1
|
Cawley JL, Santa DE, Singh AN, Odudimu AT, Berger BA, Wittenberg NJ. Chaotropic Agent-Assisted Supported Lipid Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20629-20639. [PMID: 39285818 PMCID: PMC11447895 DOI: 10.1021/acs.langmuir.4c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Supported lipid bilayers (SLBs) are useful structures for mimicking cellular membranes, and they can be integrated with a variety of sensors. Although there are a variety of methods for forming SLBs, many of these methods come with limitations in terms of the lipid compositions that can be employed and the substrates upon which the SLBs can be deposited. Here we demonstrate the use of an all-aqueous chaotropic agent exchange process that can be used to form SLBs on two different substrate materials: SiO2, which is compatible with traditional SLB formation by vesicle fusion, and Al2O3, which is not compatible with vesicle fusion. When examined with a quartz crystal microbalance with dissipation monitoring, the SLBs generated by chaotropic agent exchange (CASLBs) have similar frequency and dissipation shifts to SLBs formed by the vesicle fusion technique. The CASLBs block nonspecific protein adsorption on the substrate and can be used to sense protein-lipid interactions. Fluorescence microscopy was used to examine the CASLBs, and we observed long-range lateral diffusion of fluorescent probes, which confirmed that the CASLBs were composed of a continuous, planar lipid bilayer. Our CASLB method provides another option for forming planar lipid bilayers on a variety of surfaces, including those that are not amenable to the widely used vesicle fusion method.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dane E Santa
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aarshi N Singh
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Adeyemi T Odudimu
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Brett A Berger
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Hu X, Liao M, Shen K, Ding K, Campana M, van der Kamp S, McInnes EF, Padia F, Lu JR. Unraveling How Membrane Nanostructure Changes Impact the Eye Irritation of Nonionic Alkyl Ethoxylate Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59087-59098. [PMID: 38078441 PMCID: PMC10739585 DOI: 10.1021/acsami.3c14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Nonionic surfactants used in agri-spraying processes may cause varying degrees of corneal irritation when they come in direct contact with farmers' eyes, and the exact irritations are thought to be determined by how surfactants interact with corneal cell membranes. However, how nonionic surfactants interact with cell membranes at the molecular and nano levels remains largely unexplored. In this study, the interactions between nonionic surfactants (alkyl ethoxylate, C12Em) and lipid membranes were examined by membrane permeability measurement, quartz crystal microbalance with dissipation, dual polarization interferometry, confocal laser scanning microscopy, and neutron reflection, aiming to reveal complementary structural features at the molecular and nano levels. Apart from the extremely hydrophobic surfactant C12E2, all nonionic surfactants studied could penetrate the model cell membrane composed of a phosphocholine lipid bilayer. Nonionic surfactants with intermediate amphiphilicity (C12E6) rapidly fused into the lipid membrane and stimulated the formation of pores across the lipid bilayer, consistent with the cytoplasm leakage and fast cell necrosis observed from the cytotoxicity study of corneal cells. In comparison, while hydrophobic and hydrophilic surfactants [those with long and short ethoxylates (C12E4,12,23)] could cause mild structural alteration to the outer lipid layer of the membrane, these structural changes were insufficient to elicit large cytoplasmic leakage rapidly and instead cell death occurred over longer periods of time due to changes in the membrane permeability. These results reveal the strong link of surfactant-lipid membrane interactions to surfactant cytotoxicity and the association with amphiphilicity of nonionic surfactants.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mingrui Liao
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Kangcheng Shen
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ke Ding
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mario Campana
- Rutherford
Appleton Laboratory, STFC ISIS Facility, Didcot OX11 0QX, U.K.
| | - Sophie van der Kamp
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Elizabeth F. McInnes
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Faheem Padia
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Jian R. Lu
- Biological
Physics Group, Department of Physics and Astronomy, School of Natural
Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Badvaram I, Camley BA. Physical limits to membrane curvature sensing by a single protein. Phys Rev E 2023; 108:064407. [PMID: 38243534 DOI: 10.1103/physreve.108.064407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/11/2023] [Indexed: 01/21/2024]
Abstract
Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads of 1-µm and 3-µm diameters, even though the septin is orders of magnitude smaller than the beads. This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal fluctuations of the membrane, leading to discrepancies between the bead's curvature and the local membrane curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus, membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association rates, we develop two classes of predictive models: (i) for proteins that maximally associate to a preferred curvature and (ii) for proteins with enhanced association rates above a threshold curvature. We find that the experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this dependence is limited by the fluctuations in membrane height and density.
Collapse
Affiliation(s)
- Indrajit Badvaram
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Al-Husseini JK, Fong EM, Wang C, Ha JH, Upreti M, Chiarelli PA, Johal MS. Ex Vivo Drug Screening Assay with Artificial Membranes: Characterizing Cholesterol Desorbing Competencies of Beta-Cyclodextrins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12590-12598. [PMID: 37651551 DOI: 10.1021/acs.langmuir.3c01173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Despite advancements in contemporary therapies, cardiovascular disease from atherosclerosis remains a leading cause of mortality worldwide. Supported lipid bilayers (SLBs) are membrane interfaces that can be constructed with varying lipid compositions. Herein, we use a solvent-assisted lipid bilayer (SALB) construction method to build SLB membranes with varying cholesterol compositions to create a lipid-sterol interface atop a piezoelectric sensor. These cholesterol-laden SLBs were utilized to investigate the mechanisms of various cholesterol-lowering drug molecules. Within a flow-cell, membranes with varying cholesterol content were exposed to cyclodextrins 2-hydroxypropyl-beta-cyclodextrin (HPβCD) and methyl-beta-cyclodextrin (MβCD). Quartz-crystal microgravimetry with dissipation monitoring (QCM-D) enabled the collection of in vitro, real-time changes in relative areal mass and dissipation. We define the cholesterol desorbing competency of a cyclodextrin species via measures of the rate of cholesterol removal, the rate of the transfer of membrane-bound cholesterol to drug-complexed cholesterol, and the binding strength of the drug to the cholesterol-ladened membrane. Desorption data revealed distinct cholesterol removal kinetics for each cyclodextrin while also supporting a model for the lipid-cholesterol-drug interface. We report that MβCD removes a quantity of cholesterol 1.61 times greater, with a speed 2.12 times greater, binding affinity to DOPC lipid interfaces 1.97 times greater, and rate of internal cholesterol transfer 3.41 times greater than HPβCD.
Collapse
Affiliation(s)
- Jacob K Al-Husseini
- Department of Neurological Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Ethan M Fong
- Department of Chemistry, Pomona College, Claremont, California 91711, United States
| | - Chris Wang
- Department of Chemistry, Pomona College, Claremont, California 91711, United States
| | - Joseph H Ha
- Department of Neurological Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Meenakshi Upreti
- Department of Neurological Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Peter A Chiarelli
- Department of Neurological Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Malkiat S Johal
- Department of Chemistry, Pomona College, Claremont, California 91711, United States
| |
Collapse
|
5
|
Gavutis M, Schulze-Niemand E, Lee HH, Liedberg B, Stein M, Valiokas R. Bilayer lipid membrane formation on surface assemblies with sparsely distributed tethers. NANOSCALE 2023. [PMID: 37128711 DOI: 10.1039/d2nr07069c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A combined computational and experimental study of small unilamellar vesicle (SUV) fusion on mixed self-assembled monolayers (SAMs) terminated with different deuterated tether moieties (-(CD2)7CD3 or -(CD2)15CD3) is reported. Tethered bilayer lipid membrane (tBLM) formation of synthetic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine was initially probed on SAMs with controlled tether (d-alkyl tail) surface densities and lateral molecular packing using quartz crystal microbalance with dissipation monitoring (QCM-D). Long time-scale coarse-grained molecular dynamics (MD) simulations were then employed to elucidate the mechanisms behind the interaction between the SUVs and the different phases formed by the -(CD2)7CD3 and -(CD2)15CD3 tethers. Furthermore, a series of real time kinetics was recorded under different osmotic conditions using QCM-D to determine the accumulated lipid mass and for probing the fusion process. It is shown that the key factors driving the SUV fusion and tBLM formation on this type of surfaces involve tether insertion into the SUVs along with vesicle deformation. It is also evident that surface densities of the tethers as small as a few mol% are sufficient to obtain stable tBLMs with a high reproducibility. The described "sparsely tethered" tBLM system can be advantageous in studying different biophysical phenomena, such as membrane protein insertion, effects of receptor clustering, and raft formation.
Collapse
Affiliation(s)
- Martynas Gavutis
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania.
| | - Eric Schulze-Niemand
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical System, Magdeburg, Germany
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Hung-Hsun Lee
- Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Bo Liedberg
- Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical System, Magdeburg, Germany
| | - Ramūnas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania.
| |
Collapse
|
6
|
Interaction of negatively and positively capped gold nanoparticle with different lipid model membranes. Biophys Chem 2022; 290:106896. [PMID: 36162346 DOI: 10.1016/j.bpc.2022.106896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
The use of functionalised gold nanoparticles in biomedical applications is expanding. Here we explore the interaction of gold nanoparticles with lipid membranes using readily available equipment and basic techniques to explore how the charge on the nanoparticles, and the nature of the lipid, influences the interaction. Gold nanoparticles were synthesised with two different surface functionalisations, negatively charged citrate groups and positively charged cetyltrimethylammonium groups from CTAB, to determine how surface charge affects the interaction of the nanoparticles with the Zwitterionic lipid POPC and the anionic lipid POPG. It was observed that the surface pressure/area isotherms of POPG monolayers on exposure to citrate capped nanoparticles were not shifted to higher molecular areas as much as those of POPC, suggesting that the anionic headgroups of the POPG lipid repel the anionic surface charge of the citrate capped nanoparticles to some extent limiting inclusion. In contrast, the surface pressure/area isotherms of the POPG monolayers exposed to CTAB capped nanoparticles are shifted to higher molecular areas more than for the POPC monolayers. The interaction of anionic nanoparticles with lipid bilayers was measured by the mass change of the bilayer deposited on the surface of a quartz crystal microbalance (QCM) exposed to nanoparticles in an aqueous phase flow. The QCM frequency changes show that bilayers of unsaturated phosophocholine lipids readily took up particles, whereas for the saturated lipid DPPC significant uptake was only observed when the bilayer was warmed to above its gel-to-fluid transition temperature, Tm. This is possibly due to an increase in the molecular mobility and bilayer bending modulus, κ, of the bilayer.
Collapse
|
7
|
Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies. MEMBRANES 2022; 12:membranes12060558. [PMID: 35736265 PMCID: PMC9229009 DOI: 10.3390/membranes12060558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
Supported lipid bilayers (SLBs) on quartz crystals are employed as versatile model systems for studying cell membrane behavior with the use of the highly sensitive technique of quartz crystal microbalance with dissipation monitoring (QCM-D). Since the lipids constituting cell membranes vary from predominantly zwitterionic lipids in mammalian cells to predominantly anionic lipids in the inner membrane of Gram-positive bacteria, the ability to create SLBs of different lipid compositions is essential for representing different cell membranes. While methods to generate stable zwitterionic SLBs and zwitterionic-dominant mixed zwitterionic–anionic SLBs on quartz crystals have been well established, there are no reports of being able to form predominantly or fully anionic SLBs. We describe here a method for forming entirely anionic SLBs by treating the quartz crystal with cationic (3-aminopropyl) trimethoxysilane (APTMS). The formation of the anionic SLB was tracked using QCM-D by monitoring the adsorption of anionic lipid vesicles to a quartz surface and subsequent bilayer formation. Anionic egg L-α-phosphatidylglycerol (PG) vesicles adsorbed on the surface-treated quartz crystal, but did not undergo the vesicle-to-bilayer transition to create an SLB. However, when PG was mixed with 10–40 mole% 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1′-rac-glycerol) (LPG), the mixed vesicles led to the formation of stable SLBs. The dynamics of SLB formation monitored by QCM-D showed that while SLB formation by zwitterionic lipids followed a two-step process of vesicle adsorption followed by the breakdown of the adsorbed vesicles (which in turn is a result of multiple events) to create the SLB, the PG/LPG mixed vesicles ruptured immediately on contacting the quartz surface resulting in a one-step process of SLB formation. The QCM-D data also enabled the quantitative characterization of the SLB by allowing estimation of the lipid surface density as well as the thickness of the hydrophobic region of the SLB. These fully anionic SLBs are valuable model systems to conduct QCM-D studies of the interactions of extraneous substances such as antimicrobial peptides and nanoparticles with Gram-positive bacterial membranes.
Collapse
|
8
|
Alhallak I, Kett PJN. Modelling the adsorption of phospholipid vesicles to a silicon dioxide surface using Langmuir kinetics. Phys Chem Chem Phys 2022; 24:2139-2149. [PMID: 34994358 DOI: 10.1039/d1cp03385a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supported Lipid Bilayers (SLBs) are model biological membranes that have been developed to study the interactions between biomolecules in a cell membrane. Though forming SLBs is relatively easy, their formation mechanism remains a topic of debate. When buffered solutions containing phosphatidylcholine vesicles are flowed over a silicon dioxide (SiO2) surface they adsorb intact to the surface to form a Supported Vesicle Layer (SVL) if the pH of the buffer is above 9. We have run experiments with buffers with a pH at or above 9 to study the kinetics of the adsorption of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles to an SiO2 surface, which is the first step in the formation of an SLB. We used a quartz crystal microbalance (QCM) to monitor the real-time changes in the mass of the SVL as it formed from solutions with different lipid concentrations. Increases in the maximum frequency change with increasing lipid concentration indicated that both adsorption and desorption of DOPC vesicles were occurring, and that an equilibrium was established between the DOPC vesicles in the SVL and in the bulk solution. From the data acquired we were able to determine that the equilibrium constant for the adsorption and desorption of DOPC vesicles was 18 ± 1. The data was fitted to a Langmuir adsorption model from which the rate constants for the adsorption and desorption of DOPC vesicles were determined to be ka = (0.0107 ± 0.0004) mL mg-1 s-1 and kd = (5.8 ± 0.3) × 10-4 s-1. The best fit to the experimental data was achieved if a parameter (α = (0.035 ± 0.003) s-1) was used to account for the time taken for the lipid concentration to reach its steady state value in the flow cell used in the experiments.
Collapse
Affiliation(s)
- Iad Alhallak
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, USA.
| | - Peter J N Kett
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, USA.
| |
Collapse
|
9
|
Guidelli R, Becucci L. Functional activity of peptide ion channels in tethered bilayer lipid membranes: Review. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry University of Florence Sesto Fiorentino Firenze Italy
| | - Lucia Becucci
- Ministero dell'Istruzione Scuola Media “Guglielmo Marconi” San Giovanni Valdarno Arezzo Italy
| |
Collapse
|
10
|
Abstract
Dynamic processes on membrane surfaces are essential for biological function. Traditionally, quantitative measurements of lipid/protein motion have been interpreted in the framework of membrane hydrodynamics. However, some recent single-molecule tracking studies have proven difficult to interpret via hydrodynamic arguments. Does this suggest a failure of hydrodynamic theory or simply highlight the dangers in attempting to extend hydrodynamic arguments down to molecular scales? Intermolecular correlations are superior to single-molecule observations for studying hydrodynamics due to the longer length scales involved. The current work reports dynamic pair correlations of lipids in model membranes. Submicron distance-dependent correlations are well resolved, and complementary numerical calculations indicate that hydrodynamic theory can predict membrane dynamics over distances of tens of nanometers and longer. Lipid membranes are complex quasi–two-dimensional fluids, whose importance in biology and unique physical/materials properties have made them a major target for biophysical research. Recent single-molecule tracking experiments in membranes have caused some controversy, calling the venerable Saffman–Delbrück model into question and suggesting that, perhaps, current understanding of membrane hydrodynamics is imperfect. However, single-molecule tracking is not well suited to resolving the details of hydrodynamic flows; observations involving correlations between multiple molecules are superior for this purpose. Here dual-color molecular tracking with submillisecond time resolution and submicron spatial resolution is employed to reveal correlations in the Brownian motion of pairs of fluorescently labeled lipids in membranes. These correlations extend hundreds of nanometers in freely floating bilayers (black lipid membranes) but are severely suppressed in supported lipid bilayers. The measurements are consistent with hydrodynamic predictions based on an extended Saffman–Delbrück theory that explicitly accounts for the two-leaflet bilayer structure of lipid membranes.
Collapse
|
11
|
Andrews JT, Baker KE, Handloser JT, Bridges N, Krone AA, Kett PJN. Formation of Supported Lipid Bilayers (SLBs) from Buffers Containing Low Concentrations of Group I Chloride Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12819-12833. [PMID: 34699227 DOI: 10.1021/acs.langmuir.1c01707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported lipid bilayers (SLBs) are a useful tool for studying the interactions between lipids and other biomolecules that make up a cell membrane. SLBs are typically formed by the adsorption and rupture of vesicles from solution. Although it is known that many experimental factors can affect whether SLB formation is successful, there is no comprehensive understanding of the mechanism. In this work, we have used a quartz crystal microbalance (QCM) to investigate the role of the salt in the buffer on the formation of phosphatidylcholine SLBs on a silicon dioxide (SiO2) surface. We varied the concentration of sodium chloride in the buffer, from 5 to 150 mM, to find the minimum concentration of NaCl that was required for the successful formation of an SLB. We then repeated the experiments with other group I chloride salts (LiCl, KCl, and CsCl) and found that at higher salt concentrations (150 mM) SLB formation was successful for all of the salts used, and the degree of deformation of the adsorbed vesicles at the critical vesicle coverage was cation-dependent. The results showed that at an intermediate salt concentration (50 mM) the critical vesicle coverage was cation-dependent and at low salt concentrations (12.5 mM) the cation used determined whether SLB formation was successful. We found that the successful formation of SLBs could occur at lower electrolyte concentrations for KCl and CsCl than it did for NaCl. To understand these results, we calculated the magnitude of the vesicle-surface interaction energy using the Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended-DLVO theory. We managed to explain the results obtained at higher salt concentrations by including cation-dependent surface potentials in the calculations and at lower salt concentrations by the addition of a cation-dependent hydration force. These results showed that the way that different cations in solution affect the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)-SiO2 surface interaction energy depends on the ionic strength of the solution.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Kirstyn E Baker
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Jacob T Handloser
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Natalie Bridges
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Alexis A Krone
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Peter J N Kett
- Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| |
Collapse
|
12
|
Savenko M, Rivel T, Yesylevskyy S, Ramseyer C. Influence of Substrate Hydrophilicity on Structural Properties of Supported Lipid Systems on Graphene, Graphene Oxides, and Silica. J Phys Chem B 2021; 125:8060-8074. [PMID: 34284579 DOI: 10.1021/acs.jpcb.1c04615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pristine graphene, a range of graphene oxides, and silica substrates were used to investigate the effect of surface hydrophilicity on supported lipid bilayers by means of all-atom molecular dynamics simulations. Supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers were found in close-contact conformations with hydrophilic substrates with as low as 5% oxidation level, while self-assembled monolayers occur on pure hydrophobic graphene only. Lipids and water at the surface undergo large redistribution to maintain the stability of the supported bilayers. Deposition of bicelles on increasingly hydrophilic substrates shows the continuous process of reshaping of the supported system and makes intermediate stages between self-assembled monolayers and supported bilayers. The bilayer thickness changes with hydrophilicity in a complex manner, while the number of water molecules per lipid in the hydration layer increases together with hydrophilicity.
Collapse
Affiliation(s)
- Mariia Savenko
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, CZ-62500 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, CZ-62500 Brno, Czech Republic
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France.,Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| |
Collapse
|
13
|
Interaction of lignin dimers with model cell membranes: A quartz crystal microbalance and molecular dynamics simulation study. Biointerphases 2021; 16:041003. [PMID: 34266242 DOI: 10.1116/6.0001029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A study of the interaction between cell membranes and small molecules derived from lignin, a protective phenolic biopolymer found in vascular plants, is crucial for identifying their potential as pharmacological and toxicological agents. In this work, the interactions of model cell membranes [supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers] are compared for three βO4 dimers of coniferyl alcohol (G lignin monomer): guaiacylglycerol guaiacol ester with a hydroxypropenyl (HOC3H4-) tail (G-βO4'-G), a truncated GG dimer without HOC3H4- (G-βO4'-truncG), and a benzylated GG dimer (benzG-βO4'-G). The uptake of the lignin dimers (per mass of lipid) and the energy dissipation (a measure of bilayer disorder) are higher for benzG-βO4'-G and G-βO4'-truncG than those for G-βO4'-G in the gel-phase DPPC bilayer, as measured using quartz crystal microbalance with dissipation (QCM-D). A similar uptake of G-βO4'-truncG is observed for a fluid-phase bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine, suggesting that the effect of the bilayer phase on dimer uptake is minimal. The effects of increasing lignin dimer concentration are examined through an analysis of density profiles, potential of mean force curves, lipid order parameters, and bilayer area compressibilities (disorder) in the lipid bilayers obtained from molecular dynamics simulations. Dimer distributions and potentials of mean force indicate that the penetration into bilayers is higher for benzG-βO4'-G and G-βO4'-truncG than that for G-βO4'-G, consistent with the QCM-D results. Increased lipid tail disorder due to dimer penetration leads to a thinning and softening of the bilayers. Minor differences in the structure of lignin derivatives (such as truncating the hydroxypropenyl tail) have significant impacts on their ability to penetrate lipid bilayers.
Collapse
|
14
|
Zhang S, Tamura A, Yui N. Weakly acidic carboxy group-grafted β-cyclodextrin-threaded acid-degradable polyrotaxanes for modulating protein interaction and cellular internalization. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:494-510. [PMID: 34248421 PMCID: PMC8245098 DOI: 10.1080/14686996.2021.1935315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 05/13/2023]
Abstract
To improve the therapeutic potential of β-cyclodextrin (β-CD)-threaded acid-degradable polyrotaxanes (β-CD PRXs) in cholesterol-related metabolic disorders, we investigated the effect of carboxylation of β-CD PRXs on intracellular uptake. In this study, we established a synthetic method for the modification of carboxylalkyl carbamates on β-CD PRXs without degradation and synthesized three series of carboxyalkyl carbamate group-modified β-CD PRXs with different alkyl spacer lengths. The modification of carboxymethyl carbamate (CMC), carboxyethyl carbamate (CEC), and carboxypropyl carbamate (CPC) on the β-CD PRXs slightly reduced the interaction of the PRXs with the lipid layer model compared with the modification of 2-(2-hydroxyethoxy)ethyl carbamate (HEE-PRX), which was used in our previous studies. However, all the carboxylated β-CD PRXs showed a significantly stronger interaction with a protein model compared with HEE-PRX. The carboxylated β-CD PRXs showed significantly high intracellular uptake, through macrophage scavenger receptor A (MSR-A)-mediated endocytosis, in MSR-A-positive RAW 264.7 cells compared with HEE-PRX. Interestingly, the carboxylated β-CD PRXs also showed significantly higher intracellular uptake even in MSR-A-negative cells compared with HEE-PRX. Carboxylated β-CD PRXs are considered to strongly interact with other membrane proteins, resulting in high intracellular uptake. The length of the alkyl spacer affected the intracellular uptake levels of carboxylated PRXs, however, this relationship was varied for different cell types. Furthermore, none of the carboxylated β-CD PRXs exhibited cytotoxicity in the RAW 264.7 and NIH/3T3 cells. Altogether, carboxylation of β-CD PRXs is a promising chemical modification approach for their therapeutic application because carboxylated β-CD PRXs exhibit high cellular internalization efficiency in MSR-A-negative cells and negligible toxicity.
Collapse
Affiliation(s)
- Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
15
|
Kittle J, Levin J, Levin N. Water Content of Polyelectrolyte Multilayer Films Measured by Quartz Crystal Microbalance and Deuterium Oxide Exchange. SENSORS 2021; 21:s21030771. [PMID: 33498836 PMCID: PMC7866239 DOI: 10.3390/s21030771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/15/2023]
Abstract
Water content of natural and synthetic, thin, polymer films is of considerable interest to a variety of fields because it governs properties such as ion conductivity, rigidity, porosity, and mechanical strength. Measuring thin film water content typically requires either complicated and expensive instrumentation or use of multiple instrumental techniques. However, because a quartz crystal microbalance (QCM) is sensitive to changes in mass and viscosity, deuterated solvent exchange has emerged as a simple, single-instrument, in situ method to quantify thin film water content. Relatively few studies, though, have employed this technique to measure water content of polyelectrolyte multilayers formed by layer-by-layer (LbL) assembly. In this work, poly (allyl amine) (PAH) and poly (styrene sulfonate) (PSS) films of up to nine layers were formed and the water content for each layer was measured via QCM with deuterium oxide exchange. The well-characterized nature of PAH/PSS films facilitated comparisons of the technique used in this work to other instrumental methods. Water content results showed good agreement with the literature and good precision for hydrated films thicker than 20 nm. Collectively, this work highlights the utility, repeatability, and limitations of this deuterated exchange technique in measuring the solvent content of thin films.
Collapse
|
16
|
The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry. NANOMATERIALS 2020; 10:nano10122439. [PMID: 33291326 PMCID: PMC7762259 DOI: 10.3390/nano10122439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes. Ergosterol extraction by AmB is accompanied by membrane thinning. Our results provide new insights into the mechanism and antifungal effect of AmB in these simple models of fungal and mammalian membranes and help understand the molecular origin of its selectivity and toxic side effects.
Collapse
|
17
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Moradipour M, Chase EK, Khan MA, Asare SO, Lynn BC, Rankin SE, Knutson BL. Interaction of lignin-derived dimer and eugenol-functionalized silica nanoparticles with supported lipid bilayers. Colloids Surf B Biointerfaces 2020; 191:111028. [PMID: 32305621 DOI: 10.1016/j.colsurfb.2020.111028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/21/2023]
Abstract
The potential to impart surfaces with specific lignin-like properties (i.e. resistance to microbes) remains relatively unexplored due to the lack of well-defined lignin-derived small molecules and corresponding surface functionalization strategies. Here, allyl-modified guaiacyl β-O-4 eugenol (G-eug) lignin-derived dimer is synthesized and attached to mesoporous silica nanoparticles (MSNPs) via click chemistry. The ability of G-eug lignin-dimer functionalized particles to interact with and disrupt synthetic lipid bilayers is compared to that of eugenol, a known natural antimicrobial. Spherical MSNPs (∼150 nm diameter with 4.5 nm pores) were synthesized using surfactant templating. Post-synthesis thiol (SH) attachment was performed using (3-mercaptopropyl) trimethoxysilane and quantified by Ellman's test. The resultant SH-MSNPs were conjugated with the G-eug dimers or eugenol by a thiol-ene reaction under ultraviolet light in the presence of a photo initiator. From thermogravimetric analysis (TGA), attachment densities of approximately 0.22 mmol eugenol/g particle and 0.13 mmol G-eug dimer/g particle were achieved. The interaction of the functionalized MSNPs with a phospholipid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (representing model cell membranes) supported on gold surface was measured using Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). Eugenol-grafted MSNPs in PBS (up to 1 mg/mL) associated with the bilayer and increased the mass adsorbed on the QCM-D sensor. In contrast, MSNPs functionalized with G-eug dimer show qualitatively different behavior, with more uptake and evidence of bilayer disruption at and above a particle concentration of 0.5 mg/mL. These results suggest that bio-inspired materials with conjugated lignin-derived small molecules can serve as a platform for novel antimicrobial coatings and therapeutic carriers.
Collapse
Affiliation(s)
- Mahsa Moradipour
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Emily K Chase
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Shardrack O Asare
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States.
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States.
| |
Collapse
|
19
|
Byrne CE, Astete CE, Vaithiyanathan M, Melvin AT, Moradipour M, Rankin SE, Knutson BL, Sabliov CM, Martin EC. Lignin-graft-PLGA drug-delivery system improves efficacy of MEK1/2 inhibitors in triple-negative breast cancer cell line. Nanomedicine (Lond) 2020; 15:981-1000. [DOI: 10.2217/nnm-2020-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Few targeted therapies are available for triple-negative breast cancer (TNBC) patients. Here, we propose a novel alkaline-lignin-conjugated-poly(lactic- co-glycolic acid) (L-PLGA) nanoparticle drug delivery system to improve the efficacy of targeted therapies. Materials & methods: L-PLGA nanoparticles (NPs) loaded with the MEK1/2 inhibitor GDC-0623 were characterized, tested in vitro on MDA-MB-231 TNBC cell line and compared with loaded PLGA NPs. Results: Loaded L-PLGA NPs were less than half the size of PLGA NPs, had slower drug release and improved the efficacy of GDC-0623 when tested in vitro. We demonstrated that GDC-0623 reversed epithelial-to-mesenchymal transition in TNBC. Conclusion: Our findings indicate that L-PLGA NPs are superior to PLGA NPs in delivering GDC-0623 to cancer cells for improved efficacy in vitro.
Collapse
Affiliation(s)
- C Ethan Byrne
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | | | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, LA 70803, USA
| | - Mahsa Moradipour
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Stephen E Rankin
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Barbara L Knutson
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | - Elizabeth C Martin
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| |
Collapse
|
20
|
Richard-Lacroix M, Umuhire KN, Lister E, Pellerin C, Badia A. Selective Isotopic Labeling Resolves the Gel-to-Fluid Phase Transitions of the Individual Leaflets of a Planar-Supported Phospholipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9912-9922. [PMID: 31277548 DOI: 10.1021/acs.langmuir.9b00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Knowledge of the thermotropic phase behavior of solid-supported bilayer lipid assemblies is essential to mimick the molecular organization and lateral fluidity of cell membranes. The gel-to-fluid phase transitions in a homologous series of single phospholipid bilayers supported on planar silicon substrates were investigated by temperature-controlled atomic force microscopy and attenuated total reflection infrared spectroscopy to obtain complementary information at the mesoscopic and molecular scales. Symmetric bilayers of dipalmitoylphosphatidylcholine (DPPC) and vertically asymmetric bilayers composed of a leaflet of DPPC and another of acyl-chain-deuterated DPPC (DPPC-d62) were prepared by the Langmuir-Blodgett technique. The selective deuteration of one of the bilayer leaflets enabled the simultaneous monitoring by IR spectroscopy of the acyl chain melting in each leaflet via the spectrally isolated CH2 and CD2 stretching vibrations. Two gel-to-fluid transitions were discerned for both the symmetric and asymmetric bilayers in ultrapure water. The deuterium isotope effect observed in free-standing membranes was maintained for the supported bilayers. IR spectroscopy revealed that the melting of one leaflet promotes the disordering of the acyl chains in the adjacent one. The findings suggest that the two leaflet phase transitions do not evolve in isolation. This work sheds insight into the nature of leaflet-leaflet interactions and the thermodynamic properties of surface-confined phospholipid bilayers.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Kayiganwa Natyvella Umuhire
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Eugénie Lister
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Christian Pellerin
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Antonella Badia
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| |
Collapse
|
21
|
Solvent-assisted preparation of supported lipid bilayers. Nat Protoc 2019; 14:2091-2118. [DOI: 10.1038/s41596-019-0174-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 11/08/2022]
|
22
|
Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation. Biointerphases 2019; 14:021006. [PMID: 31039613 DOI: 10.1116/1.5089759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Modifications of human-derived antimicrobial peptide LL37 with collagen binding domains (CBD-LL37) hold promise as alternatives to antibiotics due to their wider therapeutic ratio than unmodified LL37 when interacting with collagen substrates such as commercial wound dressings. However, CBD-LL37 lipid membrane interaction mechanisms (against both mammalian and bacterial lipids) are not well understood. Our goal was to develop a mechanistic explanation of how CBDs modulate peptide-lipid interactions leading to their observed bioactivities, in order to better understand their potential for clinical applications. The authors studied time- and concentration-dependent interactions of CBD-LL37 modified with collagenase (cCBD) and fibronectin (fCBD) CBDs, with zwitterionic and anionic supported lipid bilayers, in order to model mammalian erythrocytes and bacterial cells, respectively. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to characterize peptide-lipid interactions at concentrations in the immunomodulatory (0.5-1.0 μM), antimicrobial (1.0-5.0 μM), and cytotoxic (5.0-10.0 μM) ranges. Their prior work with zwitterionic membranes demonstrated that cCBD-LL37 formed transmembrane pores while fCBD-LL37 underwent surface adsorption. Our goal in this study is to better interpret these results, by investigating the data at a wider concentration range and for two types of lipids, and by applying the Voigt-Kelvin viscoelastic model to calculate thickness and density changes of the peptide-lipid films as a function of time and concentration, thus providing information to help build detailed mechanisms of peptide/bilayer interactions. For pore-forming cCBD-LL37 and unmodified LL37, they found that there was a relationship between layer thicknesses and pore formation, which was attributed to different peptide orientation changes influenced by bilayer charge prior to pore formation. Specifically, cCBD-LL37 at 0.5 and 1.0 μM demonstrated higher thicknesses on zwitterionic than anionic membranes, indicating that prior to insertion into zwitterionic membranes, it orients perpendicular to the surface, which was also consistent with the higher dissipation changes observed on zwitterionic membranes. fCBD-LL37 demonstrated a bilayer adsorption mechanism with a preference toward anionic lipids. Adsorption of fCBD-LL37 onto anionic lipids demonstrated a rapid first adsorption step that transitioned depending on the number of fCBD-LL37 molecules on the bilayer. For this peptide at higher concentrations, greater dissipation changes were observed than for fCBD-LL37 physically adsorbed onto surfaces without bilayers. This suggests that peptide-peptide interactions promoted by the fCBD domain dominated after saturation. The development of a structure-function relationship for cCBD-LL37 and fCBD-LL37 demonstrates promise for using QCM-D predictions to inform the rational design of novel, antimicrobial, and noncytotoxic CBD-LL37 for clinical applications.
Collapse
|
23
|
Rojewska M, Skrzypiec M, Prochaska K. The wetting properties of Langmuir-Blodgett and Langmuir-Schaefer films formed by DPPC and POSS compounds. Chem Phys Lipids 2019; 221:158-166. [PMID: 30954535 DOI: 10.1016/j.chemphyslip.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
The possibility of modification of surface wettability is especially desirable in implantology. This effect is achieved by coating a given material with thin films containing nanoparticles of different chemical properties. In recent years, much interest has been paid to supported phospholipid bilayers (SPBs), because they can be exploited in novel biotechnological devices such as biosensors and mimetic membrane-coated implants. In view of the above, we decided to study the modification of wetting properties of phospholipid layer by two types of polyhedral oligomeric silsesquioxanes (POSS) with different functional groups attached to the silica open-cage. The POSS and phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) were vertically (Langmuir-Blodgett; LB) and horizontally (Langmuir-Schaefer; LS) deposited on quartz substrates to form a thin layer structure. The advancing contact angles on the modified surface coated with thin films were measured. The surface free energy (SFE) of DPPC, POSS and their mixed DPPC/POSS films was estimated by using Owens-Wendt-Rabel-Käelbe (OWRK) method. It was shown that the chemical structure of POSS used as a modifier influence the wetting properties of modified quartz surface. Incorporation fluoroalkyl-POSS into DPPC monolayer leads to obtaining a more hydrophobic film, while the addition of polyethylene glycol-POSS creates a more hydrophilic film. The transfer of the film with a more condensed structure led to a more hydrophobic material. The deposition technique (horizontal or vertical) had a particular impact on the modification of wettability of quartz surface coated with monocomponent fluoroalkyl-POSS film, whereas for the modification with mixed DPPC/POSS systems the choice of transfer method was not so significant.
Collapse
Affiliation(s)
- M Rojewska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland
| | - M Skrzypiec
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland
| | - K Prochaska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965, Poznań, Poland.
| |
Collapse
|
24
|
Functional Hydration Behavior: Interrelation between Hydration and Molecular Properties at Lipid Membrane Interfaces. J CHEM-NY 2019. [DOI: 10.1155/2019/4867327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Water is an abundant commodity and has various important functions. It stabilizes the structure of biological macromolecules, controls biochemical activities, and regulates interfacial/intermolecular interactions. Common aspects of interfacial water can be obtained by overviewing fundamental functions and properties at different temporal and spatial scales. It is important to understand the hydrogen bonding and structural properties of water and to evaluate the individual molecular species having different hydration properties. Water molecules form hydrogen bonds with biomolecules and contribute to the adjustment of their properties, such as surface charge, hydrophilicity, and structural flexibility. In this review, the fundamental properties of water molecules and the methods used for the analyses of water dynamics are summarized. In particular, the interrelation between the hydration properties, determined by molecules, and the properties of molecules, determined by their hydration properties, are discussed using the lipid membrane as an example. Accordingly, interesting water functions are introduced that provide beneficial information in the fields of biochemistry, medicine, and food chemistry.
Collapse
|
25
|
Chand S, Beales P, Claeyssens F, Ciani B. Topography design in model membranes: Where biology meets physics. Exp Biol Med (Maywood) 2018; 244:294-303. [PMID: 30379575 DOI: 10.1177/1535370218809369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Artificial membranes with complex topography aid the understanding of biological processes where membrane geometry plays a key regulatory role. In this review, we highlight how emerging material and engineering technologies have been employed to create minimal models of cell signaling pathways, in vitro. These artificial systems allow life scientists to answer ever more challenging questions with regards to mechanisms in cellular biology. In vitro reconstitution of biology is an area that draws on the expertise and collaboration between biophysicists, material scientists and biologists and has recently generated a number of high impact results, some of which are also discussed in this review.
Collapse
Affiliation(s)
- Sarina Chand
- 1 Centre for Membrane Structure and Dynamics, Krebs Institute and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.,2 The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Paul Beales
- 3 School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frederik Claeyssens
- 2 The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Barbara Ciani
- 1 Centre for Membrane Structure and Dynamics, Krebs Institute and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
26
|
Ferhan AR, Špačková B, Jackman JA, Ma GJ, Sut TN, Homola J, Cho NJ. Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces. Anal Chem 2018; 90:12503-12511. [DOI: 10.1021/acs.analchem.8b02222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Barbora Špačková
- Institute of Photonics and Electronics, Czech Academy of Science, Chaberská 57, Prague 8 18251, Czech Republic
| | - Joshua A. Jackman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Gamaliel J. Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Tun Naw Sut
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Science, Chaberská 57, Prague 8 18251, Czech Republic
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
27
|
Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8081-8091. [PMID: 29894192 PMCID: PMC6203186 DOI: 10.1021/acs.langmuir.8b01259] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Indexed: 05/30/2023]
Abstract
Supported lipid bilayers (SLBs) have been used extensively as an effective model of biological membranes, in the context of in vitro biophysics research, and the membranes of liposomes, in the context of the development of nanoscale drug delivery devices. Despite numerous surface-sensitive techniques having been applied to their study, the comprehensive optical characterization of SLBs using surface plasmon resonance (SPR) has not been conducted. In this study, Fresnel multilayer analysis is utilized to effectively calculate layer parameters (thickness and refractive indices) with the aid of dual-wavelength and dispersion coefficient analysis, in which the linear change in the refractive index as a function of wavelength is assumed. Using complementary information from impedance-based quartz crystal microbalance experiments, biophysical properties, for example, area-per-lipid-molecule and the quantity of lipid-associated water molecules, are calculated for different lipid types and mixtures, one of which is representative of a raft-forming lipid mixture. It is proposed that the hydration layer beneath the bilayer is, in fact, an integral part of the measured optical signal. Also, the traditional Jung model analysis and the ratio of SPR responses are investigated in terms of assessing the structure of the lipid layer that is formed.
Collapse
Affiliation(s)
- Petteri Parkkila
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Mohamed Elderdfi
- Department
of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Alex Bunker
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tapani Viitala
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
28
|
Lozeau LD, Rolle MW, Camesano TA. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers. Colloids Surf B Biointerfaces 2018; 167:229-238. [PMID: 29660601 DOI: 10.1016/j.colsurfb.2018.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM).
Collapse
Affiliation(s)
- Lindsay D Lozeau
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Terri A Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
29
|
Bailey CM, Tripathi A, Shukla A. Effects of Flow and Bulk Vesicle Concentration on Supported Lipid Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11986-11997. [PMID: 28949544 DOI: 10.1021/acs.langmuir.7b02764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supported lipid bilayers (SLBs) have been used extensively in a variety of biotechnology applications and fundamental studies exploring lipid behavior. Despite their widespread use, various physicochemical parameters have yet to be thoroughly investigated for their impact on SLB formation. In this work, we have studied the importance of flow in inducing the rupture of surface adsorbed chicken egg-derived l-α-phosphatidylcholine (egg PC) vesicles on silica and gold surfaces via quartz crystal microbalance with dissipation monitoring (QCM-D). On silica at 25 °C, egg PC vesicles were found to adsorb in a flattened configuration (∼13 nm thick, compared to bulk vesicle diameters of ∼165 nm) but only undergo a transition to a stable SLB under flow conditions. In the absence of flow, an increase in system temperature to 37 °C was able to promote vesicle rupture and SLB formation on silica with a 10 times lower rupture time, compared to rupture under continuous flow (175 μL/min flow rate). Gold surfaces, with their increased hydrophobicity, led to less vesicle flattening once adsorbed (structures ∼60 nm thick), and did not support vesicle rupture or SLB formation, even at flow rates of up to 650 μL/min. We also showed that, under continuous flow conditions, vesicle adsorption rates on silica surfaces follow Langmuir kinetics, with an inverse dependence on bulk vesicle concentration, while an empirical power law dependence of vesicle rupture time on bulk vesicle concentration was observed. Ultimately, this work elicits fundamental insight into the importance of flow and bulk vesicle concentration in the adsorbed vesicle rupture process during SLB formation using QCM-D.
Collapse
Affiliation(s)
- Christina M Bailey
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
30
|
Daudey G, Zope HR, Voskuhl J, Kros A, Boyle AL. Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12443-12452. [PMID: 28980816 PMCID: PMC5666511 DOI: 10.1021/acs.langmuir.7b02931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/02/2017] [Indexed: 06/07/2023]
Abstract
We have developed a model system for membrane fusion that utilizes lipidated derivatives of a heterodimeric coiled-coil pair dubbed E3 (EIAALEK)3 and K3 (KIAALKE)3. In this system, peptides are conjugated to a lipid anchor via a poly(ethylene glycol) (PEG) spacer, and this contribution studies the influence of the PEG spacer length, coupled with the type of lipid anchor, on liposome-liposome fusion. The effects of these modifications on peptide secondary structure, their interactions with liposomes, and their ability to mediate fusion were studied using a variety of different content mixing experiments and CD spectroscopy. Our results demonstrate the asymmetric role of the peptides in the fusion process because alterations to the PEG spacer length affect E3 and K3 differently. We conclude that negatively charged E3 acts as a "handle" for positively charged K3 and facilitates liposome docking, the first stage of the fusion process, through coiled-coil formation. The efficacy of this E3 handle is enhanced by longer spacer lengths. K3 directs the fusion process via peptide-membrane interactions, but the length of the PEG spacer plays two competing roles: a PEG4/PEG8 spacer length is optimal for membrane destabilization; however, a PEG12 spacer increases the fusion efficiency over time by improving the peptide accessibility for successive fusion events. Both the anchor type and spacer length affect the peptide structure; a cholesterol anchor appears to enhance K3-membrane interactions and thus mediates fusion more efficiently.
Collapse
Affiliation(s)
- Geert
A. Daudey
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Aimee L. Boyle
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
31
|
The effect of the protein corona on the interaction between nanoparticles and lipid bilayers. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.05.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Glazier R, Salaita K. Supported lipid bilayer platforms to probe cell mechanobiology. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1465-1482. [PMID: 28502789 PMCID: PMC5531615 DOI: 10.1016/j.bbamem.2017.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Mammalian and bacterial cells sense and exert mechanical forces through the process of mechanotransduction, which interconverts biochemical and physical signals. This is especially important in contact-dependent signaling, where ligand-receptor binding occurs at cell-cell or cell-ECM junctions. By virtue of occurring within these specialized junctions, receptors engaged in contact-dependent signaling undergo oligomerization and coupling with the cytoskeleton as part of their signaling mechanisms. While our ability to measure and map biochemical signaling within cell junctions has advanced over the past decades, physical cues remain difficult to map in space and time. Recently, supported lipid bilayer (SLB) technologies have emerged as a flexible platform to mimic and perturb cell-cell and cell-ECM junctions, allowing one to study membrane receptor mechanotransduction. Changing the lipid composition and underlying substrate tunes bilayer fluidity, and lipid and ligand micro- and nano-patterning spatially control positioning and clustering of receptors. Patterning metal gridlines within SLBs confines lipid mobility and introduces mechanical resistance. Here we review fundamental SLB mechanics and how SLBs can be engineered as tunable cell substrates for mechanotransduction studies. Finally, we highlight the impact of this work in understanding the biophysical mechanisms of cell adhesion. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
- Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, GA 30322, United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, GA 30322, United States; Department of Chemistry, Emory University, Atlanta, GA 30322, United States..
| |
Collapse
|
33
|
Kolahdouzan K, Jackman JA, Yoon BK, Kim MC, Johal MS, Cho NJ. Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5052-5064. [PMID: 28457139 DOI: 10.1021/acs.langmuir.7b00210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are widely studied model membrane platforms that are compatible with various surface-sensitive measurement techniques. SLBs are typically formed on silica-based materials, and there are numerous possible fabrication routes involving either bottom-up molecular self-assembly or vesicle adsorption and rupture. In between these two classes of fabrication strategies lies an emerging approach based on depositing quasi-two-dimensional lamellar, bicellar disks composed of a mixture of long-chain and short-chain phospholipids to promote the formation of SLBs. This approach takes advantage of the thermodynamic preference of long-chain phospholipids to form planar SLBs, whereas short-chain phospholipids have brief residence times. Although a few studies have shown that SLBs can be formed on silica-based materials from bicellar mixtures, outstanding questions remain about the self-assembly mechanism as well as the influence of the total phospholipid concentration, ratio of the two phospholipids (termed the "q-ratio"), and process of sample preparation. Herein, we address these questions through comprehensive quartz crystal microbalance-dissipation, fluorescence microscopy, and fluorescence recovery after photobleaching experiments. Our findings identify that optimal SLB formation occurs at lower total concentrations of phospholipids than previously used as short-chain phospholipids behave like membrane-destabilizing detergents at higher concentrations. Using lower phospholipid concentrations, we also discovered that the formation of SLBs proceeds through a two-step mechanism involving a critical coverage of bicellar disks akin to vesicle fusion. In addition, the results indicate that at least one cycle of freeze-thaw-vortexing is useful during the sample preparation process to produce SLBs. Taken together, the findings in this work identify optimal routes for fabricating SLBs from bicellar mixtures and reveal mechanistic details about the bicelle-mediated SLB formation process, which will aid further exploration of bicellar mixtures as tools for model membrane fabrication.
Collapse
Affiliation(s)
- Kavoos Kolahdouzan
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Malkiat S Johal
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
34
|
Miskowiec A, Buck ZN, Hansen FY, Kaiser H, Taub H, Tyagi M, Diallo SO, Mamontov E, Herwig KW. On the structure and dynamics of water associated with single-supported zwitterionic and anionic membranes. J Chem Phys 2017; 146:125102. [DOI: 10.1063/1.4978677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Miskowiec
- Department of Physics and Astronomy and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri 65211, USA
| | - Z. N. Buck
- Department of Physics and Astronomy and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri 65211, USA
| | - F. Y. Hansen
- Department of Chemistry, Technical University of Denmark, IK 207 DTU, DK-2800 Lyngby, Denmark
| | - H. Kaiser
- Department of Physics and Astronomy and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri 65211, USA
| | - H. Taub
- Department of Physics and Astronomy and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri 65211, USA
| | - M. Tyagi
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - S. O. Diallo
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - E. Mamontov
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - K. W. Herwig
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
35
|
Ferhan AR, Jackman JA, Cho NJ. Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing. Anal Chem 2017; 89:4301-4308. [PMID: 28293950 DOI: 10.1021/acs.analchem.7b00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
On account of high surface sensitivity, localized surface plasmon resonance (LSPR) sensors have proven widely useful for studying lipid membrane configurations at solid-liquid interfaces. Key measurement capabilities include distinguishing adsorbed vesicles from supported lipid bilayers (SLBs) as well as profiling the extent of deformation among adsorbed vesicles. Such capabilities rely on detecting geometrical changes in lipid membrane configuration on a length scale that is comparable to the decay length of the LSPR-induced electromagnetic field enhancement (∼5-20 nm). Herein, we report that LSPR sensors are also capable of probing nanoscale (∼1 nm) variations in the distance between SLBs and underlying silica-coated surfaces. By tuning the electrostatic properties of lipid membranes, we could modulate the bilayer-substrate interaction and corresponding separation distance, as verified by simultaneous LSPR and quartz crystal microbalance-dissipation (QCM-D) measurements. Theoretical calculations of the expected variation in the LSPR measurement response agree well with experimental results and support that the LSPR measurement response is sensitive to subtle variations in the bilayer-substrate separation distance.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
36
|
Wayment-Steele HK, Jing Y, Swann MJ, Johnson LE, Agnarsson B, Svedhem S, Johal MS, Kunze A. Effects of Al(3+) on Phosphocholine and Phosphoglycerol Containing Solid Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1771-1781. [PMID: 26783873 DOI: 10.1021/acs.langmuir.5b03999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aluminum has attracted great attention recently as it has been suggested by several studies to be associated with increased risks for Alzheimer's and Parkinson's disease. The toxicity of the trivalent ion is assumed to derive from structural changes induced in lipid bilayers upon binding, though the mechanism of this process is still not well understood. In the present study we elucidate the effect of Al(3+) on supported lipid bilayers (SLBs) using fluorescence microscopy, the quartz crystal microbalance with dissipation (QCM-D) technique, dual-polarization interferometry (DPI), and molecular dynamics (MD) simulations. Results from these techniques show that binding of Al(3+) to SLBs containing negatively charged and neutral phospholipids induces irreversible changes such as domain formation. The measured variations in SLB thickness, birefringence, and density indicate a phase transition from a disordered to a densely packed ordered phase.
Collapse
Affiliation(s)
- Hannah K Wayment-Steele
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
| | - Yujia Jing
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Marcus J Swann
- Swann Scientific Consulting Ltd., 110 Sandy Lane, Lymm, Cheshire, U.K
| | - Lewis E Johnson
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
- Department of Chemistry, University of Washington , 109 Bagley Hall, Seattle, Washington 98195, United States
| | - Björn Agnarsson
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Sofia Svedhem
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
| | - Malkiat S Johal
- Department of Chemistry, Pomona College , 645 North College Ave., Claremont, California 91711, United States
| | - Angelika Kunze
- Department of Applied Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
- Institute of Physical Chemistry, University of Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
37
|
Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study. Biophys Chem 2015; 203-204:51-61. [DOI: 10.1016/j.bpc.2015.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/18/2015] [Accepted: 05/06/2015] [Indexed: 11/17/2022]
|
38
|
Lee TH, Hirst DJ, Aguilar MI. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1868-85. [PMID: 26009270 DOI: 10.1016/j.bbamem.2015.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Biomolecular-membrane interactions play a critical role in the regulation of many important biological processes such as protein trafficking, cellular signalling and ion channel formation. Peptide/protein-membrane interactions can also destabilise and damage the membrane which can lead to cell death. Characterisation of the molecular details of these binding-mediated membrane destabilisation processes is therefore central to understanding cellular events such as antimicrobial action, membrane-mediated amyloid aggregation, and apoptotic protein induced mitochondrial membrane permeabilisation. Optical biosensors have provided a unique approach to characterising membrane interactions allowing quantitation of binding events and new insight into the kinetic mechanism of these interactions. One of the most commonly used optical biosensor technologies is surface plasmon resonance (SPR) and there have been an increasing number of studies reporting the use of this technique for investigating biophysical analysis of membrane-mediated events. More recently, a number of new optical biosensors based on waveguide techniques have been developed, allowing membrane structure changes to be measured simultaneously with mass binding measurements. These techniques include dual polarisation interferometry (DPI), plasmon waveguide resonance spectroscopy (PWR) and optical waveguide light mode spectroscopy (OWLS). These techniques have expanded the application of optical biosensors to allow the analysis of membrane structure changes during peptide and protein binding. This review provides a theoretical and practical overview of the application of biosensor technology with a specific focus on DPI, PWR and OWLS to study biomembrane-mediated events and the mechanism of biomembrane disruption. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| |
Collapse
|
39
|
Rui L, Liu J, Li J, Weng Y, Dou Y, Yuan B, Yang K, Ma Y. Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1203-11. [DOI: 10.1016/j.bbamem.2015.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 01/02/2023]
|
40
|
Escorihuela J, González-Martínez MÁ, López-Paz JL, Puchades R, Maquieira Á, Gimenez-Romero D. Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chem Rev 2014; 115:265-94. [DOI: 10.1021/cr5002063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jorge Escorihuela
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Miguel Ángel González-Martínez
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - José Luis López-Paz
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Rosa Puchades
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Ángel Maquieira
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - David Gimenez-Romero
- Physical
Chemistry Department, Faculty of Chemistry, Universitat de València, Avenida Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
41
|
Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosens Bioelectron 2014; 58:287-307. [DOI: 10.1016/j.bios.2014.02.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 02/04/2023]
|
42
|
Kienle DF, de Souza JV, Watkins EB, Kuhl TL. Thickness and refractive index of DPPC and DPPE monolayers by multiple-beam interferometry. Anal Bioanal Chem 2014; 406:4725-33. [DOI: 10.1007/s00216-014-7866-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/09/2014] [Accepted: 04/29/2014] [Indexed: 11/30/2022]
|
43
|
Wang KF, Nagarajan R, Camesano TA. Antimicrobial peptide alamethicin insertion into lipid bilayer: A QCM-D exploration. Colloids Surf B Biointerfaces 2014; 116:472-81. [DOI: 10.1016/j.colsurfb.2014.01.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 11/30/2022]
|
44
|
Shen W, Hu J, Hu X. Impact of amphiphilic triblock copolymers on stability and permeability of phospholipid/polymer hybrid vesicles. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.03.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Aptasensor for adenosine triphosphate based on electrode–supported lipid bilayer membrane. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1100-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Jackman JA, Cho NJ. Model membrane platforms for biomedicine: case study on antiviral drug development. Biointerphases 2012; 7:18. [PMID: 22589061 PMCID: PMC7099340 DOI: 10.1007/s13758-011-0018-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/29/2011] [Indexed: 01/28/2023] Open
Abstract
As one of the most important interfaces in cellular systems, biological membranes have essential functions in many activities such as cellular protection and signaling. Beyond their direct functions, they also serve as scaffolds to support the association of proteins involved in structural support, adhesion, and transport. Unfortunately, biological processes sometimes malfunction and require therapeutic intervention. For those processes which occur within or upon membranes, it is oftentimes difficult to study the mechanism in a biologically relevant, membranous environment. Therefore, the identification of direct therapeutic targets is challenging. In order to overcome this barrier, engineering strategies offer a new approach to interrogate biological activities at membrane interfaces by analyzing them through the principles of the interfacial sciences. Since membranes are complex biological interfaces, the development of simplified model systems which mimic important properties of membranes can enable fundamental characterization of interaction parameters for such processes. We have selected the hepatitis C virus (HCV) as a model viral pathogen to demonstrate how model membrane platforms can aid antiviral drug discovery and development. Responsible for generating the genomic diversity that makes treating HCV infection so difficult, viral replication represents an ideal step in the virus life cycle for therapeutic intervention. To target HCV genome replication, the interaction of viral proteins with model membrane platforms has served as a useful strategy for target identification and characterization. In this review article, we demonstrate how engineering approaches have led to the discovery of a new functional activity encoded within the HCV nonstructural 5A protein. Specifically, its N-terminal amphipathic, α-helix (AH) can rupture lipid vesicles in a size-dependent manner. While this activity has a number of exciting biotechnology and biomedical applications, arguably the most promising one is in antiviral medicine. Based on the similarities between lipid vesicles and the lipid envelopes of virus particles, experimental findings from model membrane platforms led to the prediction that a range of medically important viruses might be susceptible to rupturing treatment with synthetic AH peptide. This hypothesis was tested and validated by molecular virology studies. Broad-spectrum antiviral activity of the AH peptide has been identified against HCV, HIV, herpes simplex virus, and dengue virus, and many more deadly pathogens. As a result, the AH peptide is the first in class of broad-spectrum, lipid envelope-rupturing antiviral agents, and has entered the drug pipeline. In summary, engineering strategies break down complex biological systems into simplified biomimetic models that recapitulate the most important parameters. This approach is particularly advantageous for membrane-associated biological processes because model membrane platforms provide more direct characterization of target interactions than is possible with other methods. Consequently, model membrane platforms hold great promise for solving important biomedical problems and speeding up the translation of biological knowledge into clinical applications.
Collapse
Affiliation(s)
- Joshua A. Jackman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553 Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, 269 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
47
|
Hernández-Ainsa S, Muus C, Bell NAW, Steinbock LJ, Thacker VV, Keyser UF. Lipid-coated nanocapillaries for DNA sensing. Analyst 2012; 138:104-6. [PMID: 23148206 DOI: 10.1039/c2an36397f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a simple and efficient way to accomplish the chemical modification of glass nanopores by means of lipid self-assembly. Lipid coating improves the success rate of these glass nanopores as biosensors to detect λ-DNA.
Collapse
Affiliation(s)
- Silvia Hernández-Ainsa
- Cavendish Laboratory University of Cambridge, Department of Physics, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | | | | | | | | | | |
Collapse
|
48
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|
49
|
Zwang TJ, Patel R, Johal MS, Selassie CR. Desolvation of BSA-ligand complexes measured using the quartz crystal microbalance and dual polarization interferometer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9616-9620. [PMID: 22621286 DOI: 10.1021/la301718m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
By taking advantage of their unique difference in hydration sensitivity, we have shown that dual polarization interferometer (DPI) and quartz-crystal microbalance with dissipation monitoring (QCM-D) measurements can be used together to explore the degree of desolvation involved in the binding of small drug molecules to an immobilized bovine serum albumin film in real time. Results with DPI and QCM-D show significantly different mass values for three ligands of varying hydrophobicities that may be attributed to changes in the degree of hydration of the ligand-protein complexes in accordance with the physicochemical properties of the ligands. Furthermore, our data suggest that masses measured by QCM-D can be overwhelmed by changes in water content of ligand-protein, binary complexes, which has important consequences for future studies using mechanical resonators to study protein-binding events.
Collapse
Affiliation(s)
- Theodore J Zwang
- Chemistry Department, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | | | | | | |
Collapse
|
50
|
Golabek M, Jurak M, Holysz L, Chibowski E. The energetic and topography changes of mixed lipid bilayers deposited on glass. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|