1
|
Manimaran V, Nivetha RP, Tamilanban T, Narayanan J, Vetriselvan S, Fuloria NK, Chinni SV, Sekar M, Fuloria S, Wong LS, Biswas A, Ramachawolran G, Selvaraj S. Nanogels as novel drug nanocarriers for CNS drug delivery. Front Mol Biosci 2023; 10:1232109. [PMID: 37621994 PMCID: PMC10446842 DOI: 10.3389/fmolb.2023.1232109] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Nanogels are highly recognized as adaptable drug delivery systems that significantly contribute to improving various therapies and diagnostic examinations for different human diseases. These three-dimensional, hydrophilic cross-linked polymers have the ability to absorb large amounts of water or biological fluids. Due to the growing demand for enhancing current therapies, nanogels have emerged as the next-generation drug delivery system. They effectively address the limitations of conventional drug therapy, such as poor stability, large particle size, and low drug loading efficiency. Nanogels find extensive use in the controlled delivery of therapeutic agents, reducing adverse drug effects and enabling lower therapeutic doses while maintaining enhanced efficacy and patient compliance. They are considered an innovative drug delivery system that highlights the shortcomings of traditional methods. This article covers several topics, including the involvement of nanogels in the nanomedicine sector, their advantages and limitations, ideal properties like biocompatibility, biodegradability, drug loading capacity, particle size, permeability, non-immunological response, and colloidal stability. Additionally, it provides information on nanogel classification, synthesis, drug release mechanisms, and various biological applications. The article also discusses barriers associated with brain targeting and the progress of nanogels as nanocarriers for delivering therapeutic agents to the central nervous system.
Collapse
Affiliation(s)
- V. Manimaran
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - R. P. Nivetha
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - T. Tamilanban
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - J. Narayanan
- Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Subramaniyan Vetriselvan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | | | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Anupam Biswas
- Faculty of Medicine, AIMST University, Kedah, Malaysia
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | | |
Collapse
|
2
|
Kesharwani P, Prajapati SK, Jain A, Sharma S, Mody N, Jain A. Biodegradable Nanogels for Dermal Applications: An Insight. CURRENT NANOSCIENCE 2023; 19:509-524. [DOI: 10.2174/1573413718666220415095630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 08/22/2024]
Abstract
Abstract:
Biodegradable nanogels in the biomedical field are emerging vehicles comprising
dispersions of hydrogel nanoparticles having 3D crosslinked polymeric networks. Nanogels show
distinguished characteristics including their homogeneity, adjustable size, low toxicity, stability
in serum, stimuli-responsiveness (pH, temperature, enzymes, light, etc.), and relatively good
drug encapsulation capability. Due to these characteristics, nanogels are referred to as nextgeneration
drug delivery systems and are suggested as promising carriers for dermal applications.
The site-specific delivery of drugs with effective therapeutic effects is crucial in transdermal drug
delivery. The nanogels made from biodegradable polymers can show external stimuliresponsiveness
which results in a change in gel volume, water content, colloidal stability, mechanical
strength, and other physical and chemical properties, thus improving the site-specific
topical drug delivery. This review provides insight into the advances in development, limitations,
and therapeutic significance of nanogels formulations. It also highlights the process of release of
drugs in response to external stimuli, various biodegradable polymers in the formulation of the
nanogels, and dermal applications of nanogels and their role in imaging, anti‐inflammatory therapy,
antifungal and antimicrobial therapy, anti‐psoriatic therapy, and ocular and protein/peptide
drug delivery.
Collapse
Affiliation(s)
- Payal Kesharwani
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan 304022, India
| | - Shiv Kumar Prajapati
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
| | - Anushka Jain
- Raj Kumar
Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan-304022-India
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (MP) 470003, India
| | - Ankit Jain
- Department of
Materials Engineering, Indian Institute of Science, Bangalore 560012 (Karnataka), India
| |
Collapse
|
3
|
Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants’o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022; 14:2839. [PMID: 36559335 PMCID: PMC9787506 DOI: 10.3390/pharmaceutics14122839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.
Collapse
Affiliation(s)
- Sifiso S. Makhathini
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sipho Mdanda
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pariksha J. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Moosa E. Kharodia
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Karl Rumbold
- FH Campus Wien, University of Applied Sciences, Vienna, Höchstädtpl. 6, 1200 Wien, Austria
| | - Imhotep Alagidede
- Simon Diedong Dombo University of Business and Integrated Development Studies, Bamahu Box WA64 Wa, Upper West Region, Ghana
- Wits Business School, University of the Witwatersrand, 2 St Davids Pl &, St Andrew Rd, Parktown, Johannesburg 2193, South Africa
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Zain Bulbulia
- Policy Research & Advisory Services Branch, Gauteng Office of Premier, 1 Central Place 30 Rahima Moosa Street Newtown, Johannesburg 2113, South Africa
| | - Thankhoe A. Rants’o
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P. D. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Pearson College London Alumni (Pearson plc), London WC1V 7BH, UK
| |
Collapse
|
4
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
5
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
6
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
7
|
Ganguly S, Margel S. Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 2020; 44:107611. [PMID: 32818552 DOI: 10.1016/j.biotechadv.2020.107611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
|
8
|
Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv Colloid Interface Sci 2020; 283:102213. [PMID: 32739324 DOI: 10.1016/j.cis.2020.102213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Double-hydrophilic block copolymers (DHBCs), consisting of at least two different water-soluble blocks, are an alternative to the classical amphiphilic block copolymers and have gained increasing attention in the field of biomedical applications. Although the chemical nature of the two blocks can be diverse, most classical DHBCs consist of a bioeliminable non-ionic block to promote solubilization in water, like poly(ethylene glycol), and a second block that is more generally a pH-responsive block capable of interacting with another ionic polymer or substrate. This second block is generally non-degradable and the presence of side chain functional groups raises the question of its fate and toxicity, which is a limitation in the frame of biomedical applications. In this review, following a first part dedicated to recent examples of non-degradable DHBCs, we focus on the DHBCs that combine a biocompatible and bioeliminable non-ionic block with a degradable functional block including polysaccharides, polypeptides, polyesters and other miscellaneous polymers. Their use to design efficient drug delivery systems for various biomedical applications through stimuli-dependent self-assembly is discussed along with the current challenges and future perspectives for this class of copolymers.
Collapse
|
9
|
Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, Shukla R. Recent Advances in Self-Assembled Nanoparticles for Drug Delivery. Curr Drug Deliv 2020; 17:279-291. [DOI: 10.2174/1567201817666200210122340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/28/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
The collection of different bulk materials forms the nanoparticles, where the properties of the
nanoparticle are solely different from the individual components before being ensembled. Selfassembled
nanoparticles are basically a group of complex functional units that are formed by gathering
the individual bulk components of the system. It includes micelles, polymeric nanoparticle, carbon nanotubes,
liposomes and niosomes, <i>etc</i>. This self-assembly has progressively heightened interest to control
the final complex structure of the nanoparticle and its associated properties. The main challenge of formulating
self-assembled nanoparticle is to improve the delivery system, bioavailability, enhance circulation
time, confer molecular targeting, controlled release, protection of the incorporated drug from external
environment and also serve as nanocarriers for macromolecules. Ultimately, these self-assembled
nanoparticles facilitate to overcome the physiological barriers <i>in vivo</i>. Self-assembly is an equilibrium
process where both individual and assembled components are subsisting in equilibrium. It is a bottom up
approach in which molecules are assembled spontaneously, non-covalently into a stable and welldefined
structure. There are different approaches that have been adopted in fabrication of self-assembled
nanoparticles by the researchers. The current review is enriched with strategies for nanoparticle selfassembly,
associated properties, and its application in therapy.
Collapse
Affiliation(s)
- Lanke Tejesh Varma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Murtaza M. Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi-110062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER, Raebareli), Lucknow (U.P.), India
| |
Collapse
|
10
|
|
11
|
Wang L, Liu L, Dong B, Zhao H. Peroxidase-Mediated In Situ Fabrication of Multi-Stimuli-Responsive and Dynamic Protein Nanogels from Tyrosine-Conjugated Biodynamer and Ovablumin. ACS Macro Lett 2019; 8:1233-1239. [PMID: 35651157 DOI: 10.1021/acsmacrolett.9b00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Horseradish peroxidase (HRP)-mediated oxidation of tyrosine-conjugated biodynamer containing acylhydrazone linkages and ovalbumin (OVA)/reduced ovalbumin (rOVA) generated protein nanogels through simultaneous tyrosine coupling and thiol cross-linking in the presence of H2O2. The obtained nanogels are multi-stimuli-responsive to temperature, pH, and glutathione (GSH) and possess the dynamic character of reversible covalent bonds. The OVA-based or rOVA-based protein nanogels can be utilized as cargoes of anticancer drug curcumin (Cur). The Cur-loaded protein nanogels rapidly released Cur in intracellular-mimicking acidic and reductive environment, thus, making these protein nanogels promising nanocarriers for intracellular drug delivery. HRP-mediated cross-linking of the tyrosine-conjugated biodynamer and proteins provides a facile and versatile approach for fabrication of responsive and adaptive biohybrid nanogels under mild conditions.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
- School of Packaging and Printing Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, People’s Republic of China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| | - Bingyang Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
12
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
13
|
Stanislawska I, Liwinska W, Lyp M, Stojek Z, Zabost E. Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery. Molecules 2019; 24:E1873. [PMID: 31096669 PMCID: PMC6572277 DOI: 10.3390/molecules24101873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, the fast development of hybrid nanogels dedicated to various applications has been seen. In this context, nanogels incorporating biomolecules into their nanonetworks are promising innovative carriers that gain great potential in biomedical applications. Hybrid nanogels containing various types of biomolecules are exclusively designed for: improved and controlled release of drugs, targeted delivery, improvement of biocompatibility, and overcoming of immunological response and cell self-defense. This review provides recent advances in this rapidly developing field and concentrates on: (1) the key physical consequences of using hybrid nanogels and introduction of biomolecules; (2) the construction and functionalization of degradable hybrid nanogels; (3) the advantages of hybrid nanogels in controlled and targeted delivery; and (4) the analysis of the specificity of drug release mechanisms in hybrid nanogels. The limitations and future directions of hybrid nanogels in targeted specific- and real-time delivery are also discussed.
Collapse
Affiliation(s)
- Iwona Stanislawska
- Department of Nutrition, College of Rehabilitation, Kasprzaka 49, 01-234 Warsaw, Poland.
| | - Wioletta Liwinska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Marek Lyp
- Department of Nutrition, College of Rehabilitation, Kasprzaka 49, 01-234 Warsaw, Poland.
| | - Zbigniew Stojek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Ewelina Zabost
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
14
|
Korde JM, Kandasubramanian B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00683] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jay M. Korde
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
15
|
Chao H, Li G, Yu J, Liu Z, Liu Z, Jiang J. Backbone‐Hydrolyzable Poly(oligo(ethylene glycol) bis(glycidyl ether)‐
alt
‐ketoglutaric acid) with Tunable LCST Behavior. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Huan Chao
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Jiabao Yu
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Zhaotie Liu
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Zhong‐Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 Shaanxi P. R. China
| |
Collapse
|
16
|
Lu D, Zhu M, Wu S, Wang W, Lian Q, Saunders BR. Triply responsive coumarin-based microgels with remarkably large photo-switchable swelling. Polym Chem 2019. [DOI: 10.1039/c9py00233b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using two different wavelengths of UV light enables remarkably strong photo-switchable swelling of pH- and temperature-responsive microgels and photo-release of doxorubicin.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Mingning Zhu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Shanglin Wu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Wenkai Wang
- School of Materials
- University of Manchester
- Manchester
- UK
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Qing Lian
- School of Materials
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|
17
|
Jones CD, Steed JW. Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 2018; 45:6546-6596. [PMID: 27711667 DOI: 10.1039/c6cs00435k] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in the field of supramolecular chemistry have made it possible, in many situations, to reliably engineer soft materials to address a specific technological problem. Particularly exciting are "smart" gels that undergo reversible physical changes on exposure to remote, non-invasive environmental stimuli. This review explores the development of gels which are transformed by heat, light and ultrasound, as well as other mechanical inputs, applied voltages and magnetic fields. Focusing on small-molecule gelators, but with reference to organic polymers and metal-organic systems, we examine how the structures of gelator assemblies influence the physical and chemical mechanisms leading to thermo-, photo- and mechano-switchable behaviour. In addition, we evaluate how the unique and versatile properties of smart materials may be exploited in a wide range of applications, including catalysis, crystal growth, ion sensing, drug delivery, data storage and biomaterial replacement.
Collapse
Affiliation(s)
| | - Jonathan W Steed
- Department of Chemistry, Durham University, South Road, DH1 3LE, UK.
| |
Collapse
|
18
|
Synthesis and photo-controllable thermosensitivity of poly(N-isopropylacrylamide) terminated with dimethylaminochalcone unit. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Benoit C, Talitha S, David F, Michel S, Anna SJ, Rachel AV, Patrice W. Dual thermo- and light-responsive coumarin-based copolymers with programmable cloud points. Polym Chem 2017. [DOI: 10.1039/c7py00914c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article deals with the design of a new class of dual-responsive coumarin-based copolymers, sensitive to temperature and light (UV and near infrared).
Collapse
Affiliation(s)
- Couturaud Benoit
- Univ. Lille
- CNRS
- ENSCL
- UMR 8207 – UMET – Unité Matériaux Et Transformations
- Ingénierie des Systèmes Polymères (ISP) team
| | - Stefanello Talitha
- Grenoble Alpes University
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)
- 38041 Grenoble Cedex 9
- France
| | - Fournier David
- Univ. Lille
- CNRS
- ENSCL
- UMR 8207 – UMET – Unité Matériaux Et Transformations
- Ingénierie des Systèmes Polymères (ISP) team
| | - Sliwa Michel
- Univ. Lille
- CNRS
- UMR 8516 – LASIR – Laboratoire de Spectrochimie Infrarouge et Raman
- F-59000 Lille
- France
| | - Szarpack-Jankowska Anna
- Grenoble Alpes University
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)
- 38041 Grenoble Cedex 9
- France
| | - Auzély-Velty Rachel
- Grenoble Alpes University
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS)
- 38041 Grenoble Cedex 9
- France
| | - Woisel Patrice
- Univ. Lille
- CNRS
- ENSCL
- UMR 8207 – UMET – Unité Matériaux Et Transformations
- Ingénierie des Systèmes Polymères (ISP) team
| |
Collapse
|
20
|
|
21
|
Zhu M, Liu W, Xiao J, Ling Y, Tang H. Synthesis and UCST-type phase behaviors of OEGylated random copolypeptides in alcoholic solvents. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mengxiang Zhu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University; Xiangtan Hunan 411105 China
| | - Wenjun Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University; Xiangtan Hunan 411105 China
| | - Jiang Xiao
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University; Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University; Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University; Xiangtan Hunan 411105 China
| |
Collapse
|
22
|
Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 2016; 44:6161-86. [PMID: 26505057 DOI: 10.1039/c5cs00199d] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanogels are nanosized crosslinked polymer networks capable of absorbing large quantities of water. Specifically, smart nanogels are interesting because of their ability to respond to biomedically relevant changes like pH, temperature, etc. In the last few decades, hybrid nanogels or composites have been developed to overcome the ever increasing demand for new materials in this field. In this context, a hybrid refers to nanogels combined with different polymers and/or with nanoparticles such as plasmonic, magnetic, and carbonaceous nanoparticles, among others. Research activities are focused nowadays on using multifunctional hybrid nanogels in nanomedicine, not only as drug carriers but also as imaging and theranostic agents. In this review, we will describe nanogels, particularly in the form of composites or hybrids applied in nanomedicine.
Collapse
|
23
|
Zhu M, Xu Y, Ge C, Ling Y, Tang H. Synthesis and UCST-type phase behavior of OEGylated poly(γ-benzyl-l-glutamate) in organic media. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengxiang Zhu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yanzhi Xu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Chenglong Ge
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| |
Collapse
|
24
|
Xia M, Cheng Y, Theato P, Zhu M. Thermo-Induced Double Phase Transition Behavior of Physically Cross-Linked Hydrogels Based on Oligo(ethylene glycol) methacrylates. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mengge Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry; University of Hamburg; Bundesstr. 45 20146 Hamburg Germany
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P. R. China
| |
Collapse
|
25
|
Affiliation(s)
- Yanqi Ye
- Joint Department of Biomedical Engineering; University of North Carolina at Chapel Hill and North Carolina State University; 911 Oval Drive Raleigh NC 27695 USA
- Molecular Pharmaceutics Division and Center for Nanotechnology in Drug Delivery; Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering; University of North Carolina at Chapel Hill and North Carolina State University; 911 Oval Drive Raleigh NC 27695 USA
- Molecular Pharmaceutics Division and Center for Nanotechnology in Drug Delivery; Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering; University of North Carolina at Chapel Hill and North Carolina State University; 911 Oval Drive Raleigh NC 27695 USA
- Molecular Pharmaceutics Division and Center for Nanotechnology in Drug Delivery; Eshelman School of Pharmacy; University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
- Department of Medicine; University of North Carolina School of Medicine; Chapel Hill NC 27599 USA
| |
Collapse
|
26
|
Li M, Fan W, Hong C, Pan C. Synthesis and Characterization of Coumarin-Containing Cyclic Polymer and Its Photoinduced Coupling/Dissociation. Macromol Rapid Commun 2015; 36:2192-7. [DOI: 10.1002/marc.201500494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/13/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Min Li
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Wei Fan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Chunyan Hong
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Caiyuan Pan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
27
|
Can A, Zhang Q, Rudolph T, Schacher FH, Gohy JF, Schubert US, Hoogenboom R. Schizophrenic thermoresponsive block copolymer micelles based on LCST and UCST behavior in ethanol–water mixtures. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Chang H, Shi M, Sun YN, Jiang JQ. Photo-dimerization characteristics of coumarin pendants within amphiphilic random copolymer micelles. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1657-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kim B, Hong D, Chang WV. LCST and UCST double-phase transitions of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid)/poly(dimethylaminoethyl methacrylate) complex. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-014-3452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Deng Y, Xu Y, Wang X, Yuan Q, Ling Y, Tang H. Water-Soluble Thermoresponsiveα-Helical Polypeptide with an Upper Critical Solution Temperature: Synthesis, Characterization, and Thermoresponsive Phase Transition Behaviors. Macromol Rapid Commun 2015; 36:453-8. [DOI: 10.1002/marc.201400625] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/07/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Yong Deng
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yanzhi Xu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Xi Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Qiulin Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| |
Collapse
|
31
|
Wang F, Du J. Disclosing the nature of thermo-responsiveness of poly(N-isopropyl acrylamide)-based polymeric micelles: aggregation or fusion? Chem Commun (Camb) 2015; 51:11198-201. [DOI: 10.1039/c5cc02641e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We disclose a fusion-dominated thermo-responsive behaviour of a poly(N-isopropyl acrylamide)-based copolymer micelle by TEM after in situ photo-cross-linking morphologies.
Collapse
Affiliation(s)
- Fangyingkai Wang
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai
- China
| | - Jianzhong Du
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education
- Tongji University
- Shanghai
- China
| |
Collapse
|
32
|
Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 2015; 44:1948-73. [DOI: 10.1039/c4cs00341a] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We emphasize the synthetic strategies to produce micro-/nanogels and the importance of degradable linkers incorporated in the gel network.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Maria Molina
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|
33
|
Wu Y, Wang X, Ling Y, Tang H. Preparation and thermoresponsive properties of helical polypeptides bearing pyridinium salts. RSC Adv 2015. [DOI: 10.1039/c5ra04541j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polypeptides bearing 3-methylpyridinium groups and BF4− prepared by nuleophilic substitution and ion-exchange reaction showed upper critical solution temperature (UCST)-type transitions in aqueous solutions.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Xi Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| |
Collapse
|
34
|
Liu Y, Tian M, Chang H, Jiang J, Yan X, Liu Z, Liu Z. Equilibrating immigration and anthracene-maleimide-based Diels-Alder-trapping of octylmaleimide in mixed photo-cross-linked polymer micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14782-14788. [PMID: 25423358 DOI: 10.1021/la503971q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is possible that the hydrophobic guest within amphiphilic polymer micelles may leak out and be captured by other species before polymer micelles adhere to the desired focus because of the complexity in an actual release procedure, rendering the reduced efficiency of the nanocarrier system. To describe such a scenario, two water-soluble fluorescent amphiphilic random copolymers of PAV and PAA with photo-cross-linkable coumarin and anthracene pendants, respectively, were chosen to investigate the equilibrating immigration and maleimide-anthracene-based Diels-Alder-trapping of hydrophobic octylmaleimide guest from one type of photo-cross-linked polymer micelles of PAV85% to another of PAA66% in aqueous solution using the emission and absorption spectra techniques.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi China , 710062
| | | | | | | | | | | | | |
Collapse
|
35
|
Eckmann DM, Composto RJ, Tsourkas A, Muzykantov VR. Nanogel Carrier Design for Targeted Drug Delivery. J Mater Chem B 2014; 2:8085-8097. [PMID: 25485112 PMCID: PMC4251498 DOI: 10.1039/c4tb01141d] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions.
Collapse
Affiliation(s)
- D M Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - V R Muzykantov
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Photo-induced dynamic association of coumarin pendants within amphiphilic random copolymer micelles. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3474-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Yi C, Sun J, Zhao D, Hu Q, Liu X, Jiang M. Influence of photo-cross-linking on emulsifying performance of the self-assemblies of poly(7-(4-vinylbenzyloxyl)-4-methylcoumarin-co-acrylic acid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6669-6677. [PMID: 24845778 DOI: 10.1021/la500326u] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polymeric micelles could be used as model polymeric particulate emulsifiers to elucidate the correlation between the micellar structure and their emulsifying performance. Photo-cross-linkable and pH-responsive micelles were prepared with amphiphilic random copolymers, poly(7-(4-vinylbenzyloxyl)-4-methylcoumarin-co-acrylic acid) (PVMAA), via the self-assembly in selective-solvent DMF/H2O and then used as polymeric particulate emulsifiers to stabilize toluene-in-water emulsions. Primary micelles, based on PVMAA with 12 mol % of hydrophobic composition, were chosen as model to investigate the influence of photo-cross-linking on the emulsifying performance. The larger shrinkage degree by photo-cross-linking (SDC) the micelles have, the lower emulsifying efficiency the micelles exhibit. Furthermore, the structural transitions of micelles with SDC of 0% and 95% in response to pH change were comparatively confirmed by a combination of electrophoresis, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The micelles of various states, manipulated by photo-cross-linking and pH changes, were used as emulsifiers to stabilize toluene-in-water or styrene-in-water emulsions. For the un-cross-linked micelles, polymer chains gradually protrude from micelles with pH increasing, which benefits the increase in the emulsifying efficiency of micelles. However, as pH elevated over 8, the stability of emulsions significantly decreases due to the disintegration of micelles. On the contrary, micelles with SDC of 95% keep their structural integrity and become more rigid as pH increase, leading to lower emulsifying efficiency of micelles and worse stability of the emulsions. This paper provides a new insight into the principles governing the extremely high emulsifying efficiency of polymeric particulate emulsifiers and pH-dependent or pH-responsive properties of the formed emulsions.
Collapse
Affiliation(s)
- Chenglin Yi
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | | | | | | | | | | |
Collapse
|
38
|
Biyani MV, Weder C, Foster EJ. Photoswitchable nanocomposites made from coumarin-functionalized cellulose nanocrystals. Polym Chem 2014. [DOI: 10.1039/c4py00486h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Yu Y, Li S, Leng C, Xiong T, Yuan K, Yan S, Jia F. Synthesis and self-assembly behavior of thermoresponsive triblock copolymer. POLYMER SCIENCE SERIES B 2014. [DOI: 10.1134/s1560090414020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Yin J, Hu J, Zhang G, Liu S. Schizophrenic core-shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2551-2558. [PMID: 24555801 DOI: 10.1021/la500133y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A variety of slightly cross-linked poly(2-vinylpyridine)-poly(N-isopropylacrylamide) (P2VP-PNIPAM) core-shell microgels with pH- and temperature-responsive characteristic were prepared via seeded emulsion polymerization. Negatively charged sodium 2,6-naphthalenedisulfonate (2,6-NDS) could be internalized into the inner core, followed by formation of (P2VPH(+)/SO3(2-)) supramolecular complex through the electrostatic attractive interaction in acid condition. The thermoresponsive characteristic feature of the (P2VPH(+)/SO3(2-))-PNIPAM core-shell microgels was investigated by laser light scattering and UV-vis measurement, revealing an integration of upper critical solution temperature (UCST) and lower critical solution temperature (LCST) behaviors in the temperature range of 20-55 °C. The UCST performance arised from the compromised electrostatic attractive interaction between P2VPH(+) and 2,6-NDS at elevated temperatures, while the subsequent LCST transition is correlated to the thermo-induced collapse of PNIPAM shells. The controlled release of 2,6-NDS was monitored by static fluorescence spectra as a function of temperature change. Moreover, stopped-flow equipped with a temperature-jump accessory was then employed to assess the dynamic process, suggesting a millisecond characteristic relaxation time of the 2,6-NDS diffusion process. Interestingly, the characteristic relaxation time is independent of the shell cross-link density, whereas it was significantly affected by shell thickness. We believe that these dual thermoresponsive core-shell microgels with thermotunable volume phase transition may augur promising applications in the fields of polymer science and materials, particularly for temperature-triggered release.
Collapse
Affiliation(s)
- Jun Yin
- Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, Department of Polymer Material and Engineering, School of Chemical Engineering, Hefei University of Technology , Hefei 230009, China
| | | | | | | |
Collapse
|
41
|
Chan N, An SY, Yee N, Oh JK. Dual Redox and Thermoresponsive Double Hydrophilic Block Copolymers with Tunable Thermoresponsive Properties and Self-Assembly Behavior. Macromol Rapid Commun 2014; 35:752-7. [DOI: 10.1002/marc.201300852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/13/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Nicky Chan
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| | - So Young An
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| | - Nathan Yee
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| |
Collapse
|
42
|
He J, Tremblay L, Lacelle S, Zhao Y. How can photoisomerization of azobenzene induce a large cloud point temperature shift of PNIPAM? Polym Chem 2014. [DOI: 10.1039/c4py00546e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a comprehensive study of the photo-induced phase transition of azobenzene-containing poly(N-isopropylacrylamide) (PNIPAM) in block copolymers (BCPs) upon the isomerization of azobenzene in the mixed solvent of water and dioxane.
Collapse
Affiliation(s)
- Jie He
- Département de chimie
- Université de Sherbrooke
- Sherbrooke, Canada J1K 2R1
- Department of Chemistry
- University of Connecticut
| | - Luc Tremblay
- Département de médecine nucléaire et de radiobiologie and Centre d'imagerie moléculaire de Sherbrooke
- Université de Sherbrooke
- Sherbrooke, Canada J1K 2R1
| | - Serge Lacelle
- Département de chimie
- Université de Sherbrooke
- Sherbrooke, Canada J1K 2R1
| | - Yue Zhao
- Département de chimie
- Université de Sherbrooke
- Sherbrooke, Canada J1K 2R1
| |
Collapse
|
43
|
Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S. Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 2013; 42:7421-35. [PMID: 23765263 PMCID: PMC3740153 DOI: 10.1039/c3cs60094g] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, we outline examples that illustrate the design criteria for achieving macromolecular assemblies that incorporate a combination of two or more chemical, physical or biological stimuli-responsive components. Progress in both fundamental investigation into the phase transformations of these polymers in response to multiple stimuli and their utilization in a variety of practical applications are highlighted. Using these examples, we aim to explain the origin of employed mechanisms of stimuli responsiveness which may serve as a guideline to inspire future design of multi-stimuli responsive materials.
Collapse
Affiliation(s)
- Jiaming Zhuang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
44
|
Tian M, Wang J, Zhang E, Li J, Duan C, Yao F. Synthesis of agarose-graft-poly[3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] zwitterionic graft copolymers via ATRP and their thermally-induced aggregation behavior in aqueous media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8076-8085. [PMID: 23713658 DOI: 10.1021/la4007668] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel polysaccharide-based zwitterionic copolymer, agarose-graft-poly[3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] (agarose-g-PDMAPS) with UCST, depending both on hydrogen bonding and electrostatic interaction, was synthesized by ATRP, and its aggregation behavior in aqueous media was investigated in detail. Proton nuclear magnetic resonance spectroscopy, Fourier transform-infrared spectroscopy, and gel-permeation chromatography were performed to characterize the copolymer. Thermosensitive behaviors of the copolymers in water, NaCl, and urea solution were tracked by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis. It was found that the copolymers existed as "core-shell" spheres at an elevated temperature, as a result of the self-assembly of the agarose backbones located in the "core" driven by hydrogen-bonding interactions. When the copolymer solution was cooled below UCST, the core-shell spheres began to aggregate because of the electrostatic interactions and collapse of PDMAPS side chains in the "shell" layer. UCST of the copolymer could be tuned in a wide range, depending on the chain lengths of PDMAPS. This is the first example to investigate the thermosensitivity, combining ionic interactions of the zwitterionic side chains with hydrogen bondings from the biocompatible agarose backbones. The synthetic strategy presented here can be employed in the preparation of other novel biomaterials from a variety of polysaccharides.
Collapse
Affiliation(s)
- Miao Tian
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
45
|
Jochum FD, Theato P. Temperature- and light-responsive smart polymer materials. Chem Soc Rev 2013; 42:7468-83. [DOI: 10.1039/c2cs35191a] [Citation(s) in RCA: 757] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Yoshida E. Effects of Illuminance and Heat Rays on Photo-Controlled/Living Radical Polymerization Mediated by 4-Methoxy-2,2,6,6-Tetramethylpiperidine-1-Oxyl. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/102186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of illuminance and heat rays released from the light source on the photo-controlled/living radical polymerization of methyl methacrylate were investigated with the aim of strict control of molecular weight. The bulk polymerization was performed at room temperature using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator and (2RS,RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate as the accelerator by irradiation with a high-pressure mercury lamp. The polymerization by the direct irradiation from the light source yielded polymers containing an uncontrolled high-molecular-weight polymer and having the molecular weight distribution over 3. On the other hand, the polymerization by the indirect irradiation with reflective light using a mirror produced polymers with controlled molecular weights with comparatively narrow molecular weight distribution at ca. 1.4. Too high an illuminance caused an increase in the molecular weight distribution. During the polymerization, the monomer conversion increased as the illuminance increased. It was found that the elimination of heat rays from the illuminating light was indispensable for the molecular weight control by the photo-controlled/living radical polymerization.
Collapse
Affiliation(s)
- Eri Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho Aichi, Toyohashi 441-8580, Japan
| |
Collapse
|
47
|
Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 2012; 64:836-51. [PMID: 22342438 DOI: 10.1016/j.addr.2012.02.002] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an "ideal" drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed.
Collapse
|
48
|
Sheikholeslami P, Ewaschuk CM, Ahmed SU, Greenlay BA, Hoare T. Semi-batch control over functional group distributions in thermoresponsive microgels. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2642-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Affiliation(s)
- Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec,
Canada J1K 2R1
| |
Collapse
|
50
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|