption and desorption capacity over 5 cycles. PFOA desorption percentage of 60% was obtained in pure water at temperatures below PNIPAm's lower critical solution temperature (LCST) while 13% desorption was obtained at temperatures above the LCST, thus showing the importance of the LCST on desorption performance.
Collapse
Affiliation(s)
- Anthony Saad
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046
| | - Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046
| | - M Abdul Mottaleb
- College of Medicine, University of Kentucky, Lexington, Kentucky 40506-0046
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506-0046
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046
| |
Collapse
|
11
|
Mondal P, Samanta NS, Meghnani V, Purkait MK. Selective glucose permeability in presence of various salts through tunable pore size of pH responsive PVDF-co-HFP membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Lienafa L, Monge S, Guillaneuf Y, Ameduri B, Siri D, Gigmes D, Robin JJ. Preparation of PVDF-grafted-PS involving nitroxides. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Hussein MA, Alam MM, Alenazi NA, Alamry KA, Asiri AM, Rahman MM. Nanocomposite based functionalized Polyethersulfone and conjugated ternary ZnYCdO nanomaterials for the fabrication of selective Cd2+ sensor probe. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1643-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Dong Y, Yu P, Sun Q, Lu Y, Tan Z, Yu X. Grafting of MIPs from PVDF Membranes via Reversible Addition-fragmentation Chain Transfer Polymerization for Selective Removal of p-Hydroxybenzoic Acid. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8146-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Islam MS, Hernández S, Wan H, Ormsbee L, Bhattacharyya D. Role of membrane pore polymerization conditions for pH responsive behavior, catalytic metal nanoparticle synthesis, and PCB degradation. J Memb Sci 2018; 555:348-361. [PMID: 30718939 PMCID: PMC6358284 DOI: 10.1016/j.memsci.2018.03.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article describes the effects of changing monomer and cross-linker concentrations on the mass gain, water permeability, Pd-Fe nanoparticle (NP) loading, and the rate of degradation of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) of pore functionalized polyvinylidene fluoride (PVDF) membranes. In this study, monomer (acrylic acid (AA)) and cross-linker (N, N'- methylene-bis (acrylamide)) concentrations were varied from 10 to 20 wt% of polymer solution and 0.5-2 mol% of monomer concentration, respectively. Results showed that responsive behavior of membrane could be tuned in terms of water permeability over a range of 270-1 L m-2 h-1 bar-1, which is a function of water pH. The NP size on the membrane surface was found in the range of 16-23 nm. With increasing cross-linker density the percentage of smaller NPs (< 10 nm) increases due to smaller mesh size formation during in-situ polymerization of membrane. NP loading was found to vary from 0.21 to 0.94 mg per cm2 of membrane area depending on the variation of available carboxyl groups in membrane pore domain. The NPs functionalized membranes were then tested for use as a platform for the degradation of PCB 126. The observed batch reaction rate (Kobs) for PCB 126 degradation for per mg of catalyst loading was found 0.08-0.1 h-1. Degradation study in convective flow mode shows 98.6% PCB 126 is degraded at a residence time of 46.2 s. The corresponding surface area normalized reaction rate (K sa ) is found about two times higher than K sa of batch degradation; suggesting elimination of the effect of diffusion resistance for degradation of PCB 126 in convective flow mode operation. These Pd-Fe-PAA-PVDF membranes and nanoparticles are characterized by TGA, contact angle measurement, surface zeta potential, XRD, SEM, XPS, FIB, TEM and other techniques reveal the details about the membrane surface, pores and nanoparticles size, shape and size-distribution. Statistical analysis based on experimental results allows us to depict responsive behavior of functionalized membrane. In our best knowledge this paper first time reports detail study on responsive behavior of pore functionalized membrane in terms of permeability, NPs size, metal loading and its effect on PCB 126 degradation in a quantified approach.
Collapse
Affiliation(s)
- Md. Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| | - Sebastián Hernández
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| | - Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| |
Collapse
|
16
|
Salehi H, Shakeri A, Rastgar M. Carboxylic polyethersulfone: A novel pH-responsive modifier in support layer of forward osmosis membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Wu JJ, Zhou J, Rong JQ, Lu Y, Dong H, Yu HY, Gu JS. Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2013-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li X, Hu X, Cai T. Construction of Hierarchical Fouling Resistance Surfaces onto Poly(vinylidene fluoride) Membranes for Combating Membrane Biofouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4477-4489. [PMID: 28452489 DOI: 10.1021/acs.langmuir.7b00191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Owing to the highly hydrophobic nature, fluoropolymer membranes usually suffer from serious fouling problem, and therefore largely limited their practical applications. Also, the development of environmentally benign and nonreleasing antifouling coatings onto the inert fluoropolymer membranes remains a great challenge and is of prime importance for various scientific interests and industrial applications. In the present work, a facile and effective approach for the construction of hierarchical fouling resistance surfaces onto the poly(vinylidene fluoride) (PVDF) membranes was developed. Graft copolymers of PVDF with poly(hyperbranched polyglycerol methacrylamide) side chains (PVDF-g-PHPGMA copolymers) were synthesized via reversible addition-fragmentation chain transfer (RAFT) graft copolymerization of pentafluorophenyl methacrylate (PFMA) with the ozone-preactivated PVDF, followed by activated ester-amine reaction of PPFMA chains with amino-terminated hyperbranched polyglycerol (HPG-NH2). The copolymers could be simply processed into microfiltration (MF) membranes with surface-tethered PHPGMA side chains on the membrane and pore surfaces by nonsolvent induced phase inversion. Furthermore, the PVDF-g-PHPGMA-g-PSBMA membrane was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) of zwitterionic monomer, N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) from the PVDF-g-PHPGMA membrane and pore surfaces. Arise from a synergistic effect of the dendritic architecture of PHPGMA branches and "superhydrophilic" nature of PSBMA brushes, the PVDF-g-PHPGMA-g-PSBMA membranes exhibit superior resistance to protein and bacteria adhesion with insignificant cytotoxicity effects, making the membranes potentially useful for water treatment and biomedical applications. One may find the present study a general and effective method for the fabrication of antifouling fluoropolymer membranes in a controllable and green manner.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, P. R. China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Tao Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
19
|
Dübner M, Naoum ME, Spencer ND, Padeste C. From pH- to Light-Response: Postpolymerization Modification of Polymer Brushes Grafted onto Microporous Polymeric Membranes. ACS OMEGA 2017; 2:455-461. [PMID: 31457450 PMCID: PMC6641005 DOI: 10.1021/acsomega.6b00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
A microporous pH- and light-responsive membrane that enables remote control over its interfacial properties has been fabricated. pH-Responsiveness was imparted to a porous polypropylene film via grafting of poly(methacrylic acid) brushes from the substrate using argon-plasma-induced free-radical graft polymerization. Morphological changes as a function of grafting level were analyzed using atomic force microscopy. Conversion into a light-responsive membrane was performed via postpolymerization modification to covalently attach photochromic spiropyran moieties to the grafted polymer brushes. Reversible switches in wettability and permeability were determined upon changing from acidic to basic pH or upon alternating UV- and visible-light irradiation. Additionally, light-responsive membranes show a switch in color upon UV exposure.
Collapse
Affiliation(s)
- Matthias Dübner
- Laboratory
for Micro- and Nanotechnology, Paul Scherrer
Institute (PSI), ODRA/105, 5232 Villigen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Maria-Eleni Naoum
- Laboratory
for Micro- and Nanotechnology, Paul Scherrer
Institute (PSI), ODRA/105, 5232 Villigen, Switzerland
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Celestino Padeste
- Laboratory
for Micro- and Nanotechnology, Paul Scherrer
Institute (PSI), ODRA/105, 5232 Villigen, Switzerland
| |
Collapse
|
20
|
Huang CF. Surface-initiated atom transfer radical polymerization for applications in sensors, non-biofouling surfaces and adsorbents. Polym J 2016. [DOI: 10.1038/pj.2016.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Kobayashi M, Higaki Y, Kimura T, Boschet F, Takahara A, Ameduri B. Direct surface modification of poly(VDF-co-TrFE) films by surface-initiated ATRP without pretreatment. RSC Adv 2016. [DOI: 10.1039/c6ra18397b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A NMR study revealed that the surface-initiated ATRP of tBA occurred due to fluorine abstraction from the TrFE units of poly(VDF-co-TrFE).
Collapse
Affiliation(s)
- Motoyasu Kobayashi
- Japan Science Technology Agency
- ERATO
- Takahara Soft Interfaces Project
- Fukuoka 819-0395
- Japan
| | - Yuji Higaki
- Japan Science Technology Agency
- ERATO
- Takahara Soft Interfaces Project
- Fukuoka 819-0395
- Japan
| | - Taichi Kimura
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Frédéric Boschet
- Ingénierie et Architectures Macromoléculaires
- Institut Charles Gerhardt-UMR (CNRS) 5253
- Ecole Nationale Supérieure de Chimie de Montpellier
- F-34296 Montpellier Cedex
- France
| | - Atsushi Takahara
- Japan Science Technology Agency
- ERATO
- Takahara Soft Interfaces Project
- Fukuoka 819-0395
- Japan
| | - Bruno Ameduri
- Ingénierie et Architectures Macromoléculaires
- Institut Charles Gerhardt-UMR (CNRS) 5253
- Ecole Nationale Supérieure de Chimie de Montpellier
- F-34296 Montpellier Cedex
- France
| |
Collapse
|
22
|
Černoch P, Černochová Z, Petrova S, Kaňková D, Kim JS, Vasu V, Asandei AD. Water soluble poly(styrene sulfonate)-b-poly(vinylidene fluoride)-b-poly(styrene sulfonate) triblock copolymer nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra10241g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water-soluble PNaSS-b-PVDF-b-PNaSS triblock copolymer.
Collapse
Affiliation(s)
- Peter Černoch
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic v.v.i
- 162 06 Prague 6
- Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic v.v.i
- 162 06 Prague 6
- Czech Republic
| | - Svetlana Petrova
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic v.v.i
- 162 06 Prague 6
- Czech Republic
| | - Dana Kaňková
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic v.v.i
- 162 06 Prague 6
- Czech Republic
| | - Joon-Sung Kim
- Institute of Materials Science
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Vignesh Vasu
- Institute of Materials Science
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Alexandru D. Asandei
- Institute of Materials Science
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
23
|
Huang CF, Chen JK, Tsai TY, Hsieh YA, Andrew Lin KY. Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Zhang L, Meng Z, Zang S. Preparation and characterization of Pd/Fe bimetallic nanoparticles immobilized on Al2O3/PVDF membrane: Parameter optimization and dechlorination of dichloroacetic acid. J Environ Sci (China) 2015; 31:194-202. [PMID: 25968273 DOI: 10.1016/j.jes.2014.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride) (PVDF) membrane was prepared with alumina (Al2O3) nanoparticle addition. Pd/Fe nanoparticles (NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid (DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.
Collapse
Affiliation(s)
- Lijuan Zhang
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, College of Heilongjiang Province, Harbin Normal University, Harbin 150025, China.
| | - Zhaohong Meng
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, College of Heilongjiang Province, Harbin Normal University, Harbin 150025, China.
| | - Shuying Zang
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, College of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
25
|
Lopez G, Thenappan A, Améduri B. Synthesis of Chlorotrifluoroethylene-Based Block Copolymers by Iodine Transfer Polymerization. ACS Macro Lett 2015; 4:16-20. [PMID: 35596393 DOI: 10.1021/mz5006712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various fluorinated macro-chain transfer agents (CTAs) based on vinylidene fluoride (VDF), chlorotrifluoroethylene (CTFE), or CTFE and vinylidene chloride (VDC), were synthesized by iodine transfer polymerization (ITP). These macro-CTAs were involved in a further ITP reaction that led to the synthesis of original CTFE-based block copolymers exhibiting molecular weight ranging from 2500 to 40000 g/mol and endowed with high thermal stabilities (decomposition temperature at 10% weight loss of ca. 380 °C, under air). ITP of CTFE and VDC as well as ITP of VDF thermally initiated at 100 °C by a catalytic amount of dimanganese decacarbonyl (Mn2(CO)10) are reported for the first time.
Collapse
Affiliation(s)
- Gérald Lopez
- Ingénierie
and Architectures Macromoléculaires, Institut Charles Gerhardt,
École Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’École Normale, 34296 Montpellier, France
| | | | - Bruno Améduri
- Ingénierie
and Architectures Macromoléculaires, Institut Charles Gerhardt,
École Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’École Normale, 34296 Montpellier, France
| |
Collapse
|
26
|
Tunable nanoporous membranes with chemically-tailored pore walls from triblock polymer templates. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Temperature- and pH-sensitive membrane formed from blends of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) and poly(acrylic acid) microgels. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2014.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Chen X, He Y, Shi C, Fu W, Bi S, Wang Z, Chen L. Temperature- and pH-responsive membranes based on poly (vinylidene fluoride) functionalized with microgels. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Qiu J, Zhou X, Mo Q, Liu F, Jiang L. Electrostatic assembled of Keggin-type polyoxometalates onto poly(4-vinylpyridine)-grafted poly(vinylidene fluoride) membranes. RSC Adv 2014. [DOI: 10.1039/c4ra07978g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
30
|
Voet VSD, ten Brinke G, Loos K. Well-defined copolymers based on poly(vinylidene fluoride): From preparation and phase separation to application. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27340] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vincent S. D. Voet
- Department of Polymer Chemistry; Zernike Institute for Advanced Materials, University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerrit ten Brinke
- Department of Polymer Chemistry; Zernike Institute for Advanced Materials, University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry; Zernike Institute for Advanced Materials, University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
31
|
Chen X, Zhao B, Zhao L, Bi S, Han P, Feng X, Chen L. Temperature- and pH-responsive properties of poly(vinylidene fluoride) membranes functionalized by blending microgels. RSC Adv 2014. [DOI: 10.1039/c4ra02724h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Xiao L, Isner A, Waldrop K, Saad A, Takigawa D, Bhattacharyya D. Development of Bench and Full-Scale Temperature and pH Responsive Functionalized PVDF Membranes with Tunable Properties. J Memb Sci 2014; 457:39-49. [PMID: 24944434 PMCID: PMC4058347 DOI: 10.1016/j.memsci.2014.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction.
Collapse
Affiliation(s)
- Li Xiao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Austin Isner
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Krysta Waldrop
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Anthony Saad
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | | | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
33
|
|
34
|
Kuila A, Chatterjee DP, Layek RK, Nandi AK. Coupled atom transfer radical coupling and atom transfer radical polymerization approach for controlled grafting from poly(vinylidene fluoride) backbone. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.27081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Atanu Kuila
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 West Bengal India
| | - Dhruba P. Chatterjee
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 West Bengal India
| | - Rama K. Layek
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 West Bengal India
| | - Arun K. Nandi
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 West Bengal India
| |
Collapse
|
35
|
Yang Q, Mi B. Nanomaterials for membrane fouling control: accomplishments and challenges. Adv Chronic Kidney Dis 2013; 20:536-55. [PMID: 24206605 DOI: 10.1053/j.ackd.2013.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies.
Collapse
|
36
|
Chen X, Bi S, Shi C, He Y, Zhao L, Chen L. Temperature-sensitive membranes prepared from blends of poly(vinylidene fluoride) and poly(N-isopropylacrylamides) microgels. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-2985-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Wang X, Yang J, Zhu M, Li F. Characterization and regeneration of Pd/Fe nanoparticles immobilized in modified PVDF membrane. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2012.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Properties of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) membranes prepared by alkali treatment. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-012-0032-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Ferro L, Scialdone O, Galia A. Preparation of pH sensitive poly(vinilydenefluoride) porous membranes by grafting of acrylic acid assisted by supercritical carbon dioxide. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2011.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Yi Z, Zhu LP, Zhao YF, Zhu BK, Xu YY. An extending of candidate for the hydrophilic modification of polysulfone membranes from the compatibility consideration: The polyethersulfone-based amphiphilic copolymer as an example. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2011.10.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Tao M, Liu F, Xue L. Hydrophilic poly(vinylidene fluoride) (PVDF) membrane by in situ polymerisation of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30695f] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Surface zwitterionicalization of poly(vinylidene fluoride) porous membranes by post-reaction of the amphiphilic precursor. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.09.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
|
44
|
Zhao X, Su Y, Chen W, Peng J, Jiang Z. pH-responsive and fouling-release properties of PES ultrafiltration membranes modified by multi-functional block-like copolymers. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Hu B, Wang L, Wu XM, Yang S, Gu JS, Yu HY. Low protein fouling polypropylene membrane prepared by photoinduced reversible addition-fragmentation chain transfer polymerization. J Appl Polym Sci 2011. [DOI: 10.1002/app.35034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Wang D, Zou W, Li L, Wei Q, Sun S, Zhao C. Preparation and characterization of functional carboxylic polyethersulfone membrane. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.03.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Zhao T, Zhang L, Zhang Z, Zhou N, Cheng Z, Zhu X. A novel approach to modify poly(vinylidene fluoride) via iron-mediated atom transfer radical polymerization using activators generated by electron transfer. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24651] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Golden AL, Battrell CF, Pennell S, Hoffman AS, Lai JJ, Stayton PS. Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli-responsive antibody conjugates and membranes. Bioconjug Chem 2011; 21:1820-6. [PMID: 20845976 DOI: 10.1021/bc100169y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a simple fluidic system that can purify and concentrate diagnostic biomarkers through the capture and triggered release of stimuli-responsive polymer-antibody conjugates at porous membranes that are grafted with the same stimuli-responsive polymer. This technique is applied here to the capture and detection of a model streptavidin antigen and subsequently to clinical ranges of the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) from spiked human plasma. The carboxyl end-groups of semi-telechelic poly(N-isopropylacrylamide) (pNIPAAm) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization were modified with tetrafluorophenol to yield amine-reactive ester groups for conjugation to amine groups of anti-streptavidin and anti-PfHRP2 antibodies. Stimuli-responsive membranes were constructed from 1.2 μm pore-size, hydroxylated, nylon-6,6 filters (Loprodyne, from Pall Corporation). The surface hydroxyl groups on the filters were conjugated to a 2-ethylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (EMP) RAFT chain transfer agent, and the surface-grafted pNIPAAm was obtained by subsequent polymerization. The number average molecular weight (Mn) and polydispersity indices (PDI) of the surface grafts were characterized, and membranes with either 4100 and 8400 dalton pNIPAAm grafts showed greater than 80% anti-streptavidin capture efficiency. The 8400 dalton-graft membrane showed the highest release efficiency, and it was demonstrated that at 0.2 nM starting concentration the streptavidin could be concentrated approximately 40-fold by releasing into a small 50 μL volume. This concentrator system was applied to the capture and concentration of the PfHRP2 antigen, and results showed that the PfHRP2 antigen could be processed and detected at clinically relevant concentrations of this malaria biomarker.
Collapse
Affiliation(s)
- Allison L Golden
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
49
|
Liu F, Abed MM, Li K. Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.09.044] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Yang Q, Adrus N, Tomicki F, Ulbricht M. Composites of functional polymeric hydrogels and porous membranes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02234a] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|