1
|
Villa C, Secchi V, Macchi M, Tripodi L, Trombetta E, Zambroni D, Padelli F, Mauri M, Molinaro M, Oddone R, Farini A, De Palma A, Varela Pinzon L, Santarelli F, Simonutti R, Mauri P, Porretti L, Campione M, Aquino D, Monguzzi A, Torrente Y. Magnetic-field-driven targeting of exosomes modulates immune and metabolic changes in dystrophic muscle. NATURE NANOTECHNOLOGY 2024; 19:1532-1543. [PMID: 39039121 PMCID: PMC11486659 DOI: 10.1038/s41565-024-01725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution.
Collapse
Grants
- Regione Lombardia (Region of Lombardy)
- Fondazione Telethon (Telethon Foundation)
- RF-2016-02362263 "Multimodal nanotracking for exosome-based therapy in DMD" (theory enhancing) “At the origin of congenital muscular dystrophy: shedding light on the Tdark proteins DPM2 and DPM3”, Bando “Cariplo Telethon Alliance GJC2021” 2022
- Multiomics pRofiling of patient spEcific Models to predict druggable targets in severe neuromuscular rare diseases (REMODEL)”, Unmet Medical Needs, Fondazione Regionale per la Ricerca Biomedica (FRRB), 2022 Nanoparticles in Freidreich Ataxia” National Center for Gene Therapy and Drugs based on RNA Technology, Spoke #1: Genetic diseases, PNRR CN3 RNA, 2022
- “Isolamento di nanoparticelle naturali da utilizzare come agenti anti-infiammatori/anti-fibrotici”, 5X1000, Fondazione Patrimonio e dalla Direzione Scientifica Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (2022)
- PNRR CN3 RNA, 2022, PNRR project ANTHEM: AdvaNced Technologies for Human-centrEd Medicine - PNC0000003 Spoke #2 – NextGenerationEU RF-2016-02362263 "Multimodal nanotracking for exosome-based therapy in DMD" (theory enhancing)
Collapse
Affiliation(s)
- Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Valeria Secchi
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Mirco Macchi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Luxembourg Centre for Systems Biomedicine, Department of Biomedical Data Science, Luxembourg City, Luxembourg
| | - Luana Tripodi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Desiree Zambroni
- Advanced Light and Electron Microscopy Bioimaging Center ALEMBIC, San Raffaele Scientific Institute - OSR, Milan, Italy
| | - Francesco Padelli
- Department of Neuroradiology, IRCCS Foundation Neurological Institute 'Carlo Besta', Milan, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Monica Molinaro
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Rebecca Oddone
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella De Palma
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy
- Clinical Proteomics Laboratory, ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy
| | - Laura Varela Pinzon
- Veterinary Medicine, Department Clinical Sciences, Equine Sciences, Equine Musculoskeletal Biology. Utrecht University, Utrecht, Netherlands
| | - Federica Santarelli
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - PierLuigi Mauri
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy
- Clinical Proteomics Laboratory, ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Campione
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milano, Italy
| | - Domenico Aquino
- Department of Neuroradiology, IRCCS Foundation Neurological Institute 'Carlo Besta', Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
- NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Du K, Zhang D, Zhang S, Tam KC. Advanced Functionalized Materials Based on Layer-by-Layer Assembled Natural Cellulose Nanofiber for Electrodes: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304739. [PMID: 37726489 DOI: 10.1002/smll.202304739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Indexed: 09/21/2023]
Abstract
The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
3
|
Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. ENERGIES 2022. [DOI: 10.3390/en15093399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The construction of nanostructured materials for their application in electrochemical processes, e.g., energy storage and conversion, or sensing, has undergone a spectacular development over the last decades as a consequence of their unique properties in comparison to those of their bulk counterparts, e.g., large surface area and facilitated charge/mass transport pathways. This has driven strong research on the optimization of nanostructured materials for the fabrication of electrochemical devices, which demands techniques allowing the assembly of hybrid materials with well-controlled structures and properties. The Layer-by-Layer (LbL) method is well suited for fulfilling the requirements associated with the fabrication of devices for electrochemical applications, enabling the fabrication of nanomaterials with tunable properties that can be exploited as candidates for their application in fuel cells, batteries, electrochromic devices, solar cells, and sensors. This review provides an updated discussion of some of the most recent advances on the application of the LbL method for the fabrication of nanomaterials that can be exploited in the design of novel electrochemical devices.
Collapse
|
4
|
Guzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 282:102197. [PMID: 32579951 DOI: 10.1016/j.cis.2020.102197] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The fabrication of polyelectrolyte multilayer films (PEMs) using the Layer-by-Layer (LbL) method is one of the most versatile approaches for manufacturing functional surfaces. This is the result of the possibility to control the assembly process of the LbL films almost at will, by changing the nature of the assembled materials (building blocks), the assembly conditions (pH, ionic strength, temperature, etc.) or even by changing some other operational parameters which may impact in the structure and physico-chemical properties of the obtained multi-layered films. Therefore, the understanding of the impact of the above mentioned parameters on the assembly process of LbL materials plays a critical role in the potential use of the LbL method for the fabrication of new functional materials with technological interest. This review tries to provide a broad physico-chemical perspective to the study of the fabrication process of PEMs by the LbL method, which allows one to take advantage of the many possibilities offered for this approach on the fabrication of new functional nanomaterials.
Collapse
|
5
|
Mosiniewicz-Szablewska E, Clavijo AR, Castilho APOR, Paterno LG, Pereira-da-Silva MA, Więckowski J, Soler MAG, Morais PC. Magnetic studies of layer-by-layer assembled polyvinyl alcohol/iron oxide nanofilms. Phys Chem Chem Phys 2018; 20:26696-26709. [DOI: 10.1039/c8cp05404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of the substrate surface effects on the magnetic behavior of layer-by-layer assembled polyvinyl alcohol/iron oxide nanofilms is evidenced.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria A. G. Soler
- Universidade de Brasília
- Instituto de Física
- Brasília DF 70910-900
- Brazil
| | - Paulo C. Morais
- Universidade de Brasília
- Instituto de Física
- Brasília DF 70910-900
- Brazil
- Universidade Católica de Brasília
| |
Collapse
|
6
|
Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F. Innovation in Layer-by-Layer Assembly. Chem Rev 2016; 116:14828-14867. [PMID: 27960272 DOI: 10.1021/acs.chemrev.6b00627] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.
Collapse
Affiliation(s)
- Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia.,Manufacturing, CSIRO , Clayton, Victoria 3168, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Julia A Braunger
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Hirotaka Ejima
- Institute of Industrial Science, The University of Tokyo , Tokyo 153-8505, Japan
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Richardson JJ, Björnmalm M, Caruso F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science 2015; 348:aaa2491. [PMID: 25908826 DOI: 10.1126/science.aaa2491] [Citation(s) in RCA: 828] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multilayer thin films have garnered intense scientific interest due to their potential application in diverse fields such as catalysis, optics, energy, membranes, and biomedicine. Here we review the current technologies for multilayer thin-film deposition using layer-by-layer assembly, and we discuss the different properties and applications arising from the technologies. We highlight five distinct routes of assembly—immersive, spin, spray, electromagnetic, and fluidic assembly—each of which offers material and processing advantages for assembling layer-by-layer films. Each technology encompasses numerous innovations for automating and improving layering, which is important for research and industrial applications. Furthermore, we discuss how judicious choice of the assembly technology enables the engineering of thin films with tailor-made physicochemical properties, such as distinct-layer stratification, controlled roughness, and highly ordered packing.
Collapse
Affiliation(s)
- Joseph J Richardson
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mattias Björnmalm
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
8
|
Hu L, Zhang R, Chen Q. Synthesis and assembly of nanomaterials under magnetic fields. NANOSCALE 2014; 6:14064-105. [PMID: 25338267 DOI: 10.1039/c4nr05108d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Traditionally, magnetic field has long been regarded as an important means for studying the magnetic properties of materials. With the development of synthesis and assembly methods, magnetic field, similar to conventional reaction conditions such as temperature, pressure, and surfactant, has been developed as a new parameter for synthesizing and assembling special structures. To date, magnetic fields have been widely employed for materials synthesis and assembly of one-dimensional (1D), two-dimensional (2D) or three-dimensional (3D) aggregates. In this review, we aim to provide a summary on the applications of magnetic fields in this area. Overall, the objectives of this review are: (1) to theoretically discuss several factors that refer to magnetic field effects (MFEs); (2) to review the magnetic-field-induced synthesis of nanomaterials; the 1D structure of various nanomaterials, such as metal oxides/sulfide, metals, alloys, and carbon, will be described in detail. Moreover, the MFEs on spin states of ions, magnetic domain and product phase distribution will be also involved; (3) to review the alignment of carbon nanotubes, assembly of magnetic nanomaterials and photonic crystals with the help of magnetic fields; and (4) to sketch the future opportunities that magnetic fields can face in the area of materials synthesis and assembly.
Collapse
Affiliation(s)
- Lin Hu
- High Magnetic Field Laboratory, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China.
| | | | | |
Collapse
|
9
|
Omura Y, Kyung KH, Shiratori S, Kim SH. Effects of Applied Voltage and Solution pH in Fabricating Multilayers of Weakly Charged Polyelectrolytes and Nanoparticles. Ind Eng Chem Res 2014. [DOI: 10.1021/ie403736r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukiko Omura
- School
of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522, Japan
| | - Kyu-Hong Kyung
- School
of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522, Japan
| | - Seimei Shiratori
- School
of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522, Japan
| | - Sae-Hoon Kim
- Department
of Advanced Ceramic Material Engineering, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon-do 210-702, Korea
| |
Collapse
|
10
|
Bera A, Pal AJ. Molecular rectifiers based on donor/acceptor assemblies: effect of orientation of the components' magnetic moments. NANOSCALE 2013; 5:6518-6524. [PMID: 23760260 DOI: 10.1039/c3nr00493g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In forming donor/acceptor assemblies that act as molecular rectifiers, we have introduced magnetic organic molecules as electron-donating and electron-accepting moieties. We have oriented the magnetic moment of the donor and acceptor components separately and immobilized them (and their moments) so that the molecular assemblies that act as rectifiers could be formed with moments mutually parallel or anti-parallel to each other. We have characterized the molecular assemblies formed on an electrode with a scanning tunneling microscope tip. Such donor/acceptor assemblies with a control over the orientation of moments of the components provided unique systems to study the effect of the nature of alignment on molecular rectifiers. We have observed that the rectification ratio increased in junctions with moments of the components being parallel to each other. The improvement in the rectification ratio has been explained in terms of an efficient electron-transfer process in a moment-aligned junction between the donor and acceptor moieties.
Collapse
Affiliation(s)
- Abhijit Bera
- Indian Association for the Cultivation of Science, Department of Solid State Physics, Jadavpur, Kolkata, West Bengal, India
| | | |
Collapse
|
11
|
Bera A, Dey S, Pal AJ. Magnetic moment assisted layer-by-layer film formation of a Prussian Blue analog. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2159-2165. [PMID: 23347263 DOI: 10.1021/la3036506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We formed magnetic moment assisted layer-by-layer (LbL) films of a Prussian Blue analogue (PB). We applied an external magnetic field to each monolayer of PB to orient the magnetic moment of the compound perpendicular to the substrate. Aligned moments or orientation of the magnetic compounds themselves were immobilized in each monolayer, so that the moments could augment formation of the subsequent monolayers of LbL adsorption process. We hence could form multilayered LbL films of PB molecules with their magnetic moments oriented perpendicular to the substrate. We also formed LbL films of the compound with their moments oriented parallel to the substrate and facing one particular direction. We have measured conductivity and dielectric constant of the two types of films and compared the parameters with that of conventional LbL films deposited without orienting magnetic moments of the molecules.
Collapse
Affiliation(s)
- Abhijit Bera
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | |
Collapse
|
12
|
Chakrabarti S, Pal AJ. Cobalt doped ZnO quantum dots in a monolayer: do the bands depend on the alignment of the magnetic domain? RSC Adv 2013. [DOI: 10.1039/c3ra22980g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Electric-field-directed self-assembly of active enzyme-nanoparticle structures. J Biomed Biotechnol 2012; 2012:178487. [PMID: 22500078 PMCID: PMC3304025 DOI: 10.1155/2012/178487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022] Open
Abstract
A method is presented for the electric-field-directed self-assembly of higher-order structures composed of alternating layers of biotin nanoparticles and streptavidin-/avidin-conjugated enzymes carried out on a microelectrode array device. Enzymes included in the study were glucose oxidase (GOx), horseradish peroxidase (HRP), and alkaline phosphatase (AP); all of which could be used to form a light-emitting microscale glucose sensor. Directed assembly included fabricating multilayer structures with 200 nm or 40 nm GOx-avidin-biotin nanoparticles, with AP-streptavidin-biotin nanoparticles, and with HRP-streptavidin-biotin nanoparticles. Multilayered structures were also fabricated with alternate layering of HRP-streptavidin-biotin nanoparticles and GOx-avidin-biotin nanoparticles. Results showed that enzymatic activity was retained after the assembly process, indicating that substrates could still diffuse into the structures and that the electric-field-based fabrication process itself did not cause any significant loss of enzyme activity. These methods provide a solution to overcome the cumbersome passive layer-by-layer assembly methods to efficiently fabricate higher-order active biological and chemical hybrid structures that can be useful for creating novel biosensors and drug delivery nanostructures, as well as for diagnostic applications.
Collapse
|
14
|
Chapel JP, Berret JF. Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2011.08.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11845e] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Basnar B, Litschauer M, Abermann S, Bertagnolli E, Strasser G, Neouze MA. Layer-by-layer assembly of titania nanoparticles based ionic networks. Chem Commun (Camb) 2011; 47:361-3. [DOI: 10.1039/c0cc02243h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Alcantara GB, Paterno LG, Afonso AS, Faria RC, Pereira-da-Silva MA, Morais PC, Soler MAG. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance. Phys Chem Chem Phys 2011; 13:21233-42. [DOI: 10.1039/c1cp22693b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Dey S, Pal AJ. Layer-by-layer electrostatic-assembly: magnetic-field assisted ordering of organic molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17139-17142. [PMID: 20929206 DOI: 10.1021/la102996t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
During the layer-by-layer (LbL) electrostatic assembly process, we orient organic molecules (nickel phthalocyanine) by an external magnetic field. Orientation of the magnetic moment of the molecules in a monolayer is immobilized by depositing a monolayer of a suitable polycation. Due to the orientation of magnetic moments, the electrostatic adsorption process becomes enhanced in subsequent layers. By cycling the deposition sequence layer after layer, we have achieved highly ordered and closely packed LbL films of the molecules with their magnetic moments oriented perpendicular to the substrate. Nonmagnetic copper phthalocyanine expectedly showed neither a magnetic-field assisted alignment nor an enhanced adsorption in LbL film deposition process.
Collapse
Affiliation(s)
- Sukumar Dey
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | |
Collapse
|