1
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
2
|
Santi S, Biondi B, Cardena R, Bisello A, Schiesari R, Tomelleri S, Crisma M, Formaggio F. Helical versus Flat Bis-Ferrocenyl End-Capped Peptides: The Influence of the Molecular Skeleton on Redox Properties. Molecules 2022; 27:6128. [PMID: 36144860 PMCID: PMC9503075 DOI: 10.3390/molecules27186128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the fact that peptide conjugates with a pendant ferrocenyl (Fc) have been widely investigated, bis-ferrocenyl end-capped peptides are rarely synthetized. In this paper, in addition to the full characterization of the Fc-CO-[L-Dap(Boc)]n-NH-Fc series, we report a comparison of the three series of bis-ferrocenyl homopeptides synthesized to date, to gain insights into the influence of α-amino isobutyric (Aib), 2,3-diamino propionic (Dap) and Cα,β-didehydroalanine (ΔAla) amino acids on the peptide secondary structure and on the ferrocene redox properties. The results obtained by 2D NMR analysis and X-ray crystal structures, and further supported by electrochemical data, evidence different behaviors depending on the nature of the amino acid; that is, the formation of 310-helices or fully extended (2.05-helix) structures. In these foldamers, the orientation of the carbonyl groups in the peptide helix yields a macrodipole with the positive pole on the N-terminal amino acid and the negative pole on the C-terminal amino acid, so that oxidation of the Fc moieties takes place more or less easily depending on the orientation of the macrodipole moment as the peptide chain grows. Conversely, the fully extended conformation adopted by ΔAla flat peptides neither generates a macrodipole nor affects Fc oxidation. The utilization as electrochemical and optical (Circular Dichroism) probes of the two terminal Fc groups, bound to the same peptide chain, makes it possible to study the end-to-end effects of the positive charges produced by single and double oxidations, and to evidence the presence "exciton-coupled" CD among the two intramolecularly interacting Fc groups of the L-Dap(Boc) series.
Collapse
Affiliation(s)
- Saverio Santi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
| | - Roberta Cardena
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Annalisa Bisello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Renato Schiesari
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Silvia Tomelleri
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Chen L, Li X, Xie Y, Liu N, Qin X, Chen X, Bu Y. Modulation of proton-coupled electron transfer reactions in lysine-containing alpha-helixes: alpha-helixes promoting long-range electron transfer. Phys Chem Chem Phys 2022; 24:14592-14602. [PMID: 35667661 DOI: 10.1039/d2cp00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction plays an important role in promoting many biological and chemical reactions. Usually, the rate of the PCET reaction increases with an increase in the electron transfer distance because long-range electron transfer requires more free energy barriers. Our density functional theory calculations here reveal that the mechanism of PCET occurring in lysine-containing alpha(α)-helixes changes with an increasing number of residues in the α-helical structure and the different conformations because of the modulation of the excess electron distribution by the α-helical structures. The rate constants of the corresponding PCET reactions are independent of or substantially shallower dependent on the electron transfer distances along α-helixes. This counter-intuitive behavior can be attributed to the fact that the formation of larger macro-cylindrical dipole moments in longer helixes can promote electron transfer along the α-helix with a low energy barrier. These findings may be useful to gain insights into long-range electron transfer in proteins and design α-helix-based electronics via the regulation of short-range proton transfer.
Collapse
Affiliation(s)
- Long Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
| |
Collapse
|
4
|
Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proc Natl Acad Sci U S A 2022; 119:2112812119. [PMID: 35074874 PMCID: PMC8812571 DOI: 10.1073/pnas.2112812119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Detection of molecular interactions is the foundation for many important biotechnology applications in society and industry, such as drug discovery, diagnostics, and DNA sequencing. This report describes a broadly applicable platform for detecting molecular interactions at the single-molecule scale, in real-time, label-free, and potentially highly multiplexable fashion, using single-molecule sensors on a highly scalable semiconductor sensor array chip. Such chips are both practically manufacturable in the near term, and have a durable long-term scaling roadmap, thus providing an ideal way to bring the power of modern chip technology to the broad area of biosensing. This work also realizes a 50-year-old scientific vision of integrating single molecules into electronic chips to achieve the ultimate miniaturization of electronics. For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing.
Collapse
|
5
|
Biondi B, Bisello A, Cardena R, Schiesari R, Facci M, Cerveson L, Rancan M, Formaggio F, Santi S. Conformational Analysis and Through‐Chain Charge Propagation in Ferrocenyl‐Conjugated Homopeptides of 2,3‐Diaminopropionic acid (Dap). Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit CNR Via Marzolo 1 35131 Padova Italy
| | - Annalisa Bisello
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Roberta Cardena
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Renato Schiesari
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Martino Facci
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Laura Cerveson
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Marzio Rancan
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE) CNR Via Marzolo 1 35131 Padova Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit CNR Via Marzolo 1 35131 Padova Italy
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Saverio Santi
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
6
|
Tian L, Martine E, Yu X, Hu W. Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12223-12233. [PMID: 34606290 DOI: 10.1021/acs.langmuir.1c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We studied the structure and transport properties of aromatic amine self-assembled monolayers (NH2-SAMs) on an Au surface. The oligophenylene and oligoacene amines with variable lengths can form a densely packed and uniform monolayer under proper assembly conditions. Molecular junctions incorporating an eutectic Ga-In (EGaIn) top electrode were used to characterize the charge transport properties of the amine monolayer. The current density J of the junction decreases exponentially with the molecular length (d), as J = J0 exp(-βd), which is a sign of tunneling transport, with indistinguishable values of J0 and β for NH2-SAMs of oligophenylene and oligoacene, indicating a similar molecule-electrode contact and tunneling barrier for two groups of molecules. Compared with the oligophenylene and oligoacene molecules with thiol (SH) as the anchor group, a similar β value (∼0.35 Å-1) of the aromatic NH2-SAM suggests a similar tunneling barrier, while a lower (by 2 orders of magnitude) injection current J0 is attributed to lower electronic coupling Γ of the amine group with the electrode. These observations are further supported by single-level tunneling model fitting. Our study here demonstrates the NH2-SAMs can work as an effective active layer for molecular junctions, and provide key physical parameters for the charge transport, paving the road for their applications in functional devices.
Collapse
Affiliation(s)
- Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Esther Martine
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
7
|
Biondi B, Cardena R, Bisello A, Schiesari R, Cerveson L, Facci M, Rancan M, Formaggio F, Santi S. Flat, Ferrocenyl‐Conjugated Peptides: A Combined Electrochemical and Spectroscopic Study. ChemElectroChem 2021. [DOI: 10.1002/celc.202100597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular Chemistry Padova Unit, CNR via Marzolo 1 35131 Padova Italy
| | - Roberta Cardena
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Annalisa Bisello
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Renato Schiesari
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Laura Cerveson
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Martino Facci
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Marzio Rancan
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), CNR Via Marzolo, 1 35131 Padova Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry Padova Unit, CNR via Marzolo 1 35131 Padova Italy
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| | - Saverio Santi
- Department of Chemical Sciences University of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
8
|
Santi S, Bisello A, Cardena R, Tomelleri S, Schiesari R, Biondi B, Crisma M, Formaggio F. Flat, C α,β -Didehydroalanine Foldamers with Ferrocene Pendants: Assessing the Role of α-Peptide Dipolar Moments. Chempluschem 2021; 86:723-730. [PMID: 33825347 DOI: 10.1002/cplu.202100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Indexed: 12/28/2022]
Abstract
The foldamer field is continuously expanding as it allows to produce molecules endowed with 3D-structures and functions never observed in nature. We synthesized flat foldamers based on the natural, but non-coded, Cα,β -didehydroalanine α-amino acid, and covalently linked to them two ferrocene (Fc) moieties, as redox probes. These conjugates retain the flat and extended conformation of the 2.05 -helix, both in solution and in the crystal state (X-ray diffraction). Cyclic voltammetry measurements agree with the adoption of the 2.05 -helix, characterized by a negligible dipole moment. Thus, elongated α-peptide stretches of this type are insulators rather than charge conductors, the latter being constituted by peptide α-helices. Also, our homo-tetrapeptide has a N-to-C length of about 18.2 Å, almost double than that (9.7 Å) of an α-helical α-tetrapeptide.
Collapse
Affiliation(s)
- Saverio Santi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Annalisa Bisello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Roberta Cardena
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Silvia Tomelleri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Renato Schiesari
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
9
|
Zuliani C, Formaggio F, Scipionato L, Toniolo C, Antonello S, Maran F. Insights into the Distance Dependence of Electron Transfer through Conformationally Constrained Peptides. ChemElectroChem 2020. [DOI: 10.1002/celc.202000088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Claudio Zuliani
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
- Ozo Innovations Ltd, Unit 29 Chancerygate Business Centre Langford Ln Kidlington OX5 1FQ UK
| | - Fernando Formaggio
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Laura Scipionato
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Claudio Toniolo
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Sabrina Antonello
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Flavio Maran
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| |
Collapse
|
10
|
Zheng H, Jiang F, He R, Yang Y, Shi J, Hong W. Charge Transport through Peptides in Single‐Molecule Electrical Measurements. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Haining Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
| | - Feng Jiang
- Joint Research Center for Peptide Drug R&D with Space Peptides, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Runze He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
- Joint Research Center for Peptide Drug R&D with Space Peptides, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
- Joint Research Center for Peptide Drug R&D with Space Peptides, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
11
|
Takahashi M, Morikawa H. Nitrogen Dioxide at Ambient Concentrations Induces Nitration and Degradation of PYR/PYL/RCAR Receptors to Stimulate Plant Growth: A Hypothetical Model. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8070198. [PMID: 31262027 PMCID: PMC6681506 DOI: 10.3390/plants8070198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
Exposing Arabidopsis thaliana (Arabidopsis) seedlings fed with soil nitrogen to 10-50 ppb nitrogen dioxide (NO2) for several weeks stimulated the uptake of major elements, photosynthesis, and cellular metabolisms to more than double the biomass of shoot, total leaf area and contents of N, C P, K, S, Ca and Mg per shoot relative to non-exposed control seedlings. The 15N/14N ratio analysis by mass spectrometry revealed that N derived from NO2 (NO2-N) comprised < 5% of the total plant N, showing that the contribution of NO2-N as N source was minor. Moreover, histological analysis showed that leaf size and biomass were increased upon NO2 treatment, and that these increases were attributable to leaf age-dependent enhancement of cell proliferation and enlargement. Thus, NO2 may act as a plant growth signal rather than an N source. Exposure of Arabidopsis leaves to 40 ppm NO2 induced virtually exclusive nitration of PsbO and PsbP proteins (a high concentration of NO2 was used). The PMF analysis identified the ninth tyrosine residue of PsbO1 (9Tyr) as a nitration site. 9Tyr of PsbO1 was exclusively nitrated after incubation of the thylakoid membranes with a buffer containing NO2 and NO2- or a buffer containing NO2- alone. Nitration was catalyzed by illumination and repressed by photosystem II (PSII) electron transport inhibitors, and decreased oxygen evolution. Thus, protein tyrosine nitration altered (downregulated) the physiological function of cellular proteins of Arabidopsis leaves. This indicates that NO2-induced protein tyrosine nitration may stimulate plant growth. We hypothesized that atmospheric NO2 at ambient concentrations may induce tyrosine nitration of PYR/PYL/RCAR receptors in Arabidopsis leaves, followed by degradation of PYR/PYL/RCAR, upregulation of target of rapamycin (TOR) regulatory complexes, and stimulation of plant growth.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
12
|
Gatto E, Kubitzky S, Schriever M, Cesaroni S, Mazzuca C, Marafon G, Venanzi M, De Zotti M. Building Supramolecular DNA‐Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emanuela Gatto
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata 00133 Rome Italy
| | - Sascha Kubitzky
- Faculty of Engineering and Natural SciencesTechnische Hochschule Wildau 15745 Wildau Germany
| | - Marc Schriever
- Faculty of Engineering and Natural SciencesTechnische Hochschule Wildau 15745 Wildau Germany
| | - Simona Cesaroni
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata 00133 Rome Italy
| | - Claudia Mazzuca
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata 00133 Rome Italy
| | - Giulia Marafon
- Department of Chemical SciencesUniversity of Padova 35131 Padova Italy
| | - Mariano Venanzi
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata 00133 Rome Italy
| | - Marta De Zotti
- Department of Chemical SciencesUniversity of Padova 35131 Padova Italy
| |
Collapse
|
13
|
Gatto E, Kubitzky S, Schriever M, Cesaroni S, Mazzuca C, Marafon G, Venanzi M, De Zotti M. Building Supramolecular DNA-Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angew Chem Int Ed Engl 2019; 58:7308-7312. [PMID: 30908767 DOI: 10.1002/anie.201901683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/18/2019] [Indexed: 01/09/2023]
Abstract
Three building blocks have been designed to chemically link to a gold surface and vertically self-assemble through thymine-adenine hydrogen bonds. Starting from these building blocks, two different films were engineered on gold surface. Film 1 consists of adenine linked to lipoic acid (Lipo-A) to covalently bind to the gold surface, and ZnTPP linked to a thymine (T-ZnTPP). Film 2 has an additional noncovalently linked layer: a helical undecapeptide analogue of the trichogin GA IV peptide, in which four glycines were replaced by four lysines to favor a helical conformation and reduce flexibility and the two extremities were functionalized with thymine and adenine to enable Lipo-A and T-ZnTPP binding, respectively. These films were characterized by electrochemical and spectroscopic techniques, and were very stable over time and when in contact with solution. Under illumination, they could generate current with higher efficiency than similar previously described systems.
Collapse
Affiliation(s)
- Emanuela Gatto
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133, Rome, Italy
| | - Sascha Kubitzky
- Faculty of Engineering and Natural Sciences, Technische Hochschule Wildau, 15745, Wildau, Germany
| | - Marc Schriever
- Faculty of Engineering and Natural Sciences, Technische Hochschule Wildau, 15745, Wildau, Germany
| | - Simona Cesaroni
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133, Rome, Italy
| | - Giulia Marafon
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133, Rome, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, 35131, Padova, Italy
| |
Collapse
|
14
|
Takahashi M, Morikawa H. A novel role for PsbO1 in photosynthetic electron transport as suggested by its light-triggered selective nitration in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513298. [PMID: 30230951 PMCID: PMC6259825 DOI: 10.1080/15592324.2018.1513298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in the selective nitration of specific proteins, such as PsbO1. The 9th tyrosine residue (9Tyr) of PsbO1 has been identified as the nitration site. This nitration is triggered by light and inhibited by photosynthetic electron transport inhibitors. During protein nitration, tyrosyl and NO2 radicals are formed concurrently and combine rapidly to form 3-nitrotyrosine. A selective oxidation mechanism for 9Tyr of PsbO1 is required. We postulated that, similar to 161Tyr of D1, 9Tyr of PsbO1 is selectively photo-oxidized by photosynthetic electron transport in response to illumination to a tyrosyl radical. In corroboration, after reappraising our oxygen evolution analysis, the nitration of PsbO1 proved responsible for decreased oxygen evolution from the thylakoid membranes. NO2 is reportedly taken into cells as nitrous acid, which dissociates to form NO2-. NO2- may be oxidized into NO2 by the oxygen-evolving complex. Light may synchronize this reaction with tyrosyl radical formation. These findings suggest a novel role for PsbO1 in photosynthetic electron transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
15
|
Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomater 2018; 69:1-30. [PMID: 29357319 DOI: 10.1016/j.actbio.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.
Collapse
|
16
|
Matsushita D, Uji H, Kimura S. Effect of oscillation dynamics on long-range electron transfer in a helical peptide monolayer. Phys Chem Chem Phys 2018; 20:15216-15222. [DOI: 10.1039/c8cp02315h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transfer (ET) reactions via helical peptides composed of –(Aib-Pro)n– were studied in self-assembled monolayers and compared with –(Ala-Aib)n– peptides.
Collapse
Affiliation(s)
- Daisuke Matsushita
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto-Daigaku-Katsura
- Nishikyo-ku
| | - Hirotaka Uji
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto-Daigaku-Katsura
- Nishikyo-ku
| | - Shunsaku Kimura
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto-Daigaku-Katsura
- Nishikyo-ku
| |
Collapse
|
17
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|
18
|
Moriuchi T, Nishiyama T, Tayano Y, Hirao T. Controlled self-assembling structures of ferrocene-dipeptide conjugates composed of Ala-Pro-NHCH 2CH 2SH chain. J Inorg Biochem 2017; 177:259-265. [PMID: 28552420 DOI: 10.1016/j.jinorgbio.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
Bioorganometallic ferrocene-dipeptide conjugates with the Ala-Pro-cysteamine chain, Fc-L-Ala-L-Pro-NHCH2CH2SH (2) and Fc-L-Ala-D-Pro-NHCH2CH2SH (4) (Fc=ferrocenoyl), were prepared by the reduction of the ferrocene-dipeptide conjugates, Fc-L-Ala-L-Pro-cystamine-L-Pro-L-Ala-Fc (1) or Fc-L-Ala-D-Pro-cystamine-D-Pro-L-Ala-Fc (3), respectively. Control of the self-assembling structures of the ferrocene-dipeptide conjugates was demonstrated by changing the chirality of the amino acid. The molecular structure of 2 composed of the L-Ala-L-Pro-NHCH2CH2SH chain confirmed the formation of intramolecular hydrogen bond of N-H⋯N pattern between the NH of cysteamine moiety and the nitrogen of Pro moiety. Furthermore, intermolecular hydrogen bonds between NH (Ala) and CO (Pro of another molecule) and between NH (cysteamine) and CO (the ferrocenoyl moiety of another molecule) were formed, wherein each molecule is connected to four neighboring molecules by continuous intermolecular hydrogen bonds to form the hydrogen-bonded molecular assembling structure. On the contrary, the left-handed helical assembly through an intermolecular hydrogen-bonding network of 15-membered intermolecularly hydrogen-bonded ring between NH (Ala) and CO (the ferrocenoyl moiety of another molecule) and between NH (the cysteamine moiety of another molecule) and CO (Ala) was observed in the crystal packing of 4 composed of the L-Ala-D-Pro-NHCH2CH2SH chain.
Collapse
Affiliation(s)
- Toshiyuki Moriuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Taiki Nishiyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshiki Tayano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshikazu Hirao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Bisello A, Cardena R, Rossi S, Crisma M, Formaggio F, Santi S. Hydrogen-Bond-Assisted, Concentration-Dependent Molecular Dimerization of Ferrocenyl Hydantoins. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Annalisa Bisello
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberta Cardena
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Serena Rossi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Crisma
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131 Padova, Italy
| | - Fernando Formaggio
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Saverio Santi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
20
|
Venanzi M, Gatto E, Formaggio F, Toniolo C. The importance of being Aib. Aggregation and self-assembly studies on conformationally constrained oligopeptides. J Pept Sci 2017; 23:104-116. [DOI: 10.1002/psc.2956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Mariano Venanzi
- Department of Chemical Sciences and Technologies and Centre for Nanoscience, Nanotechnology and Advanced Instrumentation; University of Rome ‘Tor Vergata’; 00133 Rome Italy
| | - Emanuela Gatto
- Department of Chemical Sciences and Technologies and Centre for Nanoscience, Nanotechnology and Advanced Instrumentation; University of Rome ‘Tor Vergata’; 00133 Rome Italy
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry; University of Padova; 35131 Padova Italy
| |
Collapse
|
21
|
Li X, Markandeya N, Jonusauskas G, McClenaghan ND, Maurizot V, Denisov SA, Huc I. Photoinduced Electron Transfer and Hole Migration in Nanosized Helical Aromatic Oligoamide Foldamers. J Am Chem Soc 2016; 138:13568-13578. [DOI: 10.1021/jacs.6b05668] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xuesong Li
- Univ. de Bordeaux, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Nagula Markandeya
- Univ. de Bordeaux, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Gediminas Jonusauskas
- Univ. de Bordeaux, Laboratoire Ondes et Matières
d’Aquitaine (UMR5798), 351 cours de la Libération, 33405 Talence cedex, France
| | - Nathan D. McClenaghan
- Univ. de Bordeaux, Institut des Sciences Moléculaires
(UMR5255), 351 cours de
la Libération, 33405 Talence cedex, France
| | - Victor Maurizot
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Sergey A. Denisov
- Univ. de Bordeaux, Institut des Sciences Moléculaires
(UMR5255), 351 cours de
la Libération, 33405 Talence cedex, France
| | - Ivan Huc
- CNRS, CBMN (UMR 5248), Institut Européen
de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| |
Collapse
|
22
|
Donoli A, Marcuzzo V, Moretto A, Crisma M, Toniolo C, Cardena R, Bisello A, Santi S. New bis-ferrocenyl end-capped peptides: synthesis and charge transfer properties. Biopolymers 2016; 100:14-24. [PMID: 23335164 DOI: 10.1002/bip.22197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/26/2012] [Accepted: 10/30/2012] [Indexed: 01/19/2023]
Abstract
In this article, the successful preparation of a new series of 3(10) -helical peptides of different length containing two terminal ferrocenyl (Fc) units and based on the strongly foldameric α-aminoisobutyric (Aib) acid is reported. The synthesis of the Fc-CO-(Aib)(n) -NH-Fc (n = 1-5) homo-peptides was performed by solution methods. Moderate to good yields (26-85%) were obtained in each of the difficult coupling steps of Fc-COOH and the corresponding H-(Aib)(n)-NH-Fc compounds by C-activation with the 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide/7-aza-1-hydroxy-1,2,3-benzotriazole method. Information on the C=O···H-N intramolecularly hydrogen-bonded networks was initially obtained from FT-IR absorption measurements. The N-H stretching (amide A) region allowed us to distinguish which amide protons are involved in intramolecular hydrogen bonds and indicates the formation of an incipient 3(10) -helix structure for peptides containing at least two Aib residues. This conclusion was confirmed by (1)H NMR titrations of the N-H groups of the peptides in CDCl(3) with dimethylsulfoxide and by crystallographic analysis of the N(α) -acylated Fc-CO-(Aib)(5)-NH-Fc pentapeptide amide. The two redox-active Fc groups covalently bound to the termini of the foldameric peptide architectures were used as electrochemical probes. The end-to-end effects of electron holes generated by single and double oxidations were analyzed by means of electrochemical and spectroelectrochemical techniques. The results of these studies indicate that charge transfer across the peptide main chain does occur in the five peptides. In particular, in the pentapeptide 5, charge is transferred through an intramolecular Fe···Fe separation of 14 Å.
Collapse
Affiliation(s)
- Alessandro Donoli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Shah A, Adhikari B, Martic S, Munir A, Shahzad S, Ahmad K, Kraatz HB. Electron transfer in peptides. Chem Soc Rev 2015; 44:1015-27. [PMID: 25619931 DOI: 10.1039/c4cs00297k] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Raichlin S, Pecht I, Sheves M, Cahen D. Protein Electronic Conductors: Hemin-Substrate Bonding Dictates Transport Mechanism and Efficiency across Myoglobin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Longo E, Wright K, Caruso M, Gatto E, Palleschi A, Scarselli M, De Crescenzi M, Crisma M, Formaggio F, Toniolo C, Venanzi M. Peptide flatlandia: a new-concept peptide for positioning of electroactive probes in proximity to a metal surface. NANOSCALE 2015; 7:15495-15506. [PMID: 26274368 DOI: 10.1039/c5nr03549j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A helical hexapeptide was designed to link in a rigid parallel orientation to a gold surface. The peptide sequence of the newly synthesized compound is characterized by the presence of two 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) residues (positions 1 and 4) to promote a bidentate interaction with the gold surface, two L-Ala residues (positions 2 and 5) and two-aminoisobutyric acid (Aib) residues (positions 3 and 6) to favor a high population of the 310-helix conformation. Furthermore, a ferrocenoyl (Fc) probe was inserted at the N-terminus to investigate the electronic conduction properties of the peptide. X-Ray photoelectron spectroscopy and scanning tunneling microscopy techniques were used to characterize the binding of the peptide to the gold surface and the morphology of the peptide layer, respectively. Several electrochemical (cyclic voltammetry, chronoamperometry, square wave voltammetry) techniques were applied to analyze the electrochemical activity of the Fc probe, along with the influence of the peptide 3D-structure and the peptide layer morphology on electron transfer processes.
Collapse
Affiliation(s)
- Edoardo Longo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Raichlin S, Pecht I, Sheves M, Cahen D. Protein Electronic Conductors: Hemin-Substrate Bonding Dictates Transport Mechanism and Efficiency across Myoglobin. Angew Chem Int Ed Engl 2015; 54:12379-83. [DOI: 10.1002/anie.201505951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 11/09/2022]
|
27
|
Amdursky N. Electron Transfer across Helical Peptides. Chempluschem 2015; 80:1075-1095. [DOI: 10.1002/cplu.201500121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Indexed: 02/05/2023]
|
28
|
|
29
|
Venanzi M, Gatto E, Caruso M, Porchetta A, Formaggio F, Toniolo C. Photoinduced Electron Transfer through Peptide-Based Self-Assembled Monolayers Chemisorbed on Gold Electrodes: Directing the Flow-in and Flow-out of Electrons through Peptide Helices. J Phys Chem A 2014; 118:6674-84. [DOI: 10.1021/jp503791w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mariano Venanzi
- Department
of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Emanuela Gatto
- Department
of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Mario Caruso
- Department
of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Porchetta
- Department
of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Fernando Formaggio
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| |
Collapse
|
30
|
Bandyopadhyay S, Dey A. Convenient detection of the thiol functional group using H/D isotope sensitive Raman spectroscopy. Analyst 2014; 139:2118-21. [DOI: 10.1039/c3an02166a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Convenient detection of thiol groups using Raman spectroscopy.
Collapse
Affiliation(s)
- Sabyasachi Bandyopadhyay
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032, India
| |
Collapse
|
31
|
Metal complex oligomer and polymer wires on electrodes: Tactical constructions and versatile functionalities. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Hydrophobic Aib/Ala peptides solubilize in water through formation of supramolecular assemblies. Polym J 2013. [DOI: 10.1038/pj.2013.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Sakamoto R, Ohirabaru Y, Matsuoka R, Maeda H, Katagiri S, Nishihara H. Orthogonal bis(terpyridine)–Fe(ii) metal complex oligomer wires on a tripodal scaffold: rapid electron transport. Chem Commun (Camb) 2013; 49:7108-10. [DOI: 10.1039/c3cc42478b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Yu J, Horsley JR, Abell AD. The Influence of Secondary Structure on Electron Transfer in Peptides. Aust J Chem 2013. [DOI: 10.1071/ch13276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of synthetic peptides containing 0–5 α-aminoisobutyric acid (Aib) residues and a C-terminal redox-active ferrocene was synthesised and their conformations defined by NMR and circular dichroism. Each peptide was separately attached to an electrode for subsequent electrochemical analysis in order to investigate the effect of peptide chain length (distance dependence) and secondary structure on the mechanism of intramolecular electron transfer. While the shorter peptides (0–2 residues) do not adopt a well defined secondary structure, the longer peptides (3–5 residues) adopt a helical conformation, with associated intramolecular hydrogen bonding. The electrochemical results on these peptides clearly revealed a transition in the mechanism of intramolecular electron transfer on transitioning from the ill-defined shorter peptides to the longer helical peptides. The helical structures undergo electron transfer via a hopping mechanism, while the shorter ill-defined structures proceeded via an electron superexchange mechanism. Computational studies on two β-peptides PCB-(β3Val-β3Ala-β3Leu)n–NHC(CH3)2OOtBu (n = 1 and 2; PCB = p-cyanobenzamide) were consistent with these observations, where the n = 2 peptide adopts a helical conformation and the n = 1 peptide an ill-defined structure. These combined studies suggest that the mechanism of electron transfer is defined by the extent of secondary structure, rather than merely chain length as is commonly accepted.
Collapse
|
35
|
Abstract
Electrochemical studies of a set of ferrocene-labeled helical peptides of increasing length were carried out by forming self-assembled monolayers (SAMs) on gold electrodes. Electron transfer (ET) rates showed a very weakly distance dependent nature that has been interpreted as a result of a dynamically controlled tunneling mechanism. Specifically, the slow equilibrium between the α- and the 310 helical conformers in a SAM has been invoked, and the rate of formation of the more conductive 310 conformer has been proposed to be related to the ET rates observed.
Collapse
Affiliation(s)
- Himadri Shekhar Mandal
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
36
|
Longo E, Moretto A, Formaggio F, Toniolo C. The critical main-chain length for helix formation in water: determined in a peptide series with alternating Aib and Ala residues exclusively and detected with ECD spectroscopy. Chirality 2012; 23:756-60. [PMID: 22135805 DOI: 10.1002/chir.20986] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Critical main-chain length for peptide helix formation in the crystal (solid) state and in organic solvents has been already reported. In this short communication, we describe our results aiming at assessing the aforementioned parameter in water solution. To this goal, we synthesized step-by-step by solution procedures a complete series of N-terminally acetylated, C-terminally methoxylated oligopeptides, characterized only by alternating Aib and Ala residues, from the dimer to the nonamer level. All these compounds were investigated by electronic circular dichroism in the far-UV region in water solution as a function of chemical structure, namely presence/absence of an ester moiety or a negative charge at the C-terminus, and temperature. We find that the critical main-chain lengths for 3(10)- and α-helices, although still formed to a limited extent, in aqueous solution are six and eight residues, respectively.
Collapse
Affiliation(s)
- Edoardo Longo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | | | | | | |
Collapse
|
37
|
Ishihara Y, Kimura S. Peptide nanotube composed of cyclic tetra-β-peptide having polydiacetylene. Biopolymers 2012; 98:155-60. [DOI: 10.1002/bip.22029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 12/19/2022]
|
38
|
Shang Y, Singh PR, Chisti MM, Mernaugh R, Zeng X. Immobilization of a human epidermal growth factor receptor 2 mimotope-derived synthetic peptide on Au and its potential application for detection of herceptin in human serum by quartz crystal microbalance. Anal Chem 2011; 83:8928-36. [PMID: 21961885 PMCID: PMC3234294 DOI: 10.1021/ac201430p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic antibodies are antigenically similar to human antibodies and are difficult to detect in assays of human serum samples without the use of the therapeutic antibody's complementary antigen. Herein for the first time, we established a platform to detect Herceptin in solutions by using a small (<2.2 kDa), inexpensive, highly stable human epidermal growth factor receptor (HER2) mimotope-derived synthetic peptide immobilized on the surface of a Au quartz electrode. We used the HER2 mimotope as a substitute for the HER2 receptor protein in piezoimmunosensor or quartz crystal microbalance (QCM) assays to detect Herceptin in human serum. We demonstrated that assay sensitivity was dependent upon the amino acids used to tether and link the peptide to the sensor surface and the buffers used to carry out the assays. The detection limit of the piezoimmunosensor assay was 0.038 nM with a linear operating range of 0.038-0.859 nM. Little nonspecific binding to other therapeutic antibodies (Avastin and Rituxan) was observed. Levels of Herceptin in serum samples obtained from treated patients, as ascertained using the synthetic peptide-based QCM assay, were typical for those treated with Herceptin. The findings of this study are significant in that low-cost synthetic peptides could be used in a QCM assay, in lieu of native or recombinant antigens or capture antibodies, to rapidly detect a therapeutic antibody in human serum. The results suggested that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of affinity-based immunosensors to detect a broad range of clinical biomarkers.
Collapse
Affiliation(s)
- Yuqin Shang
- Chemistry Department, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | | |
Collapse
|