1
|
Peñas MI, Ocando C, Penott-Chang E, Safari M, Ezquerra TA, Rebollar E, Nogales A, Hernández R, Müller AJ. Nanostructural organization of thin films prepared by sequential dip-coating deposition of poly(butylene succinate), poly(ε-caprolactone) and their copolyesters (PBS-ran-PCL). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Effect of Polymer Demixed Nanotopographies on Bacterial Adhesion and Biofilm Formation. Polymers (Basel) 2019; 11:polym11121921. [PMID: 31766551 PMCID: PMC6960884 DOI: 10.3390/polym11121921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022] Open
Abstract
As the current global threat of antimicrobial resistance (AMR) persists, developing alternatives to antibiotics that are less susceptible to resistance is becoming an urgent necessity. Recent advances in biomaterials have allowed for the development and fabrication of materials with discrete surface nanotopographies that can deter bacteria from adhering to their surface. Using binary polymer blends of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polycaprolactone (PCL) and varying their relative concentrations, PS/PCL, PS/PMMA and PCL/PMMA polymer demixed thin films were developed with nanoisland, nanoribbon and nanopit topographies. In the PS/PCL system, PS segregates to the air-polymer interface, with the lower solubility PCL preferring the substrate-polymer interface. In the PS/PMMA and PCL/PMMA systems, PMMA prefers the air-polymer interface due to its greater solubility and lower surface energy. The anti-adhesion efficacy of the demixed films were tested against Pseudomonas aeruginosa (PA14). PS/PCL and PCL/PMMA demixed films showed a significant reduction in cell counts adhered on their surfaces compared to pure polymer control films, while no reduction was observed in the counts adhered on PS/PMMA demixed films. While the specific morphology did not affect the adhesion, a relationship between bacterial cell and topographical surface feature size was apparent. If the surface feature was smaller than the cell, then an anti-adhesion effect was observed; if the surface feature was larger than the cell, then the bacteria preferred to adhere.
Collapse
|
3
|
Yang K, Huang LJ, Wang YX, Du YC, Tang JG, Wang Y, Cheng MM, Zhang Y, Kipper MJ, Belfiore LA, Wickramasinghe SR. Graphene oxide/nanometal composite membranes for nanofiltration: synthesis, mass transport mechanism, and applications. NEW J CHEM 2019. [DOI: 10.1039/c8nj06045b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reviewed the recent developments in graphene-based composite membranes and discussed their challenges in this paper.
Collapse
|
4
|
Kelly GM, Elman JF, Jiang Z, Strzalka J, Albert JN. Thermal transitions in semi-crystalline polymer thin films studied via spectral reflectance. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Su C, Ma SM, Liu GX, Yang SG. Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2109-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kelly GM, Haque FM, Grayson SM, Albert JNL. Suppression of Melt-Induced Dewetting in Cyclic Poly(ε-caprolactone) Thin Films. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni M. Kelly
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Farihah M. Haque
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Julie N. L. Albert
- Department
of Chemical and Biomolecular Engineering and ‡Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
7
|
Ultrathin film crystallization of poly(ε-caprolactone) in blends containing styrene-isoprene block copolymers: The nano-rose morphology. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Control of morphology and lamellae orientations in thin poly (ε-caprolactone) films by blending with different molar mass of polystyrene. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Zhang S, Ren Z, Sun X, Li H, Yan S. Effects of Composition and Melting Time on the Phase Separation of Poly(3-hydroxybutyrate)/Poly(propylene carbonate) Blend Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1202-1209. [PMID: 28128568 DOI: 10.1021/acs.langmuir.6b03924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the effect of composition and melting time on the phase separation of poly(3-hydroxybutyrate)/poly(propylene carbonate) (PHB/PPC) blend thin films was investigated. Optical microscopy under phase contrast confirms the occurrence of phase separation of PHB/PPC blends at 190 °C. Polarized optical and scanning electron microscopies (POM and SEM) demonstrate that phase separation takes place along both horizontal and vertical film planes, which should be attributed to the two different interfaces and immiscible blends. A low PPC content (e.g. 30 wt %) results in the formation of compact PHB spherulites filling the whole space, whereas the noncrystallizable PPC spherical microdomains scatter in the PHB region, and their size shows a remarkable melting-time dependence. With the increasing PPC component and melting time, it is observed from POM that the separated PHB domains scattered in the continuous PPC phase, like the island structure. However, it can be revealed by SEM micrographs that the PHB thick domains are actually connected by its thin layer under the PPC layer. The real situation is, therefore, a large amount of PPC aggregates to the surface to form a network uplayer, whereas the PHB thick domains connected by its thin layer form a continuous PHB region, leading to a superimposed bilayer structure. There is also a small amount of PHB small domains scattered in the PHB phase. The PHB thick domains crystallize cooperatively with the PHB- or PHB-rich sublayer in a way just like the growth of pure PHB spherulites. This superimposed bilayer by interplay between phase separation and crystallization may provide availability to tailor the final structure and properties of crystalline/amorphous polymer blends.
Collapse
Affiliation(s)
- Shujing Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
10
|
Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F. Molecular Order in Cold Drawn, Strain-Recrystallized Poly(ε-caprolactone). Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilhelm Kossack
- Fakultät
für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Anne Seidlitz
- Institut
für Physik, FG Experimentelle Polymerphysik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Thomas Thurn-Albrecht
- Institut
für Physik, FG Experimentelle Polymerphysik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Friedrich Kremer
- Fakultät
für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Agbolaghi S, Abbasi F, Abbaspoor S. Double/single phase segregation and vertical stratification induced by crystallization in all-crystalline tri/diblock copolymers and homopolymer blends of poly(3-hexylthiophene) and poly(ethylene glycol). SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samira Agbolaghi
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz Iran
- Faculty of Polymer Engineering; Sahand University of Technology; Tabriz Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz Iran
- Faculty of Polymer Engineering; Sahand University of Technology; Tabriz Iran
| | - Saleheh Abbaspoor
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz Iran
- Faculty of Polymer Engineering; Sahand University of Technology; Tabriz Iran
| |
Collapse
|
12
|
Yang Q, Zhu Y, You J, Li Y. Stability and structure evolution in PMMA/SAN bilayer films upon solvent annealing. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3994-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Meier T, Solares SD. Rhodamine-doped nanoporous polymer films as high-performance anti-reflection coatings and optical filters. NANOSCALE 2016; 8:17675-17685. [PMID: 27714057 DOI: 10.1039/c6nr04505g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate a simple and robust procedure for the fabrication of rhodamine-doped nanoporous poly(methyl methacrylate) (PMMA) films, whose optical properties, such as anti-reflection, fluorescence and absorption can be tailored to specific applications. By exploiting phase separation of a binary polymer blend (PMMA and polystyrene), we fabricated foam-like nanoporous films that could be easily and cost-effectively integrated into the fabrication process of optical components. We link film morphology, studied by multifrequency atomic force microscopy (AFM), to the effective refractive index of the films for use as anti-reflection coatings. The film's morphology leads to superior broadband anti-reflection performance compared with homogeneous films. For applications involving optical filters and spectral conversion layers (e.g., for photovoltaic applications), we doped the films with the fluorescent molecule rhodamine, whereby simple variations in the fabrication process enabled us to prepare rhodamine-doped nanoporous PMMA with tunable fluorescence and absorption, without losing the anti-reflective properties. The above combination of optical properties makes the films attractive for a wide range of applications.
Collapse
Affiliation(s)
- Tobias Meier
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
14
|
Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F. Interface and Confinement Induced Order and Orientation in Thin Films of Poly(ϵ-caprolactone). Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wilhelm Kossack
- Fakultät
für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Anne Seidlitz
- Institut
für Physik, FG Experimentelle Polymerphysik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Thomas Thurn-Albrecht
- Institut
für Physik, FG Experimentelle Polymerphysik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Friedrich Kremer
- Fakultät
für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Prud’homme RE. Crystallization and morphology of ultrathin films of homopolymers and polymer blends. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Kang H, Shen X, Zhang W, Qi C, Zhang S, Li J. Simultaneously strengthening and toughening soy protein isolate-based films using poly(ethylene glycol)-block-polystyrene (PEG-b-PS) nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra17051j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Uniformly dispersed PEG-b-PS nanoparticles synthesized via RAFT dispersion polymerization was employed to reinforce the biodegradable soy protein isolate films.
Collapse
Affiliation(s)
- Haijiao Kang
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Xiaoyan Shen
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Wei Zhang
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Chusheng Qi
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| |
Collapse
|
17
|
A New Strategy of Lithography Based on Phase Separation of Polymer Blends. Sci Rep 2015; 5:15947. [PMID: 26515790 PMCID: PMC4626759 DOI: 10.1038/srep15947] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 108 with high uniformity across over an entire wafer.
Collapse
|
18
|
Shi J, Zhou W, Zhang L, Hu K, Xie Y. Morphology, structure, and photovoltaic properties of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester-based ternary blends doping with polystyrene of different tacticities. J Appl Polym Sci 2015. [DOI: 10.1002/app.41823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jiangman Shi
- Institute of Polymers, Nanchang University; Nanchang 330031 China
| | - Weihua Zhou
- Institute of Polymers, Nanchang University; Nanchang 330031 China
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Lin Zhang
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Kunxing Hu
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Yuanpeng Xie
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
19
|
Morphological regimes of poly(ε-caprolactone)/octaisobutyl polyhedral oligosilsesquioxane composite films in relation to film composition and thickness. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3253-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
You J, Zhang S, Huang G, Shi T, Li Y. Solvent annealing induced phase separation and dewetting in PMMA/SAN blend film: Film thickness and solvent dependence. J Chem Phys 2013; 138:244907. [DOI: 10.1063/1.4811471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Lin S, Zhu W, He X, Xing Y, Liang L, Chen T, Lin J. Multicompartmental Hollow Micelles Formed by Linear ABC Triblock Copolymers in Aqueous Medium. J Phys Chem B 2013; 117:2586-93. [DOI: 10.1021/jp312858e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shaoliang Lin
- Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry
of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai
200237, China
| | - Wenjie Zhu
- Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry
of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai
200237, China
| | - Xiaohua He
- Department
of Chemistry, East China Normal University, Shanghai 200241, China
| | - Yaohui Xing
- Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry
of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai
200237, China
| | - Liyuan Liang
- Department
of Chemistry, East China Normal University, Shanghai 200241, China
| | - Tao Chen
- Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry
of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai
200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced
Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry
of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai
200237, China
| |
Collapse
|
22
|
Zhang S, Shi T, You J, Li Y. Solvent annealing induced phase separation and dewetting in PMMA/SAN blend films: composition dependence. Polym Chem 2013. [DOI: 10.1039/c3py00290j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Liu C, Li Y, Lee MV, Kumatani A, Tsukagoshi K. Self-assembly of semiconductor/insulator interfaces in one-step spin-coating: a versatile approach for organic field-effect transistors. Phys Chem Chem Phys 2013; 15:7917-33. [DOI: 10.1039/c3cp44715d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Surface phase separation, dewetting feature size, and crystal morphology in thin films of polystyrene/poly(ε-caprolactone) blend. J Colloid Interface Sci 2012; 387:262-9. [PMID: 22964091 DOI: 10.1016/j.jcis.2012.07.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/26/2012] [Accepted: 07/29/2012] [Indexed: 11/21/2022]
Abstract
Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent.
Collapse
|
25
|
Kang H, Joo SW, Kang DS. Photopolymerization-Induced Vertical Phase Separation and Homeotropic Alignment in Liquid Crystal and Polymer Mixtures. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.8.2806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zubkov VV, Komarov PV. Simulating the ultrathin layer structure of dichloromethane on a solid substrate by means of density functional theory and molecular dynamics. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2012. [DOI: 10.1134/s0036024412070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ma M, Chen F, Wang K, Zhang Q, Deng H, Li Z, Fu Q. Anisotropic Dewetting Holes with Instability Fronts in Ultrathin Films of Polystyrene/Poly(ε-caprolactone) Blend. Macromolecules 2012. [DOI: 10.1021/ma3000779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meng Ma
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Chen
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ke Wang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qin Zhang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hua Deng
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongming Li
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
28
|
Huang C, Moosmann M, Jin J, Heiler T, Walheim S, Schimmel T. Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2012; 3:620-8. [PMID: 23019558 PMCID: PMC3458608 DOI: 10.3762/bjnano.3.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/09/2012] [Indexed: 05/21/2023]
Abstract
A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This "monolayer copy" of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiO(x). The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].
Collapse
Affiliation(s)
- Cheng Huang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Joint Research Laboratory Nanomaterials Karlsruhe Institute of Technology (KIT)/Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Markus Moosmann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Jiehong Jin
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Tobias Heiler
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Stefan Walheim
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| |
Collapse
|
29
|
Ma M, He Z, Yang J, Chen F, Wang K, Zhang Q, Deng H, Fu Q. Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13072-81. [PMID: 21936570 DOI: 10.1021/la2036289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.
Collapse
Affiliation(s)
- Meng Ma
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | | | | | | | | | | | | |
Collapse
|