Dahlberg C, Fureby A, Schuleit M, Dvinskikh SV, Furó I. Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study.
J Control Release 2007;
122:199-205. [PMID:
17706829 DOI:
10.1016/j.jconrel.2007.07.007]
[Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/03/2007] [Accepted: 07/16/2007] [Indexed: 11/23/2022]
Abstract
The objective of this study was to investigate the swelling characteristics of a hydroxypropyl methylcellulose (HPMC) matrix incorporating the hydrophilic drug antipyrine. We have used this matrix to introduce a novel analytical method, which allows us to obtain within one experimental setup information about the molecular processes of the polymer carrier and its impact on drug release. Nuclear magnetic resonance (NMR) imaging revealed in situ the swelling behavior of tablets when exposed to water. By using deuterated water, the spatial distribution and molecular dynamics of HPMC and their kinetics during swelling could be observed selectively. In parallel, NMR spectroscopy provided the concentration of the drug released into the aqueous phase. We find that both swelling and release are diffusion controlled. The ability of monitoring those two processes using the same experimental setup enables mapping their interconnection, which points on the importance and potential of this analytical technique for further application in other drug delivery forms.
Collapse