1
|
Millot Y, Hervier A, Ayari J, Hmili N, Blanchard J, Boujday S. Revisiting Alkoxysilane Assembly on Silica Surfaces: Grafting versus Homo-Condensation in Solution. J Am Chem Soc 2023; 145:6671-6681. [PMID: 36926855 DOI: 10.1021/jacs.2c11390] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Silica surface functionalization is often done through the condensation of functional silanes on silanols, silica surfaces' terminal groups. APTES, aminopropyltriethoxysilane, is widely used due to its assumed high reactivity with silanols, kinetically promoted by the catalytic action of the terminal amine function. Here, we revisit, based on a quantitative analysis by solid-state 29Si NMR, the assembly of this silane on silica surfaces to investigate whether its presence results from grafting, i.e., hetero-condensation with silanol groups or from homo-condensation of silane molecules in solution leading to polycondensates physisorbed on silica. We investigate the interaction of APTES with a crystalline layered silicate, ilerite, and with amorphous nonporous silica. We also studied a second silane, cyanopropyltrichlorosilane (CPTCS), terminated with a nitrile group. Our results undoubtedly prove that while CPTCS is grafted on the silica surface, the presence of APTES on silica and silicate materials is only marginally associated with silanol consumption. The analysis of the signal related to silicon atoms from silanes (Tn species) and those from silica (Qn species) allowed for the accurate estimation of the extent of homo-condensation vs grafting based on the ratio of T-O-T/Q-O-T siloxane bridges. These findings deeply question the well-established certainties on APTES assembly on silica that should no longer be seen as grafting of alkoxysilane by hetero-condensation with silanol groups but more accurately as a homo-condensed network of silanes, predominantly physisorbed on the surface but including some sparse anchoring points to the surface involving less than 6% of the overall silanol groups.
Collapse
Affiliation(s)
- Yannick Millot
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Antoine Hervier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Jihed Ayari
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Naoures Hmili
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Juliette Blanchard
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
2
|
Göppert AK, González-Rubio G, Schnitzlein S, Cölfen H. A Nanoparticle-Based Model System for the Study of Heterogeneous Nucleation Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3580-3588. [PMID: 36862982 PMCID: PMC10018769 DOI: 10.1021/acs.langmuir.2c03034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Heterogeneous nucleation processes are involved in many important phenomena in nature, including devastating human diseases caused by amyloid structures or the harmful frost formed on fruits. However, understanding them is challenging due to the difficulties of characterizing the initial stages of the process occurring at the interface between the nucleation medium and the substrate surfaces. This work implements a model system based on gold nanoparticles to investigate the effect of particle surface chemistry and substrate properties on heterogeneous nucleation processes. Using widely available techniques such as UV-vis-NIR spectroscopy and light microscopy, gold nanoparticle-based superstructure formation was studied in the presence of substrates with different hydrophilicity and electrostatic charges. The results were evaluated on grounds of classical nucleation theory (CNT) to reveal kinetic and thermodynamic contributions of the heterogeneous nucleation process. In contrast to nucleation from ions, the kinetic contributions toward nucleation turned out to be larger than the thermodynamic contributions for the nanoparticle building blocks. Electrostatic interactions between substrates and nanoparticles with opposite charges were crucial to enhancing the nucleation rates and decreasing the nucleation barrier of superstructure formation. Thereby, the described strategy is demonstrated advantageous for characterizing physicochemical aspects of heterogeneous nucleation processes in a simple and accessible manner, which could be potentially explored to study more complex nucleation phenomena.
Collapse
|
3
|
Ivanov YD, Tatur VY, Shumov ID, Kozlov AF, Valueva AA, Ivanova IA, Ershova MO, Ivanova ND, Stepanov IN, Lukyanitsa AA, Ziborov VS. Atomic Force Microscopy Study of the Effect of an Electric Field, Applied to a Pyramidal Structure, on Enzyme Biomolecules. J Funct Biomater 2022; 13:jfb13040234. [PMID: 36412875 PMCID: PMC9680214 DOI: 10.3390/jfb13040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
The influence of an external constant strong electric field, formed using a pyramidal structure under a high electric potential, on an enzyme located near its apex, is studied. Horseradish peroxidase (HRP) is used as a model. In our experiments, a 27 kV direct current (DC) voltage was applied to two electrodes with a conducting pyramidal structure attached to one of them. The enzyme particles were visualized by atomic force microscopy (AFM) after the adsorption of the enzyme from its 0.1 µM solution onto mica AFM substrates. It is demonstrated that after the 40 min exposure to the electric field, the enzyme forms extended structures on mica, while in control experiments compact HRP particles are observed. After the exposure to the electric field, the majority of mica-adsorbed HRP particles had a height of 1.2 nm (as opposed to 1.0 nm in the case of control experiments), and the contribution of higher (>2.0 nm) particles was also considerable. This indicates the formation of high-order HRP aggregates under the influence of an applied electric field. At that, the enzymatic activity of HRP against its substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) remains unaffected. These results are important for studying macroscopic effects of strong electromagnetic fields on enzymes, as well as for the development of cellular structure models.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
- Correspondence:
| | - Vadim Y. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | | | | | | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin, 109472 Moscow, Russia
| | - Igor N. Stepanov
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
| | - Andrei A. Lukyanitsa
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
4
|
The Use of Excess Electric Charge for Highly Sensitive Protein Detection: Proof of Concept. ELECTRONICS 2022. [DOI: 10.3390/electronics11131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In highly sensitive bioanalytical systems intended for the detection of protein biomarkers at low and ultra-low concentrations, the efficiency of capturing target biomolecules from the volume of the analyzed sample onto the sensitive surface of the detection system is a crucial factor. Herein, the application of excess electric charge for the enhancement of transport of target biomolecules towards the sensitive surface of a detection system is considered. In our experiments, we demonstrate that an uncompensated electric charge is induced in droplets of protein-free water owing to the separation of charge in a part of the Kelvin dropper either with or without the use of an external electric field. The distribution of an excess electric charge within a protein-free water droplet is calculated. It is proposed that the efficiency of protein capturing onto the sensitive surface correlates with the sign and the amount of charge induced per every single protein biomolecule. The effect described herein can allow one to make the protein capturing controllable, enhancing the protein capturing in the desired (though small) sensitive area of a detector. This can be very useful in novel systems intended for highly sensitive detection of proteins at ultra-low (≤10−15 M) concentrations.
Collapse
|
5
|
Göppert AK, González-Rubio G, Cölfen H. Influence of anisotropy on heterogeneous nucleation of gold nanorod assemblies. Faraday Discuss 2022; 235:132-147. [PMID: 35380134 DOI: 10.1039/d1fd00087j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we analysed for the first time heterogeneous nucleation with anisotropic nanoparticles as a model system for non-spherical building units on the nanoscale. Gold nanorods were synthesised and assembled to investigate the phenomenon of heterogeneous nucleation. To determine the influence of the particle shape on heterogeneous nucleation, we utilised gold nanorods with varying aspect ratios, ranging from 3.00 and 2.25 to 1.75, while keeping the surface chemistry constant. First, the nucleation of the gold nanorod assemblies in solution and the process kinetics were analyzed with UV-vis-NIR spectroscopy followed by a microscopic examination of the gold nanorod-based superstructures formed heterogeneously on substrates. Here, positively charged cetyltrimethylammonium bromide (CTAB)-functionalized gold nanorods and negatively charged polystyrene sulfonate (PSS) functionalized substrates ensured the directed heterogeneous nucleation on the substrates. A combination of light microscopy with simultaneous UV-vis-NIR spectroscopy allowed us to observe the gold nanorod-based superstructure formation on the substrates in situ and to determine the nucleation rates of the process. We analysed the resulting data with the classical nucleation theory, which revealed a dominating kinetic term and a negligible thermodynamic term in contrast to ionic systems like calcium carbonate. Our studies consistently exhibit an influence of the aspect ratio on the nucleation behaviour resulting in faster nucleation of superstructures as the aspect ratio decreases. Hence our studies show unprecedented insight into the influence of particle anisotropy on the nucleation and growth of nanorod-based superstructures and reveal significant differences in the nucleation of nanoparticle building units compared to the nucleation of atoms or molecules as building units.
Collapse
Affiliation(s)
- Ann-Kathrin Göppert
- Physikalische Chemie, Universität Konstanz, Universitätsstr. 10, D-78457 Konstanz, Germany.
| | | | - Helmut Cölfen
- Physikalische Chemie, Universität Konstanz, Universitätsstr. 10, D-78457 Konstanz, Germany.
| |
Collapse
|
6
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
7
|
Senadheera DII, Kuruppu Arachchige NMK, Subasinghege Don V, Kumar R, Garno JC. Heterogeneous assembly of water from the vapor phase-Physical experiments and simulations with binding trifunctional organosilanes at the vapor/solid interface. J Chem Phys 2021; 154:214705. [PMID: 34240973 DOI: 10.1063/5.0046210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A trace amount of interfacial water is required to initiate hydrosilation reactions of trifunctional organosilanes to form surface assemblies. In recent studies, we have learned that water also has a critical role in directing molecular placement on surfaces because water can react with silicon to provide oxygenated sites for surface binding. Consequently, the wettability nature of substrates influences the placement and density of organosilane films formed by vapor-phase reactions. Nanopatterning protocols were designed using vapor-phase organosilanes and colloidal lithography to compare the wettability differences of hydrophilic mica(0001) compared to relatively hydrophobic Si(100) as a strategy for tracking the location of water on surfaces. The competition between hydrophobic and hydrophilic domains for the adsorption and coalescence of water condensed from vapor can be mapped indirectly by mapping the organosilanes, which bind to water at the solid interface, using atomic force microscopy. Trifunctional octadecyltrichlorosilane (OTS) was used as a marker molecule to map out the areas of the surface where water was deposited. The effect of systematic changes in film thickness and surface coverage of OTS was evaluated at the vapor/solid interface by adding an incremental amount of water to sealed reaction vessels to wet the surface and assessing the outcome after reaction with vapor-phase trichlorosilane. Reactive molecular dynamics simulations of the silicon-water vapor interface combined with electronic structure calculations of oxygenated silicon clusters with methyltrichlorosilane provided insight of the mechanism for surface binding, toward understanding the nature of the interface and wettability factors, which influence the association and placement of silane molecules on surfaces.
Collapse
Affiliation(s)
- D I I Senadheera
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | | | - Visal Subasinghege Don
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - Revati Kumar
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - Jayne C Garno
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
8
|
Ivanov YD, Tatur VY, Pleshakova TO, Shumov ID, Kozlov AF, Valueva AA, Ivanova IA, Ershova MO, Ivanova ND, Repnikov VV, Stepanov IN, Ziborov VS. Effect of Spherical Elements of Biosensors and Bioreactors on the Physicochemical Properties of a Peroxidase Protein. Polymers (Basel) 2021; 13:1601. [PMID: 34063512 PMCID: PMC8155990 DOI: 10.3390/polym13101601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
External electromagnetic fields are known to be able to concentrate inside the construction elements of biosensors and bioreactors owing to reflection from their surface. This can lead to changes in the structure of biopolymers (such as proteins), incubated inside these elements, thus influencing their functional properties. Our present study concerned the revelation of the effect of spherical elements, commonly employed in biosensors and bioreactors, on the physicochemical properties of proteins with the example of the horseradish peroxidase (HRP) enzyme. In our experiments, a solution of HRP was incubated within a 30 cm-diameter titanium half-sphere, which was used as a model construction element. Atomic force microscopy (AFM) was employed for the single-molecule visualization of the HRP macromolecules, adsorbed from the test solution onto mica substrates in order to find out whether the incubation of the test HRP solution within the half-sphere influenced the HRP aggregation state. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was employed in order to reveal whether the incubation of HRP solution within the half-sphere led to any changes in its secondary structure. In parallel, spectrophotometry-based estimation of the HRP enzymatic activity was performed in order to find out if the HRP active site was affected by the electromagnetic field under the conditions of our experiments. We revealed an increased aggregation of HRP after the incubation of its solution within the half-sphere in comparison with the control sample incubated far outside the half-sphere. ATR-FTIR allowed us to reveal alterations in HRP's secondary structure. Such changes in the protein structure did not affect its active site, as was confirmed by spectrophotometry. The effect of spherical elements on a protein solution should be taken into account in the development of the optimized design of biosensors and bioreactors, intended for performing processes involving proteins in biomedicine and biotechnology, including highly sensitive biosensors intended for the diagnosis of socially significant diseases in humans (including oncology, cardiovascular diseases, etc.) at early stages.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vadim Yu. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (N.D.I.); (I.N.S.)
| | - Tatyana O. Pleshakova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Andrey F. Kozlov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Anastasia A. Valueva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Maria O. Ershova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
| | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (N.D.I.); (I.N.S.)
- Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | | | - Igor N. Stepanov
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (N.D.I.); (I.N.S.)
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (I.D.S.); (A.F.K.); (A.A.V.); (I.A.I.); (M.O.E.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
9
|
Xiong X, Han J, Chen Y, Li S, Xiao W, Shi Q. DNA rearrangement on the octadecylamine modified graphite surface by heating and ultrasonic treatment. NANOTECHNOLOGY 2021; 32:055601. [PMID: 33179606 DOI: 10.1088/1361-6528/abb507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The evolution of single-stranded DNA (ssDNA) assembly on octadecylamine (ODA) modified highly oriented pyrolytic graphite (HOPG) surface by heating and ultrasonic treatment has been studied for the first time. We have observed that DNA on the ODA coated HOPG surface underwent dramatic morphological changes as a function of heating and ultrasonic treatment. Ordered DNA firstly changed to random aggregates by heating and then changed to three-dimensional (3D) networks by ultrasonic treatment. This finding points to previously unknown factors that impact graphite-DNA interaction and opens new opportunities to control the deposition of DNA onto graphitic substrates. In this way, we built a cost-effective method to produce large-scale 3D ssDNA networks. All of these studies pave the way to understand the properties of DNA-solid interface, design novel nanomaterials, and improve the sensitivity of DNA biosensors.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Key laboratory of advanced optoelectronic quantum architecture and measurement, ministry of education, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Micronano Centre, Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Junfeng Han
- Key laboratory of advanced optoelectronic quantum architecture and measurement, ministry of education, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Micronano Centre, Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yu Chen
- Institute of High Energy Physics, CAS. 19B Yuquan Road, Shijingshan District, Beijing 100081, People's Republic of China
| | - Shanshan Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wende Xiao
- Key laboratory of advanced optoelectronic quantum architecture and measurement, ministry of education, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Micronano Centre, Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qingfan Shi
- Key laboratory of advanced optoelectronic quantum architecture and measurement, ministry of education, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
10
|
Møller Sønderskov S, Hyldgaard Klausen L, Amland Skaanvik S, Han X, Dong M. In situ Surface Charge Density Visualization of Self-assembled DNA Nanostructures after Ion Exchange. Chemphyschem 2020; 21:1474-1482. [PMID: 32330354 PMCID: PMC7891384 DOI: 10.1002/cphc.201901168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/14/2020] [Indexed: 12/30/2022]
Abstract
The charge density of DNA is a key parameter in strand hybridization and for the interactions occurring between DNA and molecules in biological systems. Due to the intricate structure of DNA, visualization of the surface charge density of DNA nanostructures under physiological conditions was not previously possible. Here, we perform a simultaneous analysis of the topography and surface charge density of DNA nanostructures using atomic force microscopy and scanning ion conductance microscopy. The effect of in situ ion exchange using various alkali metal ions is tested with respect to the adsorption of DNA origami onto mica, and a quantitative study of surface charge density reveals ion exchange phenomena in mica as a key parameter in DNA adsorption. This is important for structure-function studies of DNA nanostructures. The research provides an efficient approach to study surface charge density of DNA origami nanostructures and other biological molecules at a single molecule level.
Collapse
Affiliation(s)
| | - Lasse Hyldgaard Klausen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University, Denmark
- Department of ChemistryStanford University333 Campus DriveStanfordCA 94305USA
| | | | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and EnvironmentSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO)Aarhus University, Denmark
| |
Collapse
|
11
|
Miranda A, Martínez L, De Beule PAA. Facile synthesis of an aminopropylsilane layer on Si/SiO 2 substrates using ethanol as APTES solvent. MethodsX 2020; 7:100931. [PMID: 32528863 PMCID: PMC7276439 DOI: 10.1016/j.mex.2020.100931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
(3-aminopropyl)triethoxysilane (APTES) is a commonly used organosilane on surface functionalization of silicon oxide surfaces. However, its deposition process from solution-phase usually involves the use of toluene, which has often been identified as crucial for the formation of an aminopropylsilane monolayer. Toluene is ranked as a problematic solvent in the guide developed by a group referred to as the solvent sub-team of CHEM21. In this work, we propose a facile synthetic route for functionalizing a silicon substrate with APTES via solution-phase approach using only solvents that are classified as recommended. The influence of the APTES concentration, reaction times and different post-deposition conditions using acetic acid and methanol were studied in order to evaluate the quality and thickness of the organosilane layers.The method uses ethanol as APTES solvent for functionalizing silicon dioxide surfaces and only uses solvents classified as recommended. The method uses a solution phase approach, does not require complicated equipment and can be prepared at room temperature.
Collapse
Affiliation(s)
- Adelaide Miranda
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Lidia Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Materials Science Factory, c/ Sor Juana Inés de la Cruz, 3, Madrid, 28049, Spain
| | - Pieter A A De Beule
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
12
|
Covalent Protein Immobilization onto Muscovite Mica Surface with a Photocrosslinker. MINERALS 2020. [DOI: 10.3390/min10050464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Muscovite mica with an amino silane-modified surface is commonly used as a substrate in atomic force microscopy (AFM) studies of biological macromolecules. Herein, the efficiency of two different protein immobilization strategies employing either (N-hydroxysuccinimide ester)-based crosslinker (DSP) or benzophenone-based photoactivatable crosslinker (SuccBB) has been compared using AFM and mass spectrometry analysis. Two proteins with different physicochemical properties—human serum albumin (HSA) and horseradish peroxidase enzyme protein (HRP)—have been used as model objects in the study. In the case of HRP, both crosslinkers exhibited high immobilization efficiency—as opposed to the case with HSA, when sufficient capturing efficiency has only been observed with SuccBB photocrosslinker. The results obtained herein can find their application in commonly employed bioanalytical systems and in the development of novel highly sensitive chip-based diagnostic platforms employing immobilized proteins. The obtained data can also be of interest for other research areas in medicine and biotechnology employing immobilized biomolecules.
Collapse
|
13
|
Xia Q, Qiu L, Yu S, Yang H, Li L, Ye Y, Gu Z, Ren L, Liu G. Effects of Alkaline Cleaning on the Conversion and Transformation of Functional Groups on Ion-Exchange Membranes in Polymer-Flooding Wastewater Treatment: Desalination Performance, Fouling Behavior, and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14430-14440. [PMID: 31738527 DOI: 10.1021/acs.est.9b05815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aging effects of sodium hydroxide (NaOH) on ion-exchange membranes were systematically studied, including the membrane properties, desalination performance, and fouling behaviors. After aging in NaOH solution, there were minor changes in the cation-exchange membrane (CEM) properties; however, functional groups (i.e., quaternary amines) on the anion-exchange membranes (AEMs) were converted into benzylic alcohol, alkene, and tertiary amines, respectively, by nucleophilic substitution, Hofmann elimination, and ylide formation. These degradations rendered decreased ion-exchange capacity (IEC), increased electrical resistance, lost hydrophilicity, and weakened mechanical strength. Moreover, severe deteriorations of desalination performance were observed due to the little ion-exchange ability of the degraded AEMs. The desalination rates were restored after cultivating the aged AEMs in acid solution, mainly because the tertiary amines transformed from the hydroxide form (OH-form) to the ionic chlorine form (Cl-form). The restored desalination rates indicated that the main degradation products were tertiary amines. In addition, the antifouling performance decreased in the order of aged OH-form > aged Cl-form > original AEMs due to the reduction of foulant-membrane intermolecular interactions after aging in NaOH solution. The results contribute to establishing a more comprehensive understanding of the effects of alkaline cleaning on IEMs and provide new insights into cleaning-process optimization and membrane modification.
Collapse
Affiliation(s)
- Qing Xia
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Liping Qiu
- School of Civil Engineering and Architecture , University of Jinan , Jinan 250022 , P. R. China
| | - Shuili Yu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Haijun Yang
- Interfacial Water Division & Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , PO Box 800-204, Shanghai 201800 , P. R. China
| | - Lei Li
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , P. R. China
| | - Yubing Ye
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , P. R. China
| | - Zhengyang Gu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , P. R. China
| | - Liumo Ren
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , P. R. China
| | - Guicai Liu
- School of Civil Engineering and Architecture , University of Jinan , Jinan 250022 , P. R. China
| |
Collapse
|
14
|
Atomic force microscopy study of EDTA induced desorption of metal ions immobilized DNA from mica surface. Ultramicroscopy 2019; 199:7-15. [PMID: 30711717 DOI: 10.1016/j.ultramic.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
Abstract
Adsorption of DNA molecules onto substrate, such as mica, is well documented. However, desorption of the immobilized DNA molecules from substrate, which is also an important aspect of DNA behavior on substrate, has not been paid much attention. Here, DNA molecules were first immobilized on mica surface by using divalent metal ions as the bridge agents. Desorption of the immobilized DNA from mica surface was realized via ethylenediamine tetraacetic acid disodium salt (EDTA) treatment. EDTA is a chelating agent; it can remove the bridging metal ions between DNA and mica, which leads to the release of DNA molecules from mica substrate. The divalent metal ions assisted DNA adsorption onto mica surface and the EDTA induced DNA desorption from mica surface were followed by atomic force microscopy (AFM). Randomly dispersed DNA strands and DNA networks are two distinct adsorption morphologies of DNA on mica surface and their desorption processes from mica surface induced by EDTA are also different. Other factors that influence the EDTA-induced DNA desorption, such as type of bridging metal ion and DNA molecule length, have also been systematically studied. Moreover, EDTA treatment has no effect on the integrity of DNA molecule. The EDTA induced desorption of metal ions immobilized DNA from mica surface is simple and effective, which has potential applications in DNA separation and purification, DNA biophysics, and DNA-based nanotechnology.
Collapse
|
15
|
Yang Y, Zeng B, Sun Z, Esfahani AM, Hou J, Jiao ND, Liu L, Chen L, Basson MD, Dong L, Yang R, Xi N. Optimization of Protein-Protein Interaction Measurements for Drug Discovery Using AFM Force Spectroscopy. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2019; 18:509-517. [PMID: 32051682 PMCID: PMC7015265 DOI: 10.1109/tnano.2019.2915507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Increasingly targeted in drug discovery, protein-protein interactions challenge current high throughput screening technologies in the pharmaceutical industry. Developing an effective and efficient method for screening small molecules or compounds is critical to accelerate the discovery of ligands for enzymes, receptors and other pharmaceutical targets. Here, we report developments of methods to increase the signal-to-noise ratio (SNR) for screening protein-protein interactions using atomic force microscopy (AFM) force spectroscopy. We have demonstrated the effectiveness of these developments on detecting the binding process between focal adhesion kinases (FAK) with protein kinase B (Akt1), which is a target for potential cancer drugs. These developments include optimized probe and substrate functionalization processes and redesigned probe-substrate contact regimes. Furthermore, a statistical-based data processing method was developed to enhance the contrast of the experimental data. Collectively, these results demonstrate the potential of the AFM force spectroscopy in automating drug screening with high throughput.
Collapse
Affiliation(s)
- Yongliang Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Bixi Zeng
- Departments of Surgery and Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Zhiyong Sun
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, NE 68588 USA
| | - Jing Hou
- School of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Nian-Dong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110006, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110006, China
| | - Liangliang Chen
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Marc D Basson
- Departments of Surgery and Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Lixin Dong
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, NE 68588 USA
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| |
Collapse
|
16
|
Azinas S, Bano F, Torca I, Bamford DH, Schwartz GA, Esnaola J, Oksanen HM, Richter RP, Abrescia NG. Membrane-containing virus particles exhibit the mechanics of a composite material for genome protection. NANOSCALE 2018; 10:7769-7779. [PMID: 29658555 PMCID: PMC5944389 DOI: 10.1039/c8nr00196k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
The protection of the viral genome during extracellular transport is an absolute requirement for virus survival and replication. In addition to the almost universal proteinaceous capsids, certain viruses add a membrane layer that encloses their double-stranded (ds) DNA genome within the protein shell. Using the membrane-containing enterobacterial virus PRD1 as a prototype, and a combination of nanoindentation assays by atomic force microscopy and finite element modelling, we show that PRD1 provides a greater stability against mechanical stress than that achieved by the majority of dsDNA icosahedral viruses that lack a membrane. We propose that the combination of a stiff and brittle proteinaceous shell coupled with a soft and compliant membrane vesicle yields a tough composite nanomaterial well-suited to protect the viral DNA during extracellular transport.
Collapse
Affiliation(s)
- S. Azinas
- Molecular recognition and host–pathogen interactions programme , CIC bioGUNE , CIBERehd , Derio , Spain
- Biosurfaces Lab , CIC biomaGUNE , San Sebastian , Spain
| | - F. Bano
- Biosurfaces Lab , CIC biomaGUNE , San Sebastian , Spain
| | - I. Torca
- Mechanical and Industrial Production Department , Mondragon University , Arrasate-Mondragón , Spain
| | - D. H. Bamford
- Molecular and Integrative Biosciences Research Programme , Faculty of Biological and Environmental Sciences , Viikki Biocenter , University of Helsinki , Finland
| | - G. A. Schwartz
- Centro de Física de Materiales , (CSIC-UPV/EHU) & Donostia International Physics Center , San Sebastian , Spain
| | - J. Esnaola
- Mechanical and Industrial Production Department , Mondragon University , Arrasate-Mondragón , Spain
| | - H. M. Oksanen
- Molecular and Integrative Biosciences Research Programme , Faculty of Biological and Environmental Sciences , Viikki Biocenter , University of Helsinki , Finland
| | - R. P. Richter
- Biosurfaces Lab , CIC biomaGUNE , San Sebastian , Spain
- School of Biomedical Sciences , Faculty of Biological Sciences , School of Physics and Astronomy , Faculty of Mathematics and Physical Sciences , and Astbury Centre for Structural Molecular Biology University of Leeds , Leeds , UK . ; Tel: +44 113 3431969
| | - N. G. Abrescia
- Molecular recognition and host–pathogen interactions programme , CIC bioGUNE , CIBERehd , Derio , Spain
- IKERBASQUE , Basque Foundation for Science , Bilbao , Spain . ; Fax: +34 946572502 ; Tel: +34 946572523
| |
Collapse
|
17
|
Liu G, Yu S, Yang H, Hu J, Zhang Y, He B, Li L, Liu Z. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1393-1402. [PMID: 26735590 DOI: 10.1021/acs.est.5b04098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.
Collapse
Affiliation(s)
- Guicai Liu
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| | - Shuili Yu
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| | - Haijun Yang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , PO Box 800-204, Shanghai 201800, P.R. China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , PO Box 800-204, Shanghai 201800, P.R. China
| | - Yi Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , PO Box 800-204, Shanghai 201800, P.R. China
| | - Bo He
- Shandong Academy of Environmental Science ; Jinan, China , 250013
| | - Lei Li
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| | - Zhiyuan Liu
- School of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , Shanghai, China , 200092
| |
Collapse
|
18
|
Utzig T, Stock P, Raman S, Valtiner M. Targeted Tuning of Interactive Forces by Engineering of Molecular Bonds in Series and Parallel Using Peptide-Based Adhesives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11051-11057. [PMID: 26382013 DOI: 10.1021/acs.langmuir.5b02746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polymer-mediated adhesion plays a major role for both technical glues and biological processes like self-assembly or biorecognition. In contrast to engineering systems, adhesive strength in biological systems is precisely tuned via well-adjusted arrangement of individual bonds. How adhesion may be engineered by arrangement of individual bonds is however not yet well-understood. Here we show how the number of bonds in series and parallel can significantly influence adhesion forces using specifically designed surface-bridging peptides. We directly measure how adhesion forces between -COOH and -NH2 functionalized surfaces across aqueous media vary as a function of the number of bonds in parallel. We also introduce surface bridging peptide sequences that are similarly end-functionalized with amines and carboxylic acid. Compared to single molecular junctions, adhesive strength mediated by these surface bridging peptides decreases by a factor of 2 for adhesive junctions that consist of two acid/base bonds in series. Furthermore, adhesive strength varies with the density of bonds in parallel. For dense systems, we observe that the formation of a bridging peptide monolayer is sterically hindered and therefore adhesion is further reduced significantly by 20%. Our results unravel how the arrangement of individual bonds in an adhesive junction allows for a wide tuning of adhesive strength on the basis of utilizing just one single specific bond. As such, for peptide adhesives it is essential to consider bonds in parallel in a wide range of applications where both high adhesion and triggered release of adhesive bonds is essential.
Collapse
Affiliation(s)
- Thomas Utzig
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung , D-40237 Düsseldorf, Germany
| | - Philipp Stock
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung , D-40237 Düsseldorf, Germany
| | - Sangeetha Raman
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung , D-40237 Düsseldorf, Germany
| | - Markus Valtiner
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung , D-40237 Düsseldorf, Germany
| |
Collapse
|
19
|
Pick C, Argento C, Drazer G, Frechette J. Micropatterned charge heterogeneities via vapor deposition of aminosilanes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10725-10733. [PMID: 26359531 DOI: 10.1021/acs.langmuir.5b02771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aminosilanes are routinely employed for charge reversal or to create coupling layers on oxide surfaces. We present a chemical vapor deposition method to pattern mica surfaces with regions of high-quality aminosilane (3-aminopropyltriethoxysilane, APTES) monolayers. The approach relies on the vapor deposition of an aminosilane through a patterned array of through-holes in a PDMS (poly(dimethylsiloxane)) membrane that acts as a mask. In aqueous solutions the surfaces have regular patterns of charge heterogeneities with minimal topographical variations over large areas. This versatile dry lift-off deposition method alleviates issues with multilayer formation and can be used to create charge patterns on curved surfaces. We identify the necessary steps to achieve high quality monolayers and charge reversal of the underlying mica surface: (1) hexane extraction to remove unreacted PDMS oligomers from the membrane that would otherwise deposit on and contaminate the substrate, (2) oxygen plasma treatment of the top of the membrane surfaces to generate a barrier layer that blocks APTES transport through the PDMS, and (3) low of the vapor pressure of APTES during deposition to minimize APTES condensation at the mica-membrane-vapor contact lines and to prevent multilayer formation. Under these conditions, AFM imaging shows that the monolayers have a height of 0.9 ± 0.2 nm with an increase in height up to 3 nm at the mica-membrane-vapor contact lines. Fluorescence imaging demonstrates pattern fidelity on both flat and curved surfaces, for feature sizes that vary between 6.5 and 40 μm. We verify charge reversal by measuring the double layer forces between a homogeneous (unpatterned) APTES monolayers and a mica surface in aqueous solution, and we characterize the surface potential of APTES monolayers by measuring the double-layer forces between identical APTES surfaces. We obtain a surface potential of +110 ± 6 mV at pH 4.0.
Collapse
Affiliation(s)
- Christian Pick
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Christopher Argento
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - German Drazer
- Mechanical and Aerospace Engineering Department, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Joelle Frechette
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Kowalewska A, Nowacka M, Tracz A, Makowski T. Supramolecular self-assembly of linear oligosilsesquioxanes on mica--AFM surface imaging and hydrophilicity studies. SOFT MATTER 2015; 11:4818-4829. [PMID: 25982889 DOI: 10.1039/c5sm00787a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Linear oligomeric [2-(carboxymethylthio)ethylsilsesquioxanes] (LPSQ-COOH) adsorb spontaneously on muscovite mica and form smooth, well-ordered lamellar structures at the liquid-solid interface. Side carboxylic groups, having donor-acceptor character with regard to hydrogen bonds, are engaged both in multipoint molecule-to-substrate interactions and intermolecular cross-linking. The unique arrangement of silsesquioxane macromolecules, with COOH groups situated at the interface with air, produces highly hydrophilic surfaces of good thermal and solvolytic stability. Supramolecular assemblies of LPSQ-COOH were studied using atomic force microscopy (AFM), angle-resolved X-ray photoelectron spectroscopy (ARXPS) and attenuated total reflectance (ATR) FTIR spectroscopy. Comparative height profile analysis combined with ATR-FTIR studies of the spectral regions characteristic of carboxylic groups and C1s core level envelope by XPS confirmed specific interactions between LPSQ-COOH and mica.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.
| | | | | | | |
Collapse
|
21
|
A Comprehensive Study of Silanization and Co-Condensation for Straightforward Single-Step Covalent Neutral Capillary Coating. Chromatographia 2015. [DOI: 10.1007/s10337-015-2895-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Elschner T, Heinze T. Cellulose carbonates: a platform for promising biopolymer derivatives with multifunctional capabilities. Macromol Biosci 2015; 15:735-46. [PMID: 25677921 DOI: 10.1002/mabi.201400521] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/16/2015] [Indexed: 02/03/2023]
Abstract
Cellulose carbonates as a platform compound open new possibilities for the design of advanced materials based on the most important renewable resource cellulose. In the present feature, the chemistry of cellulose carbonates is discussed considering own research results adequately. After a short overview about methods for activation of polysaccharides for a conversion with nucleophilic compounds in particular with amines, details about various methods for the synthesis of polysaccharide carbonates are discussed. The main issue of the feature is the synthesis and aminolysis of cellulose carbonates with low, intermediate, and high degree of substitution and the evaluation of this chemistry with respect to specific challenges. Functional cellulose carbamates, obtained from cellulose phenyl carbonate by aminolysis, show the potential use of this class of celluloses. Immunoassays and zwitterionic polymers are included as representative examples regarding properties and application of the new cellulose-based products.
Collapse
Affiliation(s)
- Thomas Elschner
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743, Jena, Germany.
| |
Collapse
|
23
|
Elschner T, Scholz F, Miethe P, Heinze T. Rapid Flow Through Immunoassay for CRP Determination Based on Polyethylene Filters Modified withω-Aminocellulose Carbamate. Macromol Biosci 2014; 14:1539-46. [DOI: 10.1002/mabi.201400179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Elschner
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena; Humboldtstraße 10 D-07743 Jena Germany
| | - Friedrich Scholz
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena; Humboldtstraße 10 D-07743 Jena Germany
- Senova Gesellschaft für Biowissenschaft und Technik mbH; Industriestraße 8 D-99427 Weimar Germany
| | - Peter Miethe
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie; Geranienweg 7 D-99947 Bad Langensalza Germany
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena; Humboldtstraße 10 D-07743 Jena Germany
| |
Collapse
|
24
|
Shen MY, Li BR, Li YK. Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens Bioelectron 2014; 60:101-11. [PMID: 24787124 DOI: 10.1016/j.bios.2014.03.057] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/13/2014] [Accepted: 03/23/2014] [Indexed: 02/03/2023]
Abstract
Silicon nanowire field effect transistors (SiNW-FETs) have shown great promise as biosensors in highly sensitive, selective, real-time and label-free measurements. While applications of SiNW-FETs for detection of biological species have been described in several publications, less attention has been devoted to summarize the conjugating methods involved in linking organic bio-receptors with the inorganic transducer and the strategies of improving the sensitivity of devices. This article attempts to focus on summarizing the various organic immobilization approaches and discussing various sensitivity improving strategies, that include (I) reducing non-specific binding, (II) alignment of the probes, (III) enhancing signals by charge reporter, (IV) novel architecture structures, and (V) sensing in the sub-threshold regime.
Collapse
Affiliation(s)
- Mo-Yuan Shen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Bor-Ran Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
25
|
Shircliff RA, Stradins P, Moutinho H, Fennell J, Ghirardi ML, Cowley SW, Branz HM, Martin IT. Angle-resolved XPS analysis and characterization of monolayer and multilayer silane films for DNA coupling to silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4057-4067. [PMID: 23445373 DOI: 10.1021/la304719y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We measure silane density and Sulfo-EMCS cross-linker coupling efficiency on aminosilane films by high-resolution X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements. We then characterize DNA immobilization and hybridization on these films by (32)P-radiometry. We find that the silane film structure controls the efficiency of the subsequent steps toward DNA hybridization. A self-limited silane monolayer produced from 3-aminopropyldimethylethoxysilane (APDMES) provides a silane surface density of ~3 nm(-2). Thin (1 h deposition) and thick (19 h deposition) multilayer films are generated from 3-aminopropyltriethoxysilane (APTES), resulting in surfaces with increased roughness compared to the APDMES monolayer. Increased silane surface density is estimated for the 19 h APTES film, due to a ∼32% increase in surface area compared to the APDMES monolayer. High cross-linker coupling efficiencies are measured for all three silane films. DNA immobilization densities are similar for the APDMES monolayer and 1 h APTES. However, the DNA immobilization density is double for the 19 h APTES, suggesting that increased surface area allows for a higher probe attachment. The APDMES monolayer has the lowest DNA target density and hybridization efficiency. This is attributed to the steric hindrance as the random packing limit is approached for DNA double helices (dsDNA, diameter ≥ 2 nm) on a plane. The heterogeneity and roughness of the APTES films reduce this steric hindrance and allow for tighter packing of DNA double helices, resulting in higher hybridization densities and efficiencies. The low steric hindrance of the thin, one to two layer APTES film provides the highest hybridization efficiency of nearly 88%, with 0.21 dsDNA/nm(2). The XPS data also reveal water on the cross-linker-treated surface that is implicated in device aging.
Collapse
Affiliation(s)
- Rebecca A Shircliff
- Chemistry and Geochemistry Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chtcheglova LA, Hinterdorfer P. Functional AFM imaging of cellular membranes using functionalized tips. Methods Mol Biol 2013; 950:359-371. [PMID: 23086885 DOI: 10.1007/978-1-62703-137-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The real-time visualization of specific binding sites on biological samples with high spatial resolution, in order of several nanometers, is an important undertaking in many fields of biology. During the past 5 years, simultaneous topography and recognition imaging (TREC) has become a powerful tool to quickly obtain local receptor nanomaps on complex heterogeneous biosurfaces, such as cells and membranes. In this chapter, we present the TREC technique and explain how to unravel the nano-landscape of cells of the immune system, such as macrophages. We describe the procedures for all steps of the experiment including tip functionalization with Fc fragments via flexible PEG-linker, sample preparation, and localization of Fcγ receptors on macrophages.
Collapse
|
27
|
Dorvel BR, Reddy B, Go J, Guevara CD, Salm E, Alam MA, Bashir R. Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS NANO 2012; 6:6150-64. [PMID: 22695179 PMCID: PMC3412126 DOI: 10.1021/nn301495k] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanobiosensors based on silicon nanowire field effect transistors offer advantages of low cost, label-free detection, and potential for massive parallelization. As a result, these sensors have often been suggested as an attractive option for applications in point-of-care (POC) medical diagnostics. Unfortunately, a number of performance issues, such as gate leakage and current instability due to fluid contact, have prevented widespread adoption of the technology for routine use. High-k dielectrics, such as hafnium oxide (HfO(2)), have the known ability to address these challenges by passivating the exposed surfaces against destabilizing concerns of ion transport. With these fundamental stability issues addressed, a promising target for POC diagnostics and SiNWFETs has been small oligonucleotides, more specifically, microRNA (miRNA). MicroRNAs are small RNA oligonucleotides which bind to mRNAs, causing translational repression of proteins, gene silencing, and expressions are typically altered in several forms of cancer. In this paper, we describe a process for fabricating stable HfO(2) dielectric-based silicon nanowires for biosensing applications. Here we demonstrate sensing of single-stranded DNA analogues to their microRNA cousins using miR-10b and miR-21 as templates, both known to be upregulated in breast cancer. We characterize the effect of surface functionalization on device performance using the miR-10b DNA analogue as the target sequence and different molecular weight poly-l-lysine as the functionalization layer. By optimizing the surface functionalization and fabrication protocol, we were able to achieve <100 fM detection levels of the miR-10b DNA analogue, with a theoretical limit of detection of 1 fM. Moreover, the noncomplementary DNA target strand, based on miR-21, showed very little response, indicating a highly sensitive and highly selective biosensing platform.
Collapse
Affiliation(s)
- Brian R. Dorvel
- Department of Biophysics and Computational Biology, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
- Micro and Nanotechnology Lab, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
| | - Bobby Reddy
- Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
- Micro and Nanotechnology Lab, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
| | - Jonghyun Go
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47906
| | - Carlos Duarte Guevara
- Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
- Micro and Nanotechnology Lab, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
| | - Eric Salm
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
- Micro and Nanotechnology Lab, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
| | - Muhammad Ashraful Alam
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47906
| | - Rashid Bashir
- Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
- Department of Bioengineering, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
- Micro and Nanotechnology Lab, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801
| |
Collapse
|
28
|
Billingsley DJ, Bonass WA, Crampton N, Kirkham J, Thomson NH. Single-molecule studies of DNA transcription using atomic force microscopy. Phys Biol 2012; 9:021001. [PMID: 22473059 DOI: 10.1088/1478-3975/9/2/021001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.
Collapse
Affiliation(s)
- Daniel J Billingsley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, UK
| | | | | | | | | |
Collapse
|
29
|
Aissaoui N, Bergaoui L, Landoulsi J, Lambert JF, Boujday S. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:656-65. [PMID: 22107153 DOI: 10.1021/la2036778] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this work the mechanism of (3-aminopropyl)triethoxysilane (APTES) interaction with silicon surfaces is investigated at the molecular level. We studied the influence of experimental parameters such as time, temperature, and concentration on the quality of the APTES layer in terms of chemical properties, morphology, and stability in aqueous medium. This was achieved using a highly sensitive IR mode recently developed, grazing angle attenuated total reflection (GA-ATR). This technique provides structural information on the formed APTES layer. The topography of this layer was investigated by atomic force microscopy in aqueous medium. The hydrophilicity was also studied using contact angle measurement. Combining these techniques enables discussion of the mechanism of silane grafting. Considerable differences were observed depending on the reaction temperature, room temperature or 90 °C. The data suggest the presence of two adsorption sites with different affinities on the oxidized silicon layer. This also allows the optimal parameters to be established to obtain an ordered and stable silane layer. The adsorption of proteins on the APTES layer was achieved and monitored using in situ quartz crystal microbalance with dissipation monitoring and ex situ GA-ATR analyses.
Collapse
Affiliation(s)
- Nesrine Aissaoui
- Laboratoire de Réactivité de Surface, UMR 7197, Université Pierre et Marie Curie, F75005 Paris, France
| | | | | | | | | |
Collapse
|
30
|
Facilitating high-force single-polysaccharide stretching using covalent attachment of one end of the chain. Carbohydr Polym 2012; 87:806-815. [PMID: 34663040 DOI: 10.1016/j.carbpol.2011.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/23/2011] [Indexed: 11/24/2022]
Abstract
Single polysaccharide force spectroscopy has yielded particularly interesting data, the interpretation of which requires the marriage of statistical-mechanical theories of polymer physics to the complexities afforded by possible force-induced conformational transitions of the constituent sugar rings. However, the difficulty of designing handles for the specific attachment of the different ends of polysaccharide chains to substrates, such as piezoelectric scanners, cantilevers or microbeads has meant that the majority of studies to date have been carried out with the polymer physisorbed to the substrates between which it is stretched, or at best chemically attached via bonds formed at uncontrolled locations along the length of the molecule. This means that the lengths of obtained polysaccharide stretches, as well as the forces that can be placed on the molecule without generating detachment, are generally smaller than those obtainable for polymers that offer the ability to be covalently attached to substrates specifically at their ends. As a consequence it is troublesome and tedious to record a statistically significant number of force curves that extend chains to high enough forces to investigate certain conformational transitions, such as the boat-to-inverted chair, exhibited by polysaccharides such as pectin. Herein, single molecule force-extension curves have been measured for the several pectin samples using AFM. The results are compared when either (1) the polymers have been physisorbed between the cantilever and the surface of the piezo-electric scanner, under several different solvent conditions of pH and ionic strength, or (2) the polymer molecule has been chemically attached at one end to the piezo surface using a recently reported coupling procedure. In fact, using such a chemical attachment to tether the end of the polysaccharide, reduced the frequency of successful stretching events obtained in a particular location, confirming the role of surface diffusion in the physisorbed experiments. Nevertheless, when polymer stretches were successfully recorded, the force that could be applied before detachment was significantly increased, indicating that this methodology has great potential for improving the acquisition of data reporting on force-induced conformational transitions of the sugar ring that require the application of significant stresses.
Collapse
|
31
|
Ye Z, Lane AN, Willing GA, Berson RE. Scaled-up separation of cellobiohydrolase1 from a cellulase mixture by ion-exchange chromatography. Biotechnol Prog 2011; 27:1644-52. [DOI: 10.1002/btpr.696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/27/2011] [Indexed: 11/10/2022]
|
32
|
Lowe RD, Pellow MA, Stack TDP, Chidsey CED. Deposition of dense siloxane monolayers from water and trimethoxyorganosilane vapor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9928-9935. [PMID: 21721567 DOI: 10.1021/la201333y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A convenient, laboratory-scale method for the vapor deposition of dense siloxane monolayers onto oxide substrates was demonstrated. This method was studied and optimized at 110 °C under reduced pressure with the vapor of tetradecyltris(deuteromethoxy)silane, (CD(3)O)(3)Si(CH(2))(13)CH(3), and water from the dehydration of MgSO(4)·7H(2)O. Ellipsometric thicknesses, water contact angles, Fourier transform infrared (FTIR) spectroscopy, and electrochemical capacitance measurements were used to probe monolayer densification. The CD(3) stretching mode in the FTIR spectrum was monitored as a function of the deposition time and amounts of silane and water reactants. This method probed the unhydrolyzed methoxy groups on adsorbed silanes. Excess silane and water were necessary to achieve dense, completely hydrolyzed monolayers. In the presence of sufficient silane, an excess of water above the calculated stoichiometric amount was necessary to hydrolyze all methoxy groups and achieve dense monolayers. The excess water was partially attributed to the reversibility of the hydrolysis of the methoxy groups.
Collapse
Affiliation(s)
- Randall D Lowe
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | | | | | | |
Collapse
|
33
|
Kim J. Formation, Structure, and Reactivity of Amino-Terminated Organic Films on Silicon Substrates. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1062.ch006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joonyeong Kim
- Department of Chemistry, Buffalo State, State University of New York, 1300 Elmwood Avenue, Buffalo, New York 14222
| |
Collapse
|
34
|
Zhang F, Sautter K, Larsen AM, Findley DA, Davis RC, Samha H, Linford MR. Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14648-14654. [PMID: 20731334 DOI: 10.1021/la102447y] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Covalently bonded monolayers of two monofunctional aminosilanes (3-aminopropyldimethylethoxysilane, APDMES, and 3-aminopropyldiisopropylethoxysilane, APDIPES) and one trifunctional aminosilane (3-aminopropyltriethoxysilane, APTES) have been deposited on dehydrated silicon substrates by chemical vapor deposition (CVD) at 150 °C and low pressure (a few Torr) using reproducible equipment. Standard surface analytical techniques such as x-ray photoelectron spectroscopy (XPS), contact angle goniometry, spectroscopic ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) have been employed to characterize the resulting films. These methods indicate that essentially constant surface coverages are obtained over a wide range of gas phase concentrations of the aminosilanes. XPS data further indicate that the N1s/Si2p ratio is higher after CVD with the trifunctional silane (APTES) compared to the monofunctional ones, with a higher N1s/Si2p ratio for APDMES compared to that for APDIPES. AFM images show an average surface roughness of 0.12- 0.15 nm among all three aminosilane films. Stability tests indicate that APDIPES films retain most of their integrity at pH 10 for several hours and are more stable than APTES or APDMES layers. The films also showed good stability against storage in the laboratory. ToF-SIMS of these samples showed expected peaks, such as CN(-), as well as CNO(-), which may arise from an interaction between monolayer amine groups and silanols. Optical absorption measurements on adsorbed cyanine dye at the surface of the aminosilane films show the formation of dimer aggregates on the surface. This is further supported by ellipsometry measurements. The concentration of dye on each surface appears to be consistent with the density of the amines.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Subbarayan P, Qin H, Pillai S, Lee JJ, Pfendt AP, Willing G, Miller ME, Dennis VA, Singh SR. Expression and characterization of a multivalent human respiratory syncytial virus protein. Mol Biol 2010. [DOI: 10.1134/s0026893310030106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
The effect of underlying octadecylamine monolayer on the DNA conformation on the graphite surface. Colloids Surf B Biointerfaces 2010; 76:63-9. [DOI: 10.1016/j.colsurfb.2009.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 09/25/2009] [Accepted: 10/08/2009] [Indexed: 11/19/2022]
|
37
|
Bart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H. Room-temperature intermediate layer bonding for microfluidic devices. LAB ON A CHIP 2009; 9:3481-8. [PMID: 20024026 DOI: 10.1039/b914270c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this work a novel room-temperature bonding technique based on chemically activated Fluorinated Ethylene Propylene (FEP) sheet as an intermediate between chemically activated substrates is presented. Surfaces of silicon and glass substrates are chemically modified with APTES bearing amine terminal groups, while FEP sheet surfaces are treated to form carboxyl groups and subsequently activated by means of EDC-NHS chemistry. The activation procedures of silicon, glass and FEP sheet are characterized by contact angle measurements and XPS. Robust bonds are created at room-temperature by simply pressing two amine-terminated substrates together with activated FEP sheet in between. Average tensile strengths of 5.9 MPa and 5.2 MPa are achieved for silicon-silicon and glass-glass bonds, respectively, and the average fluidic pressure that can be operated is 10.2 bar. Moreover, it is demonstrated that FEP-bonded microfluidic chips can handle mild organic solvents at elevated pressures without leakage problems. This versatile room-temperature intermediate layer bonding technique has a high potential for bonding, packaging, and assembly of various (bio-) chemical microfluidic systems and MEMS devices.
Collapse
Affiliation(s)
- Jacob Bart
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Mourougou-Candoni N, Thibaudau F. Formation of Aminosilane Film on Mica. J Phys Chem B 2009; 113:13026-34. [DOI: 10.1021/jp903021e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Mourougou-Candoni
- Centre Interdisciplinaire de Nanoscience de Marseille, CNRS, Aix-Marseille Université, France
| | - F. Thibaudau
- Centre Interdisciplinaire de Nanoscience de Marseille, CNRS, Aix-Marseille Université, France
| |
Collapse
|
39
|
Vinelli A, Primiceri E, Brucale M, Zuccheri G, Rinaldi R, Samorì B. Sample preparation for the quick sizing of metal nanoparticles by atomic force microscopy. Microsc Res Tech 2008; 71:870-9. [DOI: 10.1002/jemt.20631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Glynos E, Pispas S, Koutsos V. Amphiphilic Diblock Copolymers on Mica: Formation of Flat Polymer Nanoislands and Evolution to Protruding Surface Micelles. Macromolecules 2008. [DOI: 10.1021/ma702630c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emmanouil Glynos
- Institute for Materials and Processes, School of Engineering and Electronics & Centre for Materials Science and Engineering, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JL, United Kingdom, and Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Institute for Materials and Processes, School of Engineering and Electronics & Centre for Materials Science and Engineering, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JL, United Kingdom, and Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 11635 Athens, Greece
| | - Vasileios Koutsos
- Institute for Materials and Processes, School of Engineering and Electronics & Centre for Materials Science and Engineering, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JL, United Kingdom, and Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
41
|
Wang W, Vaughn MW. Morphology and amine accessibility of (3-aminopropyl) triethoxysilane films on glass surfaces. SCANNING 2008; 30:65-77. [PMID: 18320600 DOI: 10.1002/sca.20097] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
3-Aminopropyl) triethoxysilane (APTES) is commonly used to functionalize glass substrates because it can form an amine-reactive film that is tightly attached to the surface. In this study, we investigated the morphology and chemical reactivity of APTES films prepared on glass substrates using common deposition techniques. Films were prepared using concentrated vapor-phase deposition, dilute vapor-phase deposition, anhydrous organic-phase deposition and aqueous-phase deposition. All films were annealed, or cured, at 150 degrees C. The morphology of the films was quantified by fluorescence and by atomic force microscopy (AFM). The optical equivalent of the AFM images was computed and then used to directly compare optical and AFM images. Reactive amine density was determined by a picric acid assay and by a method that employed N-succinimidyl 3-[2-pyridyldithio]-propionamido (SPDP) cross-linked rhodamine. Fluorescence and AFM images showed that silane films prepared from dilute vapor-phase and aqueous-phase deposition were more uniform and had fewer domains than those deposited by the other methods. The ratio of picric acid-accessible amino groups to SPDP cross-linked rhodamine-accessible groups varied with the preparation method, suggesting reactant size-dependent difference in amine accessibility. We found a larger number of accessible amino groups on films prepared by vapor-phase deposition than on those prepared from solution deposition. The dilute vapor-phase deposition technique produced relatively few domains, and it should be a good choice for bioconjugation applications. There were appreciable differences in the films produced by each method. We suggest that these differences originate from differences in film rearrangement during annealing.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-4121, USA
| | | |
Collapse
|
42
|
Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy. Top Curr Chem (Cham) 2008; 285:29-76. [DOI: 10.1007/128_2007_24] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Abstract
A summary of photo- and electrochemical surface modifications applied on single-crystalline chemical vapour deposition diamond films is given. The covalently bonded formation of amine and phenyl linker molecular layers is characterized using X-ray photoelectron spectroscopy, atomic force microscopy (AFM), cyclic voltammetry and field-effect transistor characterization experiments. Amine and phenyl layers are very different with respect to formation, growth, thickness and molecular arrangement. We deduce a sub-monolayer of amine linker molecules on diamond with approximately 10% coverage of 1.510(15) cm(-2) carbon bonds. Amine is bonded only on initially H-terminated surface areas. In the case of electrochemical deposition of phenyl layers, multilayer properties are detected with three-dimensional nitrophenyl growth properties. This leads to the formation of typically 25 A thick layers. The electrochemical bonding to boron-doped diamond works on H-terminated and oxidized surfaces. After reacting such films with heterobifunctional cross-linker molecules, thiol-modified ss-DNA markers are bonded to the organic system. Application of fluorescence and AFM on hybridized DNA films shows dense arrangements with densities up to 10(13) cm(-2). The DNA is tilted by an angle of approximately 35 degrees with respect to the diamond surface. Shortening the bonding time of thiol-modified ss-DNA to 10 min causes a decrease in DNA density to approximately 10(12) cm(-2). Application of AFM scratching experiments shows threshold removal forces of approximately 75 and 45 nN for the DNA bonded to the phenyl and the amine linker molecules, respectively. First, DNA sensor applications using Fe(CN6) 3-/4- mediator redox molecules and DNA field-effect transistor devices are introduced and discussed.
Collapse
|
44
|
Rezek B, Shin D, Nebel CE. Properties of hybridized DNA arrays on single-crystalline undoped and boron-doped (100) diamonds studied by atomic force microscopy in electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7626-33. [PMID: 17547423 DOI: 10.1021/la0636661] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Properties of hybridized deoxyribonucleic acid (DNA) arrays on single-crystalline undoped and boron-doped diamonds are studied at the microscopic level by atomic force microscopy (AFM) in buffered electrolytic solutions. DNA is linked to diamond via aminodecene molecules (TFAAD) that are attached to undoped diamonds by a photochemical reaction and via nitrophenyl-diazonium molecules attached electrochemically to boron-doped diamonds. Both H-terminated and oxidized diamond surfaces are used in this process. On H-terminated surfaces, AFM measurements detect compact DNA layers. By analyzing phase and height contrast in AFM, a DNA layer height of 76 A is determined on the photochemically functionalized diamonds and a DNA layer height of up to 92 A is determined on the electrochemically functionalized diamonds. Based on the layer thickness, the DNA chains are tilted under the angle of 31 degrees . The morphology of the DNA layers exhibits long-range (30-50 nm) undulations of 20 A in height and a nanoroughness of 8 A. Using Hertz's model for calculating the contact area of the AFM tip on a DNA layer and a geometrical model of DNA arrangement on diamond yields the DNA density on diamonds of 6 x 10(12) cm(-2) on both photochemically and electrochemically functionalized diamonds. The structure of these dense DNA layers is not significantly influenced by variations in buffer salinity of 1-300 mM NaCl. DNA molecules can be removed from the diamond surface by contact-mode AFM with forces >or= 45 nN and >or= 76 nN on photochemically and electrochemically functionalized diamonds, respectively, indicating that DNA is bonded covalently and stronger on diamond than on gold substrates. The DNA arrangement and bonding strength are similar on oxidized diamond surfaces when using an electrochemical process. On oxidized surfaces after photochemical processing, DNA is bonded noncovalently as deduced from the removal force < 6 nN. The presence of hybridized DNA as well as the selective removal of DNA by AFM scanning are corroborated by fluorescence microscopy.
Collapse
Affiliation(s)
- Bohuslav Rezek
- Diamond Research Center, AIST, Central 2, Tsukuba 305-8568, Japan.
| | | | | |
Collapse
|
45
|
Bui MPN, Baek TJ, Seong GH. Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy. Anal Bioanal Chem 2007; 388:1185-90. [PMID: 17534606 DOI: 10.1007/s00216-007-1354-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/03/2007] [Accepted: 05/08/2007] [Indexed: 11/30/2022]
Abstract
The potential ability of atomic force microscopy (AFM) as a quantitative bioanalysis tool is demonstrated by using gold nanoparticles as a size enhancer in a DNA hybridization reaction. Two sets of probe DNA were functionalized on gold nanoparticles and sandwich hybridization occurred between two probe DNAs and target DNA, resulting in aggregation of the nanoparticles. At high concentrations of target DNA in the range from 100 nM to 10 microM, the aggregation of gold nanoparticles was determined by monitoring the color change with UV-vis spectroscopy. The absorption spectra broadened after the exposure of DNA-gold nanoparticles to target DNA and a new absorption band at wavelengths >600 nm was observed. However, no differences were observed in the absorption spectra of the gold nanoparticles at low concentrations of target DNA (10 pM to 10 nM) due to insufficient aggregation. AFM was used as a biosensing tool over this range of target DNA concentrations in order to monitor the aggregation of gold nanoparticles and to quantify the concentration of target DNA. Based on the AFM images, we successfully evaluated particle number and size at low concentrations of target DNA. The calibration curve obtained when mean particle aggregate diameter was plotted against concentration of target DNA showed good linearity over the range 10 pM to 10 nM, the working range for quantitative target DNA analysis. This AFM-based DNA detection technique was three orders of magnitude more sensitive than a DNA detection method based on UV-vis spectroscopy.
Collapse
|
46
|
Liang J, Scoles G. Nanografting of alkanethiols by tapping mode atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6142-7. [PMID: 17455963 DOI: 10.1021/la063385t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nanografting, an atomic force microscopy (AFM) based nanolithography technique, is becoming a popular method for patterning self-assembled monolayers (SAMs). In this technique, a nanoscale patch of a thiol-on-gold SAM is exchanged with a different thiol by the action of an AFM tip operated in contact mode at high load. The results are then imaged in topographic or lateral force microscopy again at low values of the load. One of the problems of contact mode nanografting is that monolayers of large molecules such as proteins are likely to be deformed, damaged, or even removed from the surface by contact mode imaging even when small loads are used. Furthermore, we need to note that the stiffness of the cantilevers used in contact mode is different than that of the cantilevers used in tapping mode and that tip changing in the course of an experiment can be quite inconvenient. Here, we show that a monolayer on a gold substrate can be nanografted using tapping mode AFM (also referred to as amplitude modulation AFM) rather than the commonly used contact mode. While the grafting parameters are somewhat trickier to choose, the results demonstrate that nanografting in tapping mode can make patches of the same quality as those made by contact mode, therefore allowing for gentle imaging of the grafted molecules and the whole SAM without changing the microscope tip.
Collapse
Affiliation(s)
- Jian Liang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
47
|
Edupuganti OP, Antoci V, King SB, Jose B, Adams CS, Parvizi J, Shapiro IM, Zeiger AR, Hickok NJ, Wickstrom E. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization. Bioorg Med Chem Lett 2007; 17:2692-6. [PMID: 17369042 DOI: 10.1016/j.bmcl.2007.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 11/24/2022]
Abstract
Self-protecting Ti6Al4V alloy pins were prepared by covalent bonding of bis(ethylene glycol) linkers, then vancomycin to the oxidized, aminopropylated Ti6Al4V alloy surface. Fluorescence modification-enabled estimation of yields of free amines on the metallic surface monolayer at each reaction step. The vancomycin-protected Ti6Al4V pins were not colonized by Staphylococcus aureus, even after 44days storage in physiological buffer. These results provide a basis for testing self-protection against S. aureus colonization in animal models.
Collapse
Affiliation(s)
- Om P Edupuganti
- Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Dvir H, Jopp J, Gottlieb M. Estimation of polymer-surface interfacial interaction strength by a contact AFM technique. J Colloid Interface Sci 2006; 304:58-66. [PMID: 16989851 DOI: 10.1016/j.jcis.2006.08.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 08/07/2006] [Accepted: 08/23/2006] [Indexed: 11/17/2022]
Abstract
Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.
Collapse
Affiliation(s)
- H Dvir
- Chemical Engineering Department and R. Stadler Minerva Center for Mesoscale Macromolecular Engineering, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
50
|
Limanskaya LA, Limanskii AP. Compaction of single supercoiled DNA molecules adsorbed onto amino mica. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006. [DOI: 10.1134/s1068162006050074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|