1
|
Bera S, Govinda S, Fereiro JA, Pecht I, Sheves M, Cahen D. Biotin Binding Hardly Affects Electron Transport Efficiency across Streptavidin Solid-State Junctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1394-1403. [PMID: 36648410 PMCID: PMC9893813 DOI: 10.1021/acs.langmuir.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Indexed: 05/27/2023]
Abstract
The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode-protein monolayer-microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80-300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.
Collapse
Affiliation(s)
- Sudipta Bera
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sharada Govinda
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jerry A. Fereiro
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- The
School of Chemistry, Indian Institute of
Science Education and Research, Thiruvananthapuram, Maruthamala, Kerala 695551, India
| | - Israel Pecht
- Department
of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Labra-Muñoz JA, de Reuver A, Koeleman F, Huber M, van der Zant HSJ. Ferritin-Based Single-Electron Devices. Biomolecules 2022; 12:biom12050705. [PMID: 35625632 PMCID: PMC9138424 DOI: 10.3390/biom12050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
We report on the fabrication of single-electron devices based on horse-spleen ferritin particles. At low temperatures the current vs. voltage characteristics are stable, enabling the acquisition of reproducible data that establishes the Coulomb blockade as the main transport mechanism through them. Excellent agreement between the experimental data and the Coulomb blockade theory is demonstrated. Single-electron charge transport in ferritin, thus, establishes a route for further characterization of their, e.g., magnetic, properties down to the single-particle level, with prospects for electronic and medical applications.
Collapse
Affiliation(s)
- Jacqueline A. Labra-Muñoz
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands;
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
- Correspondence: (J.A.L.-M.); (H.S.J.v.d.Z.)
| | - Arie de Reuver
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
| | - Friso Koeleman
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands;
| | - Herre S. J. van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
- Correspondence: (J.A.L.-M.); (H.S.J.v.d.Z.)
| |
Collapse
|
3
|
Rourk C, Huang Y, Chen M, Shen C. Indication of Strongly Correlated Electron Transport and Mott Insulator in Disordered Multilayer Ferritin Structures (DMFS). MATERIALS 2021; 14:ma14164527. [PMID: 34443050 PMCID: PMC8399281 DOI: 10.3390/ma14164527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
Electron tunneling in ferritin and between ferritin cores (a transition metal (iron) oxide storage protein) in disordered arrays has been extensively documented, but the electrical behavior of those structures in circuits with more than two electrodes has not been studied. Tests of devices using a layer-by-layer deposition process for forming multilayer arrays of ferritin that have been previously reported indicate that strongly correlated electron transport is occurring, consistent with models of electron transport in quantum dots. Strongly correlated electrons (electrons that engage in strong electron-electron interactions) have been observed in transition metal oxides and quantum dots and can create unusual material behavior that is difficult to model, such as switching between a low resistance metal state and a high resistance Mott insulator state. This paper reports the results of the effect of various degrees of structural homogeneity on the electrical characteristics of these ferritin arrays. These results demonstrate for the first time that these structures can provide a switching function associated with the circuit that they are contained within, consistent with the observed behavior of strongly correlated electrons and Mott insulators.
Collapse
Affiliation(s)
- Christopher Rourk
- Independent Researcher, Dallas, TX 75205, USA
- Correspondence: (C.R.); (C.S.)
| | - Yunbo Huang
- Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences, 1219 Zhongguan Road, Zhenhai District, Ningbo 315201, China; (Y.H.); (M.C.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjing Chen
- Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences, 1219 Zhongguan Road, Zhenhai District, Ningbo 315201, China; (Y.H.); (M.C.)
| | - Cai Shen
- Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences, 1219 Zhongguan Road, Zhenhai District, Ningbo 315201, China; (Y.H.); (M.C.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.R.); (C.S.)
| |
Collapse
|
4
|
Rakshit T, Melters DP, Dimitriadis EK, Dalal Y. Mechanical properties of nucleoprotein complexes determined by nanoindentation spectroscopy. Nucleus 2021; 11:264-282. [PMID: 32954931 PMCID: PMC7529419 DOI: 10.1080/19491034.2020.1816053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The interplay between transcription factors, chromatin remodelers, 3-D organization, and mechanical properties of the chromatin fiber controls genome function in eukaryotes. Besides the canonical histones which fold the bulk of the chromatin into nucleosomes, histone variants create distinctive chromatin domains that are thought to regulate transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether histone variants translate distinctive biochemical or biophysical properties to their associated chromatin structures, and whether these properties impact chromatin dynamics as the genome undergoes a multitude of transactions, is an important question in biology. Here, we describe single-molecule nanoindentation tools that we developed specifically to determine the mechanical properties of histone variant nucleosomes and their complexes. These methods join an array of cutting-edge new methods that further our quantitative understanding of the response of chromatin to intrinsic and extrinsic forces which act upon it during biological transactions in the nucleus.
Collapse
Affiliation(s)
- Tatini Rakshit
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA.,Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Salt Lake, India
| | - Daniël P Melters
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Cancer Institute, NIH , Bethesda, MD, USA
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, MD, USA
| |
Collapse
|
5
|
How stable are the collagen and ferritin proteins for application in bioelectronics? PLoS One 2021; 16:e0246180. [PMID: 33513177 PMCID: PMC7845979 DOI: 10.1371/journal.pone.0246180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
One major obstacle in development of biomolecular electronics is the loss of function of biomolecules upon their surface-integration and storage. Although a number of reports on solid-state electron transport capacity of proteins have been made, no study on whether their functional integrity is preserved upon surface-confinement and storage over a long period of time (few months) has been reported. We have investigated two specific cases—collagen and ferritin proteins, since these proteins exhibit considerable potential as bioelectronic materials as we reported earlier. Since one of the major factors for protein degradation is the proteolytic action of protease, such studies were made under the action of protease, which was either added deliberately or perceived to have entered in the reaction vial from ambient environment. Since no significant change in the structural characteristics of these proteins took place, as observed in the circular dichroism and UV-visible spectrophotometry experiments, and the electron transport capacity was largely retained even upon direct protease exposure as revealed from the current sensing atomic force spectroscopy experiments, we propose that stable films can be formed using the collagen and ferritin proteins. The observed protease-resistance and robust nature of these two proteins support their potential application in bioelectronics.
Collapse
|
6
|
Kolay J, Bera S, Rakshit T, Mukhopadhyay R. Negative Differential Resistance Behavior of the Iron Storage Protein Ferritin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3126-3135. [PMID: 29412680 DOI: 10.1021/acs.langmuir.7b04356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Realization of useful nanometer length scale devices in which metalloproteins are junction-confined in a distinct molecular arrangement for generating practical electronic signals (e.g., in bioelectronic switch configuration) is elusive till date. This is mostly due to difficulties in observing an electronically appropriate signal (i.e., reproducible and controllable), when studied under junction-assembled condition. A useful "ON"-"OFF" behavior, based on the negative differential resistance (NDR) peak characteristics in the current-voltage response curves, acquired using metal-insulator-metal (MIM) configuration, has been observed only in the case of a few proteins, namely, azurin, cytochrome c, bacteriorhodopsin, so far. The case of NDR in ferritin, an iron storage protein having a semiconducting iron core consisting of few thousands of iron atoms connected in an oxide network, has not been studied in the MIM configuration where single (or a few) molecule(s) are junction-trapped, for example, as in the case of local probe configuration of scanning probe microscopy. The present study by scanning tunneling microscopy (STM), using the naturally occurring iron-containing ferritin (human liver), as well as different iron-loaded ferritins, provides clear indication of the capability of ferritins to be NDR capable, at varying sweep conditions. As ferritin can be tailor-made in a structurally conserved manner, metal core-reconstituted ferritins, that is, Mn(III)-ferritin, Cu(II)-ferritin, and Ag-ferritin, were prepared. A correlation between the NDR peak signatures, as observed in the respective current-voltage response curves of these reconstituted ferritins, and the nature of the metal core is demonstrated. In support of our earlier proposition, here, we affirm that the ferritin protein behaves as a conductor-insulator (metal core-polypeptide shell) composite, where the overall electronic structure of the material can alter as a function of the nature of the conducting filler placed inside the insulated matrix.
Collapse
Affiliation(s)
- J Kolay
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Kolkata 700 032 , India
| | - S Bera
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Kolkata 700 032 , India
| | - T Rakshit
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Kolkata 700 032 , India
| | - R Mukhopadhyay
- Department of Biological Chemistry , Indian Association for the Cultivation of Science , Kolkata 700 032 , India
| |
Collapse
|
7
|
Bera S, Kolay J, Banerjee S, Mukhopadhyay R. Nanoscale On-Silico Electron Transport via Ferritins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1951-1958. [PMID: 28145712 DOI: 10.1021/acs.langmuir.6b04120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silicon is a solid-state semiconducting material that has long been recognized as a technologically useful one, especially in electronics industry. However, its application in the next-generation metalloprotein-based electronics approaches has been limited. In this work, the applicability of silicon as a solid support for anchoring the iron-storage protein ferritin, which has a semiconducting iron nanocore, and probing electron transport via the ferritin molecules trapped between silicon substrate and a conductive scanning probe has been investigated. Ferritin protein is an attractive bioelectronic material because its size (X-ray crystallographic diameter ∼12 nm) should allow it to fit well in the larger tunnel gaps (>5 nm), fabrication of which is relatively more established, than the smaller ones. The electron transport events occurring through the ferritin molecules that are covalently anchored onto the MPTMS-modified silicon surface could be detected at the molecular level by current-sensing atomic force spectroscopy (CSAFS). Importantly, the distinct electronic signatures of the metal types (i.e., Fe, Mn, Ni, and Au) within the ferritin nanocore could be distinguished from each other using the transport band gap analyses. The CSAFS measurements on holoferritin, apoferritin, and the metal core reconstituted ferritins reveal that some of these ferritins behave like n-type semiconductors, while the others behave as p-type semiconductors. The band gaps for the different ferritins are found to be within 0.8 to 2.6 eV, a range that is valid for the standard semiconductor technology (e.g., diodes based on p-n junction). The present work indicates effective on-silico integration of the ferritin protein, as it remains functionally viable after silicon binding and its electron transport activities can be detected. Potential use of the ferritin-silicon nanohybrids may therefore be envisaged in applications other than bioelectronics, too, as ferritin is a versatile nanocore-containing biomaterial (for storage/transport of metals and drugs) and silicon can be a versatile nanoscale solid support (for its biocompatible nature).
Collapse
Affiliation(s)
- Sudipta Bera
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Jayeeta Kolay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Siddhartha Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
8
|
Castañeda Ocampo OE, Gordiichuk P, Catarci S, Gautier DA, Herrmann A, Chiechi RC. Mechanism of Orientation-Dependent Asymmetric Charge Transport in Tunneling Junctions Comprising Photosystem I. J Am Chem Soc 2015; 137:8419-27. [PMID: 26057523 PMCID: PMC4558993 DOI: 10.1021/jacs.5b01241] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, photoactive proteins have gained a lot of attention due to their incorporation into bioinspired (photo)electrochemical and solar cells. This paper describes the measurement of the asymmetry of current transport of self-assembled monolayers (SAMs) of the entire photosystem I (PSI) protein complex (not the isolated reaction center, RCI), on two different "director SAMs" supported by ultraflat Au substrates. The director SAMs induce the preferential orientation of PSI, which manifest as asymmetry in tunneling charge-transport. We measured the oriented SAMs of PSI using eutectic Ga-In (EGaIn), a large-area technique, and conducting probe atomic force microscopy (CP-AFM), a single-complex technique, and determined that the transport properties are comparable. By varying the temperatures at which the measurements were performed, we found that there is no measurable dependence of the current on temperature from ±0.1 to ±1.0 V bias, and thus, we suggest tunneling as the mechanism for transport; there are no thermally activated (e.g., hopping) processes. Therefore, it is likely that relaxation in the electron transport chain is not responsible for the asymmetry in the conductance of SAMs of PSI complexes in these junctions, which we ascribe instead to the presence of a large, net dipole moment present in PSI.
Collapse
Affiliation(s)
- Olga E Castañeda Ocampo
- †Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,‡Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Pavlo Gordiichuk
- ‡Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Stefano Catarci
- ‡Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniel A Gautier
- ‡Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andreas Herrmann
- ‡Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C Chiechi
- †Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,‡Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Chen L, Zhou J, Zhang Y, Chu S, He W, Li Y, Su X. Preparation and representation of recombinant Mn-ferritin flower-like spherical aggregates from marine invertebrates. PLoS One 2015; 10:e0119427. [PMID: 25879665 PMCID: PMC4399908 DOI: 10.1371/journal.pone.0119427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Ferritin has important functions in the transition and storage of toxic metal ions, but its regulation and function in many invertebrate species are still largely unknown. In our previous work, the cDNA sequence of Sinonovacula constricta, Apostichopus japonicas and Acaudina leucoprocta were constructed and efficiently expressed in E. Coli BL21 under IPTG induction. In this follow-up study, the recombinant ferritins were exposed to heavy metal manganese. The manganese concentration levels in three recombinant ferritins were greater than horse spleen ferritin (HSF). Compared with HSF, the amount of manganese enrichment in the three recombinant ferritins was 1.75-fold, 3.25-fold and 2.42-fold increases in ScFER, AjFER, and AlFER, respectively. After phosphate stimulation, the concentration of manganese increased and was higher than the ordinary dialysis control groups. The ScFER was four times its baseline value. The AjFER and AlFER were 1.4- and 8-fold higher, respectively. The AlFER sample stimulated by phosphate was 22-fold that of HSF. The morphologies of the resulting Mn-Ferritin from different marine invertebrates were characterized with scanning electron microscopy. Surface morphologies were lamella flower-like and are consistent with changes in surface morphologies of the standard Mn-HSF. Invertebrate recombinant ferritin and HSF both can uptake manganese. We found that the structure of A. leucoproctarecombinant Mn-Ferritin aggregate changed over time. The surface formed lamella flower-like aggregate, but gradually merged to create a relatively uniform plate-like phase of aggregate spherically and fused without clear boundaries.
Collapse
Affiliation(s)
- Liping Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Jun Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Yunyun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Shuangshuang Chu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Weina He
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Xiurong Su
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
10
|
Amdursky N, Marchak D, Sepunaru L, Pecht I, Sheves M, Cahen D. Electronic transport via proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7142-61. [PMID: 25256438 DOI: 10.1002/adma.201402304] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/07/2014] [Indexed: 05/25/2023]
Abstract
A central vision in molecular electronics is the creation of devices with functional molecular components that may provide unique properties. Proteins are attractive candidates for this purpose, as they have specific physical (optical, electrical) and chemical (selective binding, self-assembly) functions and offer a myriad of possibilities for (bio-)chemical modification. This Progress Report focuses on proteins as potential building components for future bioelectronic devices as they are quite efficient electronic conductors, compared with saturated organic molecules. The report addresses several questions: how general is this behavior; how does protein conduction compare with that of saturated and conjugated molecules; and what mechanisms enable efficient conduction across these large molecules? To answer these questions results of nanometer-scale and macroscopic electronic transport measurements across a range of organic molecules and proteins are compiled and analyzed, from single/few molecules to large molecular ensembles, and the influence of measurement methods on the results is considered. Generalizing, it is found that proteins conduct better than saturated molecules, and somewhat poorer than conjugated molecules. Significantly, the presence of cofactors (redox-active or conjugated) in the protein enhances their conduction, but without an obvious advantage for natural electron transfer proteins. Most likely, the conduction mechanisms are hopping (at higher temperatures) and tunneling (below ca. 150-200 K).
Collapse
Affiliation(s)
- Nadav Amdursky
- Dept. of Materials & Interfaces, Weizmann Institute of Science, Rehovot, 76305, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Amdursky N, Pecht I, Sheves M, Cahen D. Electron Transport via Cytochrome C on Si–H Surfaces: Roles of Fe and Heme. J Am Chem Soc 2013; 135:6300-6. [DOI: 10.1021/ja4015474] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nadav Amdursky
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Israel Pecht
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Departments
of Materials and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
12
|
Amdursky N, Ferber D, Pecht I, Sheves M, Cahen D. Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin. Phys Chem Chem Phys 2013; 15:17142-9. [DOI: 10.1039/c3cp52885e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Li W, Sepunaru L, Amdursky N, Cohen SR, Pecht I, Sheves M, Cahen D. Temperature and force dependence of nanoscale electron transport via the Cu protein azurin. ACS NANO 2012; 6:10816-10824. [PMID: 23136937 DOI: 10.1021/nn3041705] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solid-state electron transport (ETp) via a monolayer of immobilized azurin (Az) was examined by conducting probe atomic force microscopy (CP-AFM), as a function of both temperature (248-373K) and applied tip force (6-15 nN). At low forces, ETp via holo-Az (with Cu(2+)) is temperature-independent, but thermally activated via the Cu-depleted form of Az, apo-Az. While this observation agrees with those of macroscopic-scale measurements, we find that for holo-Az the mechanism of ETp at high temperatures changes upon an increase in the force applied by the tip to the proteins; namely, above 310 K and forces >6 nN ETp becomes thermally activated. This is in contrast to apo-Az, where increasing applied force causes only small monotonic increases in currents due to decreased electrode separation. The distinct ETp temperature dependence of holo- and apo-Az is assigned to a difference in structural response to pressure between the two protein forms. An important implication of these CP-AFM results (of measurements over a significant temperature range) is that for reliable ETp measurements on flexible macromolecules, such as proteins, the pressure applied during the measurements should be controlled or at least monitored.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Materials & Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Rakshit T, Mukhopadhyay R. Solid-state electron transport in Mn-, Co-, holo-, and Cu-ferritins: Force-induced modulation is inversely linked to the protein conductivity. J Colloid Interface Sci 2012; 388:282-92. [DOI: 10.1016/j.jcis.2012.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/02/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
|
15
|
Ho RH, Chen YH, Wang CM. Surface differentiation of ferritin and apoferritin with atomic force microscopic techniques. Colloids Surf B Biointerfaces 2012; 94:231-5. [PMID: 22377219 DOI: 10.1016/j.colsurfb.2012.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/17/2022]
Abstract
In the study reported herein, we differentiated the structure of ferritin from that of its demetalated counterpart, apoferritin, using field-effect-based atomic force microscopic (AFM) techniques. When ferritin was subjected to conductive-mode AFM analysis, the protein resembled a pancake with a diameter of 10 nm adsorbed on the indium-doped tin-oxide substrate with its fourfold channel perpendicular to the substrate, whereas a flat, empty cavity was revealed for apoferritin. We also attempted to verify the conformational difference with magnetic-mode AFM. However, the resulting phase images failed to differentiate the proteins due to interference from the fringe effect. Despite this, the ferritin analysis revealed a sound correlation between the surface conductivity profiles and the phase profiles. In contrast, apoferritin showed a chaotic relationship in this respect. These results not only suggest that the magnetic domain of ferritin is limited to the iron aggregate in the core, but also demonstrate that AFM is a useful tool for protein conformation analysis.
Collapse
Affiliation(s)
- Ru-Hung Ho
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | | | | |
Collapse
|
16
|
Rakshit T, Mukhopadhyay R. Tuning band gap of holoferritin by metal core reconstitution with Cu, Co, and Mn. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9681-9686. [PMID: 21755951 DOI: 10.1021/la202045a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Utility of ferritin in molecular electronics, especially in single molecule electronics based devices, has recently been proposed, since the iron core of holoferritin is semiconducting in nature. However, the practical aspects, e.g., how its electronic properties can be varied/tuned, need to be better addressed. In this direction, we have performed direct tunneling experiments using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) on several metal core reconstituted ferritins, where the reconstitution has been carried out using biocompatible metals like copper, cobalt, and manganese that are found naturally in the human body. We show, for the first time, that, by metal core reconstitution of the ferritin protein, the band gap of the protein can be tuned to different values (here, within the range 1.17-0.00 eV, considering iron-containing holoferritin and apoferritin as well). From the respective current-voltage curves and the well-defined band gaps, clear distinction can be made among the five different ferritins indicating that the metal core has direct contribution in the observed electrical conductivities of ferritins. It is further revealed that the electrical conductivities of the reconstituted ferritins are of the same order as that for the free metal conductivities, meaning that the relative changes in the free metal conductivities are reflected in the contributions of the metals in protein shell-confinement (i.e., the ∼8 nm core of ferritin). This finding could lead to a strategy for fine-tuning ferritin band gap by preselecting a metal on the basis of the free metal conductivity values.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | |
Collapse
|