1
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
2
|
Martin A, Lalanne P, Weber-Vax A, Mutschler A, Lecommandoux S. Controlling Polymersome Size through Microfluidic-Assisted Self-Assembly: Enabling 'Ready to Use' formulations for biological applications. Int J Pharm 2023:123157. [PMID: 37348574 DOI: 10.1016/j.ijpharm.2023.123157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The self-assembly of poly(ethylene glycol)-block-poly(trimethylene carbonate) PEG-b-PTMC copolymers into vesicles, also referred as polymersomes, was evaluated by solvent displacement using microfluidic systems. Two microfluidic chips with different flow regimes (micromixer and Herringbone) were used and the impact of process conditions on vesicle formation was evaluated. As polymersomes are sensitive to osmotic variations, their preparation under conditions allowing their direct use in biological medium is of major importance. We therefore developed a solvent exchange approach from DMSO (Dimethylsulfoxide) to aqueous media with an osmolarity of 300 mOsm.L-1, allowing their direct use for biological evaluation. We evidenced that the organic/aqueous solvent ratio does not impact vesicle size, but the total flow rate and copolymer concentration have been observed to influence the size of polymersomes. Finally, nanoparticles with diameters ranging from 76 nm to 224 nm were confirmed to be vesicles through the use of multi-angle light scattering in combination with cryo-TEM (Cryo-Transmission Electron Microscopy) characterization.
Collapse
Affiliation(s)
- Anouk Martin
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France
| | - Pierre Lalanne
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France
| | - Amélie Weber-Vax
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France
| | - Angela Mutschler
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France
| | | |
Collapse
|
3
|
Houston JE, Fruhner L, de la Cotte A, Rojo González J, Petrunin AV, Gasser U, Schweins R, Allgaier J, Richtering W, Fernandez-Nieves A, Scotti A. Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. SCIENCE ADVANCES 2022; 8:eabn6129. [PMID: 35776796 PMCID: PMC10883365 DOI: 10.1126/sciadv.abn6129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bulk modulus, K, quantifies the elastic response of an object to an isotropic compression. For soft compressible colloids, knowing K is essential to accurately predict the suspension response to crowding. Most colloids have complex architectures characterized by different softness, which additionally depends on compression. Here, we determine the different values of K for the various morphological parts of individual nanogels and probe the changes of K with compression. Our method uses a partially deuterated polymer, which exerts the required isotropic stress, and small-angle neutron scattering with contrast matching to determine the form factor of the particles without any scattering contribution from the polymer. We show a clear difference in softness, compressibility, and evolution of K between the shell of the nanogel and the rest of the particle, depending on the amount of cross-linker used in their synthesis.
Collapse
Affiliation(s)
| | - Lisa Fruhner
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Alexis de la Cotte
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Javier Rojo González
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | | | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Jürgen Allgaier
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
4
|
Sun W, Shen X, Liu J, Wu Z, Chen H. Preparing Well-Defined Polyacrylamide-b-Polycarbonate by Integrating Photoiniferter Polymerization and TBD-Catalyzed ROP. Macromol Rapid Commun 2022; 43:e2200376. [PMID: 35726483 DOI: 10.1002/marc.202200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Indexed: 11/07/2022]
Abstract
The dual-initiator technique allows the polymerization of different monomers from orthogonal polymerization mechanisms to obtain block copolymers (BCPs). In this study, it is attempted to combine photoiniferter living free radical polymerization and organocatalytic ring-opening polymerization (ROP) to design a hydroxyl-functionalized carbamodithioate, i.e., 4-(hydroxymethyl)benzyl diethylcarbamodithioate (HBDC), which can integrate photoiniferter polymerization of acrylamide monomers and ROP of cyclic carbonates. As a proof of concept, the monomer applicability is further extended to acrylates and lactones. The results confirm that the two polymerization systems are experimentally compatible in a stepwise sequence as well as in a simultaneous one-pot process to synthesize BCPs. It is reasonable to assume that HBDC can allow for simple and efficient one-pot access to well-defined BCPs from a larger range of monomers, which is more advantageous from the operational, economical, and environmental points of view.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jingrui Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
5
|
Wagner AM, Quandt J, Söder D, Garay‐Sarmiento M, Joseph A, Petrovskii VS, Witzdam L, Hammoor T, Steitz P, Haraszti T, Potemkin II, Kostina NY, Herrmann A, Rodriguez‐Emmenegger C. Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200617. [PMID: 35393756 PMCID: PMC9189634 DOI: 10.1002/advs.202200617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self-assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i-combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self-assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic-like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to "hijack" their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i-combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.
Collapse
Affiliation(s)
- Anna M. Wagner
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 2Aachen52074Germany
| | - Jonas Quandt
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 2Aachen52074Germany
| | - Dominik Söder
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 2Aachen52074Germany
| | - Manuela Garay‐Sarmiento
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Chair of BiotechnologyRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
| | - Anton Joseph
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 2Aachen52074Germany
| | - Vladislav S. Petrovskii
- Physics DepartmentLomonosov Moscow State UniversityLeninskie Gory 1–2Moscow119991Russian Federation
| | - Lena Witzdam
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 2Aachen52074Germany
| | - Thomas Hammoor
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
| | - Philipp Steitz
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
| | - Tamás Haraszti
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
| | - Igor I. Potemkin
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Physics DepartmentLomonosov Moscow State UniversityLeninskie Gory 1–2Moscow119991Russian Federation
- National Research, South Ural State UniversityChelyabinsk454080Russian Federation
| | - Nina Yu. Kostina
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 2Aachen52074Germany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 2Aachen52074Germany
| | - Cesar Rodriguez‐Emmenegger
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- Institute for Bioengineering of Catalonia (IBEC)Carrer de Baldiri Reixac, 10, 12Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| |
Collapse
|
6
|
Marušič N, Zhao Z, Otrin L, Dimova R, Ivanov I, Sundmacher K. Fusion-Induced Growth of Biomimetic Polymersomes: Behavior of Poly(dimethylsiloxane)-Poly(ethylene oxide) Vesicles in Saline Solutions Under High Agitation. Macromol Rapid Commun 2021; 43:e2100712. [PMID: 34820929 DOI: 10.1002/marc.202100712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Giant unilamellar vesicles serve as membrane models and primitive mockups of natural cells. With respect to the latter use, amphiphilic polymers can be used to replace phospholipids in order to introduce certain favorable properties, ultimately allowing for the creation of truly synthetic cells. These new properties also enable the employment of new preparation procedures that are incompatible with the natural amphiphiles. Whereas the growth of lipid compartments to micrometer dimensions has been well established, growth of their synthetic analogs remains underexplored. Here, the influence of experimental parameters like salt type/concentration and magnitude of agitation on the fusion of nanometer-sized vesicles made of poly(dimethylsiloxane)-poly(ethylene oxide) graft copolymer (PDMS-g-PEO) is investigated in detail. To this end, dynamic light scattering, microscopy, and membrane mixing assays are employed, and the process at different time and length scales is analyzed. This optimized method is used as an easy tool to obtain giant vesicles, equipped with membrane and cytosolic biomachinery, in the presence of salts at physiological concentrations.
Collapse
Affiliation(s)
- Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Ziliang Zhao
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Leibniz Institute of Photonic Technology e.V., 07745, Jena, Germany.,Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Lado Otrin
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
7
|
Otrin L, Witkowska A, Marušič N, Zhao Z, Lira RB, Kyrilis FL, Hamdi F, Ivanov I, Lipowsky R, Kastritis PL, Dimova R, Sundmacher K, Jahn R, Vidaković-Koch T. En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. Nat Commun 2021; 12:4972. [PMID: 34404795 PMCID: PMC8371082 DOI: 10.1038/s41467-021-25294-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
A variety of artificial cells springs from the functionalization of liposomes with proteins. However, these models suffer from low durability without repair and replenishment mechanisms, which can be partly addressed by replacing the lipids with polymers. Yet natural membranes are also dynamically remodeled in multiple cellular processes. Here, we show that synthetic amphiphile membranes also undergo fusion, mediated by the protein machinery for synaptic secretion. We integrated fusogenic SNAREs in polymer and hybrid vesicles and observed efficient membrane and content mixing. We determined bending rigidity and pore edge tension as key parameters for fusion and described its plausible progression through cryo-EM snapshots. These findings demonstrate that dynamic membrane phenomena can be reconstituted in synthetic materials, thereby providing new tools for the assembly of synthetic protocells.
Collapse
Affiliation(s)
- Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Agata Witkowska
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Ziliang Zhao
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rafael B Lira
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
8
|
Fauquignon M, Courtecuisse E, Josselin R, Mutschler A, Brûlet A, Schmutz M, Le Meins JF. Large hybrid Polymer/Lipid Unilamellar vesicle (LHUV) at the nanoscale: An insight into the lipid distribution in the membrane and permeability control. J Colloid Interface Sci 2021; 604:575-583. [PMID: 34280755 DOI: 10.1016/j.jcis.2021.06.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Membrane structuration of Large Hybrid Unilamellar Polymer/Lipid Vesicle (LHUV) is an important parameter on the optimization of their properties and thus their valuation in various fields. However, this kind of information is hardly accessible. In this work, we will focus on the development of LHUV obtained from the self-assembly of diblock poly(dimethylsiloxane)-b-poly(ethylene oxide) (PDMS-b-PEO) of different molar masses combined with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 15% and 25% w/w content. The hybrid character of the resulting vesicles as well as their membrane structure are characterized by the mean of different techniques such as small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We show that hybrid vesicles with homogeneous membrane structure are obtained whatever the molar mass of the block copolymer (from 2500 to 4000 g/mol), with of a small number of tubular structures observed with the higher molar mass. We also demonstrate that the permeability of the LHUV, evaluated through controlled release experiments of fluorescein loaded in LHUV, is essentially controlled by the lipid/polymer composition.
Collapse
Affiliation(s)
- Martin Fauquignon
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
| | - Elise Courtecuisse
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
| | - Romane Josselin
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
| | - Angela Mutschler
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
| | - Annie Brûlet
- Université Paris-Saclay, Laboratoire Léon Brillouin, UMR12 CEA-CNRS, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France.
| | - Marc Schmutz
- Université de Strasbourg, CNRS, ICS, UPR 22, 23 rue du Loess, F-67000 Strasbourg, France.
| | | |
Collapse
|
9
|
Miller A, Pearce AK, Foster JC, O’Reilly RK. Probing and Tuning the Permeability of Polymersomes. ACS CENTRAL SCIENCE 2021; 7:30-38. [PMID: 33532567 PMCID: PMC7844851 DOI: 10.1021/acscentsci.0c01196] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 05/19/2023]
Abstract
Polymersomes are a class of synthetic vesicles composed of a polymer membrane surrounding an aqueous inner cavity. In addition to their overall size, the thickness and composition of polymersome membranes determine the range of potential applications in which they can be employed. While synthetic polymer chemists have made great strides in controlling polymersome membrane parameters, measurement of their permeability to various analytes including gases, ions, organic molecules, and macromolecules remains a significant challenge. In this Outlook, we compare the general methods that have been developed to quantify polymersome membrane permeability, focusing in particular on their capability to accurately measure analyte flux. In addition, we briefly highlight strategies to control membrane permeability. Based on these learnings, we propose a set of criteria for designing future methods of quantifying membrane permeability such that the passage of a variety of molecules into and out of their lumens can be better understood.
Collapse
|
10
|
Chang HY, Tsai HC, Sheng YJ, Tsao HK. Floating and Diving Loops of ABA Triblock Copolymers in Lipid Bilayers and Stability Enhancement for Asymmetric Membranes. Biomacromolecules 2020; 22:494-503. [PMID: 33356177 DOI: 10.1021/acs.biomac.0c01328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hybrid membranes of lipids and AxByAz triblock copolymers can possess better biocompatibility and mechanical stability. In this work, triblock copolymer conformations and stability of asymmetric membranes are explored by dissipative particle dynamics. The triblock copolymers in the membranes exhibit either the bridge or loop conformation. As hydrophobic B-blocks interact attractively with lipid heads, bridge-shaped copolymers are significantly inhibited and loop-shaped copolymers prefer to stay at the interface between hydrophilic and hydrophobic layers. This floating loop has a flattened conformation, consistent with the experimental findings. In contrast, for repulsive interactions between B-blocks and lipid heads, bridge-shaped copolymers are abundant and loop-shaped copolymers tend to plunge into the hydrophobic layer. This diving loop displays a random coil conformation. The asymmetric membrane in which the fractions of loop-shaped copolymers in the upper and lower leaflets are different is thermodynamically unstable. Two approaches are proposed to acquire kinetically stable asymmetric membranes. First, membrane symmetrization is arrested by eliminating bridge-shaped copolymers, which is achieved by B-block/lipid head attraction and B-block/lipid tail repulsion. Second, asymmetric triblock copolymers (x ≠ z) are used to prevent the passage of the long A-block through the hydrophobic layer.
Collapse
Affiliation(s)
- Hsin-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Hsiang-Chi Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan
| |
Collapse
|
11
|
Moreno S, Boye S, Lederer A, Falanga A, Galdiero S, Lecommandoux S, Voit B, Appelhans D. Avidin Localizations in pH-Responsive Polymersomes for Probing the Docking of Biotinylated (Macro)molecules in the Membrane and Lumen. Biomacromolecules 2020; 21:5162-5172. [PMID: 33180486 DOI: 10.1021/acs.biomac.0c01276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To mimic organelles and cells and to construct next-generation therapeutics, asymmetric functionalization and location of proteins for artificial vesicles is thoroughly needed to emphasize the complex interplay of biological units and systems through spatially separated and spatiotemporal controlled actions, release, and communications. For the challenge of vesicle (= polymersome) construction, the membrane permeability and the location of the cargo are important key characteristics that determine their potential applications. Herein, an in situ and post loading process of avidin in pH-responsive and photo-cross-linked polymersomes is developed and characterized. First, loading efficiency, main location (inside, lumen, outside), and release of avidin under different conditions have been validated, including the pH-stable presence of avidin in polymersomes' membrane outside and inside. This advantageous approach allows us to selectively functionalize the outer and inner membranes as well as the lumen with several bio(macro)molecules, generally suited for the construction of asymmetrically functionalized artificial organelles. In addition, a fluorescence resonance energy transfer (FRET) effect was used to study the permeability or uptake of the polymersome membrane against a broad range of biotinylated (macro)molecules (different typology, sizes, and shapes) under different conditions.
Collapse
Affiliation(s)
- Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.,School of Science, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Annarita Falanga
- Department of Pharmacy, CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Sébastien Lecommandoux
- Universite de Bordeaux, ENSCPB, 16 Avenue Pey Berland, 33607 Pessac, Cedex, France.,CNRS, Laboratoire de Chimie des Polymeres Organiques, UMR, 5629 Pessac, France
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| |
Collapse
|
12
|
Kleineberg C, Wölfer C, Abbasnia A, Pischel D, Bednarz C, Ivanov I, Heitkamp T, Börsch M, Sundmacher K, Vidaković‐Koch T. Light-Driven ATP Regeneration in Diblock/Grafted Hybrid Vesicles. Chembiochem 2020; 21:2149-2160. [PMID: 32187828 PMCID: PMC7496644 DOI: 10.1002/cbic.201900774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Indexed: 01/19/2023]
Abstract
Light-driven ATP regeneration systems combining ATP synthase and bacteriorhodopsin have been proposed as an energy supply in the field of synthetic biology. Energy is required to power biochemical reactions within artificially created reaction compartments like protocells, which are typically based on either lipid or polymer membranes. The insertion of membrane proteins into different hybrid membranes is delicate, and studies comparing these systems with liposomes are needed. Here we present a detailed study of membrane protein functionality in different hybrid compartments made of graft polymer PDMS-g-PEO and diblock copolymer PBd-PEO. Activity of more than 90 % in lipid/polymer-based hybrid vesicles could prove an excellent biocompatibility. A significant enhancement of long-term stability (80 % remaining activity after 42 days) could be demonstrated in polymer/polymer-based hybrids.
Collapse
Affiliation(s)
- Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Christian Wölfer
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Amirhossein Abbasnia
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Dennis Pischel
- Otto von Guericke UniversityProcess Systems EngineeringUniversitätsplatz 239106MagdeburgGermany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| | - Thomas Heitkamp
- Jena University Hospital; Single-Molecule Microscopy GroupNonnenplan 2–407743JenaGermany
| | - Michael Börsch
- Jena University Hospital; Single-Molecule Microscopy GroupNonnenplan 2–407743JenaGermany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
- Otto von Guericke UniversityProcess Systems EngineeringUniversitätsplatz 239106MagdeburgGermany
| | - Tanja Vidaković‐Koch
- Max Planck Institute for Dynamics of Complex Technical Systems Process Systems EngineeringSandtorstraße 139106MagdeburgGermany
| |
Collapse
|
13
|
Dinu MV, Dinu IA, Saxer SS, Meier W, Pieles U, Bruns N. Stabilizing Enzymes within Polymersomes by Coencapsulation of Trehalose. Biomacromolecules 2020; 22:134-145. [PMID: 32567847 DOI: 10.1021/acs.biomac.0c00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes are essential biocatalysts and very attractive as therapeutics. However, their functionality is strictly related to their stability, which is significantly affected by the environmental changes occurring during their usage or long-term storage. Therefore, maintaining the activity of enzymes is essential when they are exposed to high temperature during usage or when they are stored for extended periods of time. Here, we stabilize and protect enzymes by coencapsulating them with trehalose into polymersomes. The anhydrobiotic disaccharide preserved up to about 81% of the enzyme's original activity when laccase/trehalose-loaded nanoreactors were kept desiccated for 2 months at room temperature and 75% of its activity when heated at 50 °C for 3 weeks. Moreover, the applicability of laccase/trehalose-loaded nanoreactors as catalysts for bleaching of the textile dyes orange G, toluidine blue O, and indigo was proven. Our results demonstrate the advantages of coencapsulating trehalose within polymersomes to stabilize enzymes in dehydrated state for extended periods of time, preserving their activity even when heated to elevated temperature.
Collapse
Affiliation(s)
- Maria Valentina Dinu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Uwe Pieles
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
14
|
Passos Gibson V, Fauquignon M, Ibarboure E, Leblond Chain J, Le Meins JF. Switchable Lipid Provides pH-Sensitive Properties to Lipid and Hybrid Polymer/Lipid Membranes. Polymers (Basel) 2020; 12:polym12030637. [PMID: 32168824 PMCID: PMC7183064 DOI: 10.3390/polym12030637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Blending amphiphilic copolymers and lipids constitutes a novel approach to combine the advantages of polymersomes and liposomes into a new single hybrid membrane. Efforts have been made to design stimuli-responsive vesicles, in which the membrane's dynamic is modulated by specific triggers. In this investigation, we proposed the design of pH-responsive hybrid vesicles formulated with poly(dimethylsiloxane)-block-poly(ethylene oxide) backbone (PDMS36-b-PEO23) and cationic switchable lipid (CSL). The latter undergoes a pH-triggered conformational change and induces membrane destabilization. Using confocal imaging and DLS measurements, we interrogated the structural changes in CSL-doped lipid and hybrid polymer/lipid unilamellar vesicles at the micro- and nanometric scale, respectively. Both switchable giant unilamellar lipid vesicles (GUV) and hybrid polymer/lipid unilamellar vesicles (GHUV) presented dynamic morphological changes, including protrusions and fission upon acidification. At the submicron scale, scattered intensity decreased for both switchable large unilamellar vesicles (LUV) and hybrid vesicles (LHUV) under acidic pH. Finally, monitoring the fluorescence leakage of encapsulated calcein, we attested that CSL increased the permeability of GUV and GHUV in a pH-specific fashion. Altogether, these results show that switchable lipids provide a pH-sensitive behavior to hybrid polymer/lipid vesicles that could be exploited for the triggered release of drugs, cell biomimicry studies, or as bioinspired micro/nanoreactors.
Collapse
Affiliation(s)
- Victor Passos Gibson
- Gene Delivery Laboratory, Faculty of pharmacy, University of Montréal, Montréal, QC H3C 3J7, Canada;
| | - Martin Fauquignon
- Laboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, Avenue Pey Berland, F-33600 Pessac, France; (M.F.); (E.I.)
| | - Emmanuel Ibarboure
- Laboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, Avenue Pey Berland, F-33600 Pessac, France; (M.F.); (E.I.)
| | - Jeanne Leblond Chain
- Gene Delivery Laboratory, Faculty of pharmacy, University of Montréal, Montréal, QC H3C 3J7, Canada;
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, Faculty of pharmacy, F-33016 Bordeaux, France
- Correspondence: (J.L.C.); (J.-F.L.M.)
| | - Jean-François Le Meins
- Laboratoire de Chimie des Polymères Organiques, LCPO, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, Avenue Pey Berland, F-33600 Pessac, France; (M.F.); (E.I.)
- Correspondence: (J.L.C.); (J.-F.L.M.)
| |
Collapse
|
15
|
Tsai HC, Yang YL, Sheng YJ, Tsao HK. Formation of Asymmetric and Symmetric Hybrid Membranes of Lipids and Triblock Copolymers. Polymers (Basel) 2020; 12:polym12030639. [PMID: 32168935 PMCID: PMC7183320 DOI: 10.3390/polym12030639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Hybrid membranes formed by co-assembly of AxByAx (hydrophilic-hydrophobic-hydrophilic) triblock copolymers into lipid bilayers are investigated by dissipative particle dynamics. Homogeneous hybrid membranes are developed as lipids and polymers are fully compatible. The polymer conformations can be simply classified into bridge- and loop-structures in the membranes. It is interesting to find that the long-time fraction of loop-conformation (fL) of copolymers in the membrane depends significantly on the hydrophilic block length (x). As x is small, an equilibrium fL* always results irrespective of the initial conformation distribution and its value depends on the hydrophobic block length (y). For large x, fL tends to be time-invariant because polymers are kinetically trapped in their initial structures. Our findings reveal that only symmetric hybrid membranes are formed for small x, while membranes with stable asymmetric leaflets can be constructed with large x. The effects of block lengths on the polymer conformations, such as transverse and lateral spans (d⊥ and d‖) of bridge- and loop-conformations, are discussed as well.
Collapse
Affiliation(s)
- Hsiang-Chi Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yan-Ling Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (Y.-J.S.); (H.-K.T.)
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan
- Correspondence: (Y.-J.S.); (H.-K.T.)
| |
Collapse
|
16
|
Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers. J Colloid Interface Sci 2020; 561:318-326. [DOI: 10.1016/j.jcis.2019.10.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023]
|
17
|
Larnaudie SC, Peyret A, Beaute L, Nassoy P, Lecommandoux SB. Photopolymerization-Induced Polymersome Rupture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8398-8403. [PMID: 31199660 DOI: 10.1021/acs.langmuir.9b01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(butadiene)- b-poly(ethylene oxide) (PBut2.5- b-PEO1.3) giant polymersomes were prepared using an emulsion-centrifugation method. The impact of a fast decrease of the osmotic pressure inside the lumen of giant PBut- b-PEO vesicles was studied by confocal microscopy. This osmotic imbalance was created by performing the photoinduced polymerization of acrylamide inside these giant polymersomes, mimicking cell-like confinement. Experimental conditions (irradiation time, relative concentration of monomer, and photoinitiator) were optimized to induce the fastest and highest osmotic pressure difference in bulk solution. When confined inside polymersomes with a low permeability membrane made of PBut- b-PEO copolymers, this hyper-osmotic shock induced a fast disruption of the membrane and polymersome burst. These findings, complementary to hypotonic shock approaches previously reported, are demonstrating the versatility and relevance of controlling and modulating osmotic pressure imbalance in self-assembled artificial cell systems and protocells.
Collapse
Affiliation(s)
- Sophie C Larnaudie
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 , F-33600 Pessac , France
- LP2N, Institut d?Optique Graduate School, CNRS UMR 5298, Universite? de Bordeaux, IOA , 1 rue Franc?ois Mitterrand , F-33400 Talence , France
| | - Ariane Peyret
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 , F-33600 Pessac , France
| | - Louis Beaute
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 , F-33600 Pessac , France
| | - Pierre Nassoy
- LP2N, Institut d?Optique Graduate School, CNRS UMR 5298, Universite? de Bordeaux, IOA , 1 rue Franc?ois Mitterrand , F-33400 Talence , France
| | | |
Collapse
|
18
|
Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Sanborn JR, Chen X, Yao YC, Hammons JA, Tunuguntla RH, Zhang Y, Newcomb CC, Soltis JA, De Yoreo JJ, Van Buuren A, Parikh AN, Noy A. Carbon Nanotube Porins in Amphiphilic Block Copolymers as Fully Synthetic Mimics of Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803355. [PMID: 30368926 DOI: 10.1002/adma.201803355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Biological membranes provide a fascinating example of a separation system that is multifunctional, tunable, precise, and efficient. Biomimetic membranes, which mimic the architecture of cellular membranes, have the potential to deliver significant improvements in specificity and permeability. Here, a fully synthetic biomimetic membrane is reported that incorporates ultra-efficient 1.5 nm diameter carbon nanotube porin (CNTPs) channels in a block-copolymer matrix. It is demonstrated that CNTPs maintain high proton and water permeability in these membranes. CNTPs can also mimic the behavior of biological gap junctions by forming bridges between vesicular compartments that allow transport of small molecules.
Collapse
Affiliation(s)
- Jeremy R Sanborn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- University of California Davis, Davis, CA, 95616, USA
| | - Xi Chen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Joshua A Hammons
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ramya H Tunuguntla
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Yuliang Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Christina C Newcomb
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jennifer A Soltis
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anthony Van Buuren
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Atul N Parikh
- University of California Davis, Davis, CA, 95616, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
20
|
Muñuzuri AP, Busupalli B, Pérez-Mercader J. Osmotically Induced Membrane Fission in Giant Polymer Vesicles: Multilamellarity and Effect of the Amphiphilic Block Lengths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10984-10992. [PMID: 30157654 DOI: 10.1021/acs.langmuir.8b01590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphilic block co-polymers are used to form large spherical vesicles. A sudden change in the osmotic pressure across the polymer membrane is used to induce the fission of the polymer vesicle. The membrane area to volume ratio, as expected, is observed to be a parameter suitable to describe the process and even mark the critical points along this transition. The effect of the length of the hydrophobic and hydrophilic chains on the fission process is analyzed. The effects of membrane lamellarity and initial polydispersity are thoroughly analyzed from the experimental data following mathematical models, and the phenomenon of fission in these polymer vesicles is understood via measurements characterizing the membrane, i.e., area stretch modulus.
Collapse
Affiliation(s)
- Alberto P Muñuzuri
- Department of Earth and Planetary Sciences , Harvard University , Cambridge , Massachusetts 02138-1204 , United States
- University of Santiago de Compostela , Santiago de Compostela 15706 , Spain
| | - Balanagulu Busupalli
- Department of Earth and Planetary Sciences , Harvard University , Cambridge , Massachusetts 02138-1204 , United States
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences , Harvard University , Cambridge , Massachusetts 02138-1204 , United States
- The Santa Fe Institute , Santa Fe , New Mexico 87501 , United States
| |
Collapse
|
21
|
Dao TPT, Fernandes F, Fauquignon M, Ibarboure E, Prieto M, Le Meins JF. The combination of block copolymers and phospholipids to form giant hybrid unilamellar vesicles (GHUVs) does not systematically lead to "intermediate" membrane properties. SOFT MATTER 2018; 14:6476-6484. [PMID: 30043790 DOI: 10.1039/c8sm00547h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the elasticity under stretching as well as the fluidity of Giant Hybrid Unilamellar Vesicles (GHUV) has been studied. The membrane structuration of these GHUVs has already been studied at the micro and nanoscale in a previous study of the team. These GHUVs were obtained by the association of a fluid phospholipid (POPC) and a triblock copolymer, poly(ethyleneoxide)-b-poly(dimethylsiloxane)-b-poly(ethyleneoxide). Although the architecture of triblock copolymers can facilitate vesicle formation, they have been scarcely used to generate GHUVs. We show, through micropipette aspiration and FRAP experiments, that the incorporation of a low amount of lipids in the polymer membrane leads to a significant loss of the toughness of the vesicle and subtle modification of the lateral diffusion of polymer chains. We discuss the results within the framework of the conformation of the triblock copolymer chain in the membrane and in the presence of lipid nanodomains.
Collapse
Affiliation(s)
- T P T Dao
- University of Bordeaux, LCPO UMR 5629, 16 Avenue Pey Berland, F-33600 Pessac, France.
| | | | | | | | | | | |
Collapse
|
22
|
Werber JR, Elimelech M. Permselectivity limits of biomimetic desalination membranes. SCIENCE ADVANCES 2018; 4:eaar8266. [PMID: 29963628 PMCID: PMC6025908 DOI: 10.1126/sciadv.aar8266] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/17/2018] [Indexed: 05/12/2023]
Abstract
Water scarcity and inadequate membrane selectivity have spurred interest in biomimetic desalination membranes, in which biological or synthetic water channels are incorporated in an amphiphilic bilayer. As low channel densities (0.1 to 10%) are required for sufficient water permeability, the amphiphilic bilayer matrix will play a critical role in separation performance. We determine selectivity limits for biomimetic membranes by studying the transport behavior of water, neutral solutes, and ions through the bilayers of lipid and block-copolymer vesicles and projecting performance for varying water channel densities. We report that defect-free biomimetic membranes would have water/salt permselectivities ~108-fold greater than current desalination membranes. In contrast, the solubility-based permeability of lipid and block-copolymer bilayers (extending Overton's rule) will result in poor rejection of hydrophobic solutes. Defect-free biomimetic membranes thus offer great potential for seawater desalination and ultrapure water production, but would perform poorly in wastewater reuse. Potential strategies to limit neutral solute permeation are discussed.
Collapse
Affiliation(s)
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
23
|
Klermund L, Castiglione K. Polymersomes as nanoreactors for preparative biocatalytic applications: current challenges and future perspectives. Bioprocess Biosyst Eng 2018; 41:1233-1246. [DOI: 10.1007/s00449-018-1953-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022]
|
24
|
Revealing membrane permeability of polymersomes through fluorescence enhancement. Colloids Surf B Biointerfaces 2018; 161:156-161. [DOI: 10.1016/j.colsurfb.2017.10.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/03/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
|
25
|
Otrin L, Marušič N, Bednarz C, Vidaković-Koch T, Lieberwirth I, Landfester K, Sundmacher K. Toward Artificial Mitochondrion: Mimicking Oxidative Phosphorylation in Polymer and Hybrid Membranes. NANO LETTERS 2017; 17:6816-6821. [PMID: 29067800 DOI: 10.1021/acs.nanolett.7b03093] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
For energy supply to biomimetic constructs, a complex chemical energy-driven ATP-generating artificial system was built. The system was assembled with bottom-up detergent-mediated reconstitution of an ATP synthase and a terminal oxidase into two types of novel nanocontainers, built from either graft copolymer membranes or from hybrid graft copolymer/lipid membranes. The versatility and biocompatibility of the proposed nanocontainers was demonstrated through convenient system assembly and through high retained activity of both membrane-embedded enzymes. In the future, the nanocontainers might be used as a platform for the functional reconstitution of other complex membrane proteins and could considerably expedite the design of nanoreactors, biosensors, and artificial organelles.
Collapse
Affiliation(s)
- Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Nika Marušič
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University , Universitaetsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
26
|
Deike S, Malke M, Lechner BD, Binder WH. Constraining Polymers into β-Turns: Miscibility and Phase Segregation Effects in Lipid Monolayers. Polymers (Basel) 2017; 9:E369. [PMID: 30971043 PMCID: PMC6418963 DOI: 10.3390/polym9080369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 11/17/2022] Open
Abstract
Abstract: Investigation of model biomembranes and their interactions with natural or synthetic macromolecules are of great interest to design membrane systems with specific properties such as drug-delivery. Here we study the behavior of amphiphilic β-turn mimetic polymer conjugates at the air⁻water interface and their interactions with lipid model membranes. For this endeavor we synthesized two different types of conjugates containing either hydrophobic polyisobutylene (PIB, Mn = 5000 g·mol-1) or helical poly(n-hexyl isocyanate) (PHIC, Mn = 4000 g·mol-1), both polymers being immiscible, whereas polyisobutylene as a hydrophobic polymer can incorporate into lipid membranes. The conjugates were investigated using Langmuir-film techniques coupled with epifluorescence microscopy and AFM (Atomic Force Microscopy), in addition to their phase behavior in mixed lipid/polymer membranes composed of DPPC (dipalmitoyl-sn-glycero-3-phosphocholine). It was found that the DPPC monolayers are strongly disturbed by the presence of the polymer conjugates and that domain formation of the polymer conjugates occurs at high surface pressures (π > 30 mN·m-1).
Collapse
Affiliation(s)
- Stefanie Deike
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Marlen Malke
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Bob-Dan Lechner
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
- School of Physics, University of Exeter, Stocker Road, Exeter EX4, UK.
| | - Wolfgang H Binder
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
27
|
Wang Z, Gao J, Ustach V, Li C, Sun S, Hu S, Faller R. Tunable Permeability of Cross-Linked Microcapsules from pH-Responsive Amphiphilic Diblock Copolymers: A Dissipative Particle Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7288-7297. [PMID: 28661159 DOI: 10.1021/acs.langmuir.7b01586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using dissipative particle dynamics simulation, we probe the tunable permeability of cross-linked microcapsules made from pH-sensitive diblock copolymers poly(ethylene oxide)-b-poly(N,N-diethylamino-2-ethyl methacrylate) (PEO-b-PDEAEMA). We first examine the self-assembly of non-cross-linked microcapsules and their pH-responsive collapse and then explore the effects of cross-linking and block interaction on the swelling or deswelling of cross-linked microcapsules. Our results reveal a preferential loading of hydrophobic dicyclopentadiene (DCPD) molecules in PEO-b-PDEAEMA copolymers. Upon reduction of pH, non-cross-linked microcapsules fully decompose into small wormlike clusters as a result of large self-repulsions of protonated copolymers. With increasing degree of cross-linking, the morphology of the microcapsule becomes more stable to pH change. The highly cross-linked microcapsule shell undergoes significant local polymer rearrangement in acidic solution, which eliminates the amphiphilicility and therefore enlarges the permeability of the shell. The responsive cross-linked shell experiences a disperse-to-buckle configurational transition upon reduction of pH, which is effective for the steady or pulsatile regulation of shell permeability. The swelling rate of the cross-linked shell is dependent on both electrostatic and nonelectrostatic interactions between the pH-sensitive groups as well as the other groups. Our study highlights the combination of cross-linking structure and block interactions in stabilizing microcapsules and tuning their selective permeability.
Collapse
Affiliation(s)
- Zhikun Wang
- Department of Chemical Engineering, University of California , Davis, California 95616, United States
| | | | - Vincent Ustach
- Department of Chemical Engineering, University of California , Davis, California 95616, United States
| | | | | | | | - Roland Faller
- Department of Chemical Engineering, University of California , Davis, California 95616, United States
| |
Collapse
|
28
|
Poschenrieder ST, Klermund L, Langer B, Castiglione K. Determination of Permeability Coefficients of Polymersomal Membranes for Hydrophilic Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6011-6020. [PMID: 28509557 DOI: 10.1021/acs.langmuir.6b04598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polymer vesicles, so-called polymersomes, can be applied as carrier-systems and universal reaction compartments, due to the possibility to encapsulate guest molecules. Compared to common lipid vesicles, polymersomes show an increased stability and decreased membrane permeability. Control of the mass transport across the membrane is necessary for any application, requiring the precise knowledge of the permeability. So far, data on permeability coefficients of polymersomal membranes are scarce because commonly applied release assays are confronted with the challenge of high detection limits and alternative methods developed so far are either restricted to the use of a certain permeating molecule or rely on the use of nuclear magnetic resonance measurements. In contrast, an influx assay that is broadly applicable to hydrophilic molecules and does not involve specialized equipment was developed in this work, which is based on the passive diffusion of compounds into initially empty vesicles. The method is valid for hydrophilic molecules that show no membrane retention and, thus, do not accumulate within the membrane. Using this method, the permeability of polymersomes made of poly(2-methyloxazoline)15-poly(dimethylsiloxane)68-poly(2-methyloxazoline)15 for seven model compounds was investigated under varying conditions. Permeability coefficients as low as 1.9 × 10-14 cm s-1 could be measured.
Collapse
Affiliation(s)
- Sarah T Poschenrieder
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| | - Ludwig Klermund
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| | - Bettina Langer
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| |
Collapse
|
29
|
Frampton MB, Marquardt D, Letofsky-Papst I, Pabst G, Zelisko PM. Analysis of Trisiloxane Phosphocholine Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4948-4953. [PMID: 28471667 PMCID: PMC5462096 DOI: 10.1021/acs.langmuir.6b04162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have synthesized unique siloxane phosphocholines and characterized their aggregates in aqueous solution. The siloxane phosphocholines form nearly monodisperse vesicles in aqueous solution without the need for secondary extrusion processes. The area/lipid, lipid volume, and bilayer thickness were determined from small-angle X-ray scattering experiments. The impetus for the spontaneous formation of unilamellar vesicles by these compounds is discussed.
Collapse
Affiliation(s)
- Mark B. Frampton
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada
| | - Drew Marquardt
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, 8010, Austria
- BioTechMed-Graz, Graz, 8010, Austria
| | - Ilse Letofsky-Papst
- Graz University of Technology, NAWI Graz, Institute for Electron Microscopy & Nanoanalysis and Center for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Graz, 8010, Austria
- BioTechMed-Graz, Graz, 8010, Austria
| | - Paul M. Zelisko
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario, Canada
- Corresponding Author: Paul M. Zelisko
| |
Collapse
|
30
|
Dao TPT, Fernandes F, Ibarboure E, Ferji K, Prieto M, Sandre O, Le Meins JF. Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs). SOFT MATTER 2017; 13:627-637. [PMID: 27991638 DOI: 10.1039/c6sm01625a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phase separation in giant polymer/lipid hybrid unilamellar vesicles (GHUVs) has been described over the last few years. However there is still a lack of understanding on the physical and molecular factors governing the phase separation in such systems. Among these parameters it has been suggested that in analogy to multicomponent lipid vesicles hydrophobic mismatches as well as lipid fluidity play a role. In this work, we aim to map a global picture of phase separation and domain formation in the membrane of GHUVs by using various copolymers based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEO) with different architectures (grafted, triblock) and molar masses, combined with phospholipids in the fluid (POPC) or gel state (DPPC) at room temperature. From confocal imaging and fluorescence lifetime imaging microscopy (FLIM) techniques, the phase separation into either micro- or nano-domains within GHUVs was studied. In particular, our systematic studies demonstrate that in addition to the lipid/polymer fraction or the lipid physical state, important factors such as line tension at lipid polymer/lipid boundaries can be finely modulated by the molar mass and the architecture of the copolymer and lead to the formation of stable lipid domains with different sizes and morphologies in such GHUVs.
Collapse
Affiliation(s)
- Thi Phuong Tuyen Dao
- University of Bordeaux, LCPO UMR 5629, 16 avenue PeyBerland, F-33600 Pessac, France. and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France and Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Universidade de Lisboa Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | - Fabio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Universidade de Lisboa Instituto Superior Técnico, 1049-001 Lisboa, Portugal. and UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 32829-516, Caparica, Lisbon, Portugal
| | - Emmanuel Ibarboure
- University of Bordeaux, LCPO UMR 5629, 16 avenue PeyBerland, F-33600 Pessac, France. and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
| | - Khalid Ferji
- University of Bordeaux, LCPO UMR 5629, 16 avenue PeyBerland, F-33600 Pessac, France. and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Universidade de Lisboa Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | - Olivier Sandre
- University of Bordeaux, LCPO UMR 5629, 16 avenue PeyBerland, F-33600 Pessac, France. and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
| | - Jean-François Le Meins
- University of Bordeaux, LCPO UMR 5629, 16 avenue PeyBerland, F-33600 Pessac, France. and CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
31
|
Garni M, Thamboo S, Schoenenberger CA, Palivan CG. Biopores/membrane proteins in synthetic polymer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:619-638. [PMID: 27984019 DOI: 10.1016/j.bbamem.2016.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. SCOPE OF THE REVIEW We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. MAJOR CONCLUSION Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. GENERAL SIGNIFICANCE Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Martina Garni
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland
| | - Sagana Thamboo
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland
| | | | - Cornelia G Palivan
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland.
| |
Collapse
|
32
|
Bartenstein JE, Robertson J, Battaglia G, Briscoe WH. Stability of polymersomes prepared by size exclusion chromatography and extrusion. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Habel J, Ogbonna A, Larsen N, Krabbe S, Almdal K, Hélix-Nielsen C. How preparation and modification parameters affect PB-PEO polymersome properties in aqueous solution. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joachim Habel
- Department of Environmental Engineering; Technical University of Denmark; Miljøvej, Building 115, 2800 Kgs Lyngby Denmark
- Aquaporin A/S; Ole Maaløes Vej 3 Copenhagen 2200 Denmark
| | - Anayo Ogbonna
- Aquaporin A/S; Ole Maaløes Vej 3 Copenhagen 2200 Denmark
| | - Nanna Larsen
- Copenhagen Biocenter, University of Copenhagen; Ole Maaløes Vej 5 Copenhagen 2200 Denmark
| | - Simon Krabbe
- Department of Biology; University of Copenhagen; August Krogh Building, Universitetsparken 13 Copenhagen 2100 Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology; Technical University of Denmark; Produktionstorvet, Building 423, 2800 Kgs Lyngby Denmark
| | - Claus Hélix-Nielsen
- Department of Environmental Engineering; Technical University of Denmark; Miljøvej, Building 115, 2800 Kgs Lyngby Denmark
- Aquaporin A/S; Ole Maaløes Vej 3 Copenhagen 2200 Denmark
- Laboratory for Water Biophysics and Membrane Processes; Faculty of Chemistry and Chemical Engineering, University of Maribor; Smetanova Ulica 17 Maribor 2000 Slovenia
| |
Collapse
|
34
|
Gaspard J, Casey LM, Rozin M, Munoz-Pinto DJ, Silas JA, Hahn MS. Mechanical Characterization of Hybrid Vesicles Based on Linear Poly(Dimethylsiloxane-b-Ethylene Oxide) and Poly(Butadiene-b-Ethylene Oxide) Block Copolymers. SENSORS (BASEL, SWITZERLAND) 2016; 16:E390. [PMID: 26999148 PMCID: PMC4813965 DOI: 10.3390/s16030390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 11/16/2022]
Abstract
Poly(dimethylsiloxane-ethylene oxide) (PDMS-PEO) and poly(butadiene-b-ethylene oxide) (PBd-PEO) are two block copolymers which separately form vesicles with disparate membrane permeabilities and fluidities. Thus, hybrid vesicles formed from both PDMS-PEO and PBd-PEO may ultimately allow for systematic, application-specific tuning of vesicle membrane fluidity and permeability. However, given the relatively low strength previously noted for comb-type PDMS-PEO vesicles, the mechanical robustness of the resulting hybrid vesicles must first be confirmed. Toward this end, we have characterized the mechanical behavior of vesicles formed from mixtures of linear PDMS-PEO and linear PBd-PEO using micropipette aspiration. Tension versus strain plots of pure PDMS12-PEO46 vesicles revealed a non-linear response in the high tension regime, in contrast to the approximately linear response of pure PBd33-PEO20 vesicles. Remarkably, the area expansion modulus, critical tension, and cohesive energy density of PDMS12-PEO46 vesicles were each significantly greater than for PBd33-PEO20 vesicles, although critical strain was not significantly different between these vesicle types. PDMS12-PEO46/PBd33-PEO20 hybrid vesicles generally displayed graded responses in between that of the pure component vesicles. Thus, the PDMS12-PEO46/PBd33-PEO20 hybrid vesicles retained or exceeded the strength and toughness characteristic of pure PBd-PEO vesicles, indicating that future assessment of the membrane permeability and fluidity of these hybrid vesicles may be warranted.
Collapse
Affiliation(s)
- Jeffery Gaspard
- Department of Chemical Engineering, Texas A&M University 3122 TAMU, College Station, 77840 TX, USA.
| | - Liam M Casey
- Department of Chemical Engineering, University of Massachusetts, Amherst, 01003 MA, USA.
| | - Matt Rozin
- Department of Chemical Engineering, University of Massachusetts, Amherst, 01003 MA, USA.
| | - Dany J Munoz-Pinto
- Engineering Science Department, Trinity University, San Antonio, 78212 TX, USA.
| | - James A Silas
- Department of Chemical Engineering, Texas A&M University 3122 TAMU, College Station, 77840 TX, USA.
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Biotech 2434, Troy, 12180 NY, USA.
| |
Collapse
|
35
|
Schoonen L, van Hest JCM. Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1109-28. [PMID: 26509964 DOI: 10.1002/adma.201502389] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/14/2015] [Indexed: 05/19/2023]
Abstract
Compartmentalization is an essential feature found in living cells to ensure that biological processes occur without being affected by undesired external influences. Over the years many scientists have designed self-assembled soft matter structures that mimic these natural catalytic compartments. The rationale behind this research is threefold. First of all, compartmentalization leads to the creation of a secluded environment for the catalytic species, which solves compatibility issues and which can improve catalyst efficiency and selectivity. Secondly, nano- and micro-compartments are constructed with the aim to obtain microenvironments that more closely mimic the cellular architecture. These biomimetic platforms are used to attain a better understanding of how cellular processes are executed. Thirdly, natural design rules are applied to create biomolecular assemblies with unusual functionality, which for example are used as artificial organelles. Here, recent developments will be discussed regarding these compartmentalized catalytic systems, with a selected number of illustrative examples to demonstrate which strategies have been followed, and to show to what extent the ambitious goals of this field of science have been reached. The focus here is on the field of soft matter science, covering the wide spectrum from polymeric assemblies to protein nanocages.
Collapse
Affiliation(s)
- Lise Schoonen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Gaitzsch J, Karu K, Battaglia G. Peptoidosomes as nanoparticles from amphiphilic block alpha-peptoids using solid-phase-synthesis. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Habel J, Ogbonna A, Larsen N, Schulte L, Almdal K, Hélix-Nielsen C. How molecular internal-geometric parameters affect PB-PEO polymersome size in aqueous solution. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joachim Habel
- Department of Environmental Engineering; Technical University of Denmark; Miljøvej, Building 113, 2800 Kgs. Lyngby Denmark
- Aquaporin A/S; Ole Maaløes Vej 3 2200 Copenhagen Denmark
| | - Anayo Ogbonna
- Aquaporin A/S; Ole Maaløes Vej 3 2200 Copenhagen Denmark
| | - Nanna Larsen
- University of Copenhagen, Copenhagen Biocenter; Ole Maaløes Vej 5 2200 Copenhagen Denmark
| | - Lars Schulte
- Department of Micro- and Nanotechnology; Technical University of Denmark; Produktionstorvet, Building 423, 2800 Kgs Lyngby Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology; Technical University of Denmark; Produktionstorvet, Building 423, 2800 Kgs Lyngby Denmark
| | - Claus Hélix-Nielsen
- Department of Environmental Engineering; Technical University of Denmark; Miljøvej, Building 113, 2800 Kgs. Lyngby Denmark
- Aquaporin A/S; Ole Maaløes Vej 3 2200 Copenhagen Denmark
- Laboratory for Water Biophysics and Membrane Processes, Faculty of Chemistry and Chemical Engineering; University of Maribor; Smetanova Ulica 17 2000 Maribor Slovenia
| |
Collapse
|
38
|
Gaitzsch J, Huang X, Voit B. Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chem Rev 2015; 116:1053-93. [DOI: 10.1021/acs.chemrev.5b00241] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jens Gaitzsch
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Basel-Stadt, Switzerland
| | - Xin Huang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, China
| | - Brigitte Voit
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Saxony, Germany
| |
Collapse
|
39
|
Wang HC, Zhang Y, Possanza CM, Zimmerman SC, Cheng J, Moore JS, Harris K, Katz JS. Trigger chemistries for better industrial formulations. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6369-6382. [PMID: 25768973 DOI: 10.1021/acsami.5b00485] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.
Collapse
Affiliation(s)
- Hsuan-Chin Wang
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yanfeng Zhang
- ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine M Possanza
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Steven C Zimmerman
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- ‡Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- †Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- §Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Keith Harris
- ∥Formulation Science, Corporate Research and Development, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Joshua S Katz
- ⊥Formulation Science, Corporate Research and Development, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
40
|
Li J, Zhang H, Qiu F, Yang Y, Chen JZY. Conformation of a charged vesicle. SOFT MATTER 2015; 11:1788-1793. [PMID: 25608843 DOI: 10.1039/c4sm02282c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the first systematic study of vesicle conformational change caused by Coulomb interaction between surface charges on a lipid vesicle. The equilibrium configuration of a charged vesicle is found, as the result of the competition between the local bending elastic energy and the long-range electrostatic interaction within the membrane where the counter-ion effects are neglected. Because of the Rayleigh instability, a charged vesicle undergoes conformational transitions as a function of the surface charge density.
Collapse
Affiliation(s)
- Jianfeng Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
41
|
Dao TPT, Fernandes F, Er-Rafik M, Salva R, Schmutz M, Brûlet A, Prieto M, Sandre O, Le Meins JF. Phase Separation and Nanodomain Formation in Hybrid Polymer/Lipid Vesicles. ACS Macro Lett 2015; 4:182-186. [PMID: 35596428 DOI: 10.1021/mz500748f] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid polymer/lipid large unilamellar vesicles (LUVs) were studied by small angle neutron scattering (SANS), time-resolved Förster resonance energy transfer (TR-FRET), and cryo-transmission electron microscopy (cryo-TEM). For the first time in hybrid vesicles, evidence for phase separation at the nanoscale was obtained, leading to the formation of stable nanodomains enriched either in lipid or polymer. This stability was allowed by using vesicle-forming copolymer with a membrane thickness close to the lipid bilayer thickness, thereby minimizing the hydrophobic mismatch at the domain periphery. Hybrid giant unilamellar vesicles (GUVs) with the same composition have been previously shown to be unstable and susceptible to fission, suggesting a role of curvature in the stabilization of nanodomains in these structures.
Collapse
Affiliation(s)
- T. P. Tuyen Dao
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
- Centro
de Química-Física Molecular and Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - F. Fernandes
- Centro
de Química-Física Molecular and Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - M. Er-Rafik
- Institut
Charles Sadron, UPR 22 CNRS, Université de Strasbourg, 23 rue
du Loess, 67034 Strasbourg, France
| | - R. Salva
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
| | - M. Schmutz
- Institut
Charles Sadron, UPR 22 CNRS, Université de Strasbourg, 23 rue
du Loess, 67034 Strasbourg, France
| | - A. Brûlet
- Laboratoire
Léon Brillouin, UMR12 CEA-CNRS, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - M. Prieto
- Centro
de Química-Física Molecular and Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - O. Sandre
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
| | - J.-F. Le Meins
- University of Bordeaux, LCPO UMR 5629, 16 avenue Pey Berland, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères
Organiques,
UMR 5629, F-33600, Pessac, France
| |
Collapse
|
42
|
Habel J, Ogbonna A, Larsen N, Cherré S, Kynde S, Midtgaard SR, Kinoshita K, Krabbe S, Jensen GV, Hansen JS, Almdal K, Hèlix-Nielsen C. Selecting analytical tools for characterization of polymersomes in aqueous solution. RSC Adv 2015. [DOI: 10.1039/c5ra16403f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We present 17 techniques to analyze polymersomes, in terms of their size, bilayer properties, elastic properties or surface charge.
Collapse
Affiliation(s)
- Joachim Habel
- Technical University of Denmark
- Department of Environmental Engineering
- 2800 Kgs. Lyngby
- Denmark
- Aquaporin A/S
| | | | - Nanna Larsen
- University of Copenhagen
- Copenhagen Biocenter
- 2200 Copenhagen
- Denmark
| | - Solène Cherré
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- 2800 Kgs. Lyngby
- Denmark
| | - Søren Kynde
- University of Copenhagen
- Niels Bohr Institute
- 2100 Copenhagen
- Denmark
| | | | - Koji Kinoshita
- University of Southern Denmark
- Department of Physics
- Chemistry and Pharmacy
- 5230 Odense
- Denmark
| | - Simon Krabbe
- University of Copenhagen
- Department of Biology
- 2100 Copenhagen
- Denmark
| | | | | | - Kristoffer Almdal
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- 2800 Kgs. Lyngby
- Denmark
| | - Claus Hèlix-Nielsen
- Technical University of Denmark
- Department of Environmental Engineering
- 2800 Kgs. Lyngby
- Denmark
- Aquaporin A/S
| |
Collapse
|
43
|
Gunkel-Grabole G, Sigg S, Lomora M, Lörcher S, Palivan CG, Meier WP. Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci 2015. [DOI: 10.1039/c4bm00230j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Gaitzsch J, Appelhans D, Janke A, Strempel M, Schwille P, Voit B. Cross-linked and pH sensitive supported polymer bilayers from polymersomes - studies concerning thickness, rigidity and fluidity. SOFT MATTER 2014; 10:75-82. [PMID: 24651668 DOI: 10.1039/c3sm52016a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polymersomes are at the leading edge of biomedical and nanoparticle research. In order to get closer insights into their mechanical properties, the bilayer forming them needs to be studied thoroughly. Here, we report on the bilayer formation, swelling behaviour, rigidity and fluidity of our membranes derived from pH sensitive and photo-cross-linkable polymersomes.
Collapse
Affiliation(s)
- Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Salva R, Le Meins JF, Sandre O, Brûlet A, Schmutz M, Guenoun P, Lecommandoux S. Polymersome shape transformation at the nanoscale. ACS NANO 2013; 7:9298-311. [PMID: 24047230 DOI: 10.1021/nn4039589] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Polymer vesicles, also named polymersomes, are valuable candidates for drug delivery and micro- or nanoreactor applications. As far as drug delivery is concerned, the shape of the carrier is believed to have a strong influence on the biodistribution and cell internalization. Polymersomes can be submitted to an osmotic imbalance when injected in physiological media leading to morphological changes. To understand these osmotic stress-induced variations in membrane properties and shapes, several nanovesicles made of the graft polymer poly(dimethylsiloxane)-g-poly(ethylene oxide) (PDMS-g-PEO) or the triblock copolymer PEO-b-PDMS-b-PEO were osmotically stressed and observed by light scattering, neutron scattering (SANS), and cryo-transmission electron microscopy (cryo-TEM). Hypotonic shock leads to a swelling of the vesicles, comparable to optically observable giant polymersomes, and hypertonic shock leads to collapsed structures such as stomatocytes and original nested vesicles, the latter being only observed for bilayers classically formed by amphiphilic copolymers. Complementary SANS and cryo-TEM experiments are shown to be in quantitative agreement and highlight the importance of the membrane structure on the behavior of these nanopolymersomes under hypertonic conditions as the final morphology reached depends whether or not the copolymers assemble into a bilayer. The vesicle radius and membrane curvature are also shown to be critical parameters for such transformations: the shape evolution trajectory agrees with theoretical models only for large enough vesicle radii above a threshold value around 4 times the membrane thickness.
Collapse
Affiliation(s)
- Romain Salva
- Université de Bordeaux /IPB, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac, France, LCPO, UMR 5629, Pessac, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Guo Y, Ma Z, Ding Z, Li RKY. Kinetics of laterally nanostructured vesicle formation by self-assembly of miktoarm star terpolymers in aqueous solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12811-12817. [PMID: 24041399 DOI: 10.1021/la4023807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dissipative particle dynamics (DPD) simulation was used to study the self-assembly of laterally nanostructured vesicles in aqueous solution from μ-[poly(ethylethylene)]-[poly(ethylene oxide)][poly(perfluoropropylene oxide)] (μ-EOF) star terpolymers. The simulated results show that the laterally nanostructured vesicle forms when the length of the hydrophilic O blocks are relatively short. In the lateral nanostructure, the hexagonally packed domains formed by the hydrophobic F blocks are immersed in a two-dimensional hydrophobic E block matrix. The formation conditions and microstructure of the vesicles in our simulation agree with the reported experimental results from the literature. The complicated formation pathway of laterally nanostructured vesicles follows three stages: (1) combination of spherical and short cylindrical raspberry-like micelles into an intermediate polygonal sheet; (2) the intermediate polygonal sheet grows to form a larger polygonal sheet with a tail; (3) the large polygonal sheet with a tail eventually folds and forms a vesicle.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Yan Q, Wang J, Yin Y, Yuan J. Breathing Polymersomes: CO
2
‐Tuning Membrane Permeability for Size‐Selective Release, Separation, and Reaction. Angew Chem Int Ed Engl 2013; 52:5070-3. [DOI: 10.1002/anie.201300397] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Qiang Yan
- Key Lab of Organic Optoelectronics & Engineering Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Jianbo Wang
- Computer Science School, China Women's University, Beijing 100084 (P.R. China)
| | - Yingwu Yin
- Key Lab of Organic Optoelectronics & Engineering Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Engineering Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| |
Collapse
|
48
|
Yan Q, Wang J, Yin Y, Yuan J. Breathing Polymersomes: CO2-Tuning Membrane Permeability for Size-Selective Release, Separation, and Reaction. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Huang X, Appelhans D, Formanek P, Simon F, Voit B. Tailored synthesis of intelligent polymer nanocapsules: an investigation of controlled permeability and pH-dependent degradability. ACS NANO 2012; 6:9718-9726. [PMID: 23102500 DOI: 10.1021/nn3031723] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we present a new route to synthesize an intelligent polymer nanocapsule with an ultrathin membrane based on surface-initiated reversible addition-fragmentation chain-transfer polymerization. The key concept of our report is to use pH-responsive polydiethylaminoethylmethacrylate as a main membrane-generating component and a degradable disulfide bond to cross-link the membrane. The permeability of membrane, tuned by adjusting pH and using different lengths of the cross-linkers, was proven by showing a dramatic swelling behavior of the nanocapsules with the longest cross-linker from 560 nm at pH 8.0 to 780 nm at pH 4.0. Also, due to the disulfide cross-linker, degradation of the capsules using GSH as reducing agent was achieved which is further significantly promoted at pH 4.0. Using a rather long-chain dithiol cross-linker, the synthesized nanocapsules demonstrated a good permeability allowing that an enzyme myoglobin can be postencapsulated, where the pH controlled enzyme activity by switching membrane permeability was also shown.
Collapse
Affiliation(s)
- Xin Huang
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | | | | | | | | |
Collapse
|
50
|
Du J, Fan L, Liu Q. pH-Sensitive Block Copolymer Vesicles with Variable Trigger Points for Drug Delivery. Macromolecules 2012. [DOI: 10.1021/ma3015728] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jianzhong Du
- School of Materials Science and Engineering, Key Laboratory
of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804,
China
| | - Lang Fan
- School of Materials Science and Engineering, Key Laboratory
of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804,
China
| | - Qiuming Liu
- School of Materials Science and Engineering, Key Laboratory
of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804,
China
| |
Collapse
|