1
|
Guo J, Bose RK. Enhancing the Kinetics of Vapor-based Polymerization by Pulsed Filament Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39010848 PMCID: PMC11295193 DOI: 10.1021/acs.langmuir.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Initiated chemical vapor deposition is a versatile technique for synthesizing conformal polymer films on both planar and porous surfaces. It can retain functional groups and avoid undesired cross-linking. However, there is still room for enhancing its performance without altering the feed parameters. Here, we investigate a pulsed iCVD approach to improve the deposition process, achieved by switching on and off the resistively heated filament periodically. By strategically switching off the filament, a shortage of thermally activated primary radicals was created, which allowed uninterrupted chain propagation with fewer termination reactions and potentially increased monomer conversion rates. This has caused significantly faster deposition kinetics with a higher molecular weight and longer chain length for poly(glycidyl methacrylate) compared to continuous deposition. Spectra analyses confirmed that the functionality and stoichiometry ratios remained intact throughout the pulsed deposition process. The pulsed iCVD method is therefore a competitive and sustainable tool, demonstrating fast deposition kinetics and a well-preserved functionality.
Collapse
Affiliation(s)
- Jie Guo
- Department of Chemical Engineering,
Product Technology, University of Groningen, Nijenborgh 4 Groningen AG 9747, the Netherlands
| | - Ranjita K. Bose
- Department of Chemical Engineering,
Product Technology, University of Groningen, Nijenborgh 4 Groningen AG 9747, the Netherlands
| |
Collapse
|
2
|
Aden B, Street DP, Hopkins BW, Lokitz BS, Kilbey SM. Tailoring Surface Properties through in Situ Functionality Gradients in Reactively Modified Poly(2-vinyl-4,4-dimethyl azlactone) Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5204-5213. [PMID: 29693402 DOI: 10.1021/acs.langmuir.8b00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Generating physical or chemical gradients in thin-film scaffolds is an efficient approach for screening and optimizing an interfacial structure or chemical functionality to create tailored surfaces that are useful because of their wetting, antifouling, or barrier properties. The relationship between the structure of poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes created by the preferential assembly of poly(glycidyl methacrylate)- block-PVDMA diblock copolymers and the ability to chemically modify the PVDMA chains in situ to create a gradient in functionality are examined to investigate how the extent of functionalization affects the interfacial and surface properties. The introduction of a chemical gradient by controlled immersion allows reactive modification to generate position-dependent properties that are assessed by ellipsometry, attenuated total reflectance-Fourier transform infrared spectroscopy, contact angle measurements, and atomic force microscopy imaging. After functionalization of the azlactone rings with n-alkyl amines, ellipsometry confirms an increase in thickness and contact angle measurements support an increase in hydrophobicity along the substrate. These results are used to establish relationships between layer thickness, reaction time, position, and the extent of functionalization and demonstrate that gradual immersion into the functionalizing solution results in a linear change in chemical functionality along the surface. These findings broadly support efforts to produce tailored surfaces by in situ chemical modification, having application as tailored membranes, protein resistant surfaces, or sensors.
Collapse
Affiliation(s)
| | | | | | - Bradley S Lokitz
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | | |
Collapse
|
3
|
Borodinov N, Gil D, Savchak M, Gross CE, Yadavalli NS, Ma R, Tsukruk VV, Minko S, Vertegel A, Luzinov I. En Route to Practicality of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13941-13952. [PMID: 29608051 DOI: 10.1021/acsami.7b19815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface modification with polymer grafting is a versatile tool for tuning the surface properties of a wide variety of materials. From a practical point of view, such a process should be readily scalable and transferable between different substrates and consist of as least number of steps as possible. To this end, a cross-linkable amphiphilic copolymer system that is able to bind covalently to surfaces and form permanently attached networks via a one-step procedure is reported here. This system consists of brushlike copolymers (molecular brushes) made of glycidyl methacrylate, poly(oligo(ethylene glycol) methyl ether methacrylate), and lauryl methacrylate, which provide the final product with tunable reactivity and balance between hydrophilicity and hydrophobicity. The detailed study of the copolymer synthesis and properties has been carried out to establish the most efficient pathway to design and tailor this amphiphilic molecular brush system for specific applications. As an example of the applications, we showed the ability to control the deposition of graphene oxide (GO) sheets on both hydrophilic and hydrophobic surfaces using GO modified with the molecular brushes. Also, the capability to tune the osteoblast cell adhesion with the copolymer-based coatings was demonstrated.
Collapse
Affiliation(s)
| | | | | | - Christopher E Gross
- Department of Orthopaedics , Medical University of South Carolina , Charleston , South Carolina 29425 , United States
| | - Nataraja Sekhar Yadavalli
- Nanostructured Materials Laboratory , University of Georgia , Athens , Georgia 30602 , United States
| | - Ruilong Ma
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Sergiy Minko
- Nanostructured Materials Laboratory , University of Georgia , Athens , Georgia 30602 , United States
| | | | | |
Collapse
|
4
|
Khan M, Wu Z, Mao S, Shah SNA, Lin JM. Controlled grafted poly(quaternized-4-vinylpyridine-co-acrylic acid) brushes attract bacteria for effective antimicrobial surfaces. J Mater Chem B 2018; 6:3782-3791. [DOI: 10.1039/c8tb00702k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The substrates were coated with P(Q4VP-co-AA) brushes and adsorbed GA to attract, kill and release microbes.
Collapse
Affiliation(s)
- Mashooq Khan
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Zengnan Wu
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Sifeng Mao
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Syed Niaz Ali Shah
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Jin-Ming Lin
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| |
Collapse
|
5
|
Münch AS, Wölk M, Malanin M, Eichhorn KJ, Simon F, Uhlmann P. Smart functional polymer coatings for paper with anti-fouling properties. J Mater Chem B 2018; 6:830-843. [DOI: 10.1039/c7tb02886e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of functionalized cellulose films on SiO2 to introduce protein repellent properties evaluated by spectroscopic in situ ellipsometry.
Collapse
Affiliation(s)
| | - Michele Wölk
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Mikhail Malanin
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | | | - Frank Simon
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
- Department of Chemistry
- Hamilton Hall
| |
Collapse
|
6
|
Aden B, Kite CM, Hopkins BW, Zetterberg A, Lokitz BS, Ankner JF, Kilbey SM. Assessing Chemical Transformation of Reactive, Interfacial Thin Films Made of End-Tethered Poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) Chains. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b01999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bethany Aden
- Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences and ∥Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Camille M. Kite
- Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences and ∥Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin W. Hopkins
- Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences and ∥Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anna Zetterberg
- Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences and ∥Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bradley S. Lokitz
- Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences and ∥Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John F. Ankner
- Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences and ∥Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - S. Michael Kilbey
- Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences and ∥Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
8
|
Guo W, Xiong L, Reese CM, Amato DV, Thompson BJ, Logan PK, Patton DL. Post-polymerization modification of styrene–maleic anhydride copolymer brushes. Polym Chem 2017. [DOI: 10.1039/c7py01659j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amine-anhydride reactions on polymer brushes provide a modular post-modification strategy to functional surfaces.
Collapse
Affiliation(s)
- Wei Guo
- School of Polymer Science and Engineering
- University of Southern Mississippi
- Hattiesburg
- USA
| | - Li Xiong
- School of Polymer Science and Engineering
- University of Southern Mississippi
- Hattiesburg
- USA
| | - Cassandra M. Reese
- School of Polymer Science and Engineering
- University of Southern Mississippi
- Hattiesburg
- USA
| | - Douglas V. Amato
- School of Polymer Science and Engineering
- University of Southern Mississippi
- Hattiesburg
- USA
| | - Brittany J. Thompson
- School of Polymer Science and Engineering
- University of Southern Mississippi
- Hattiesburg
- USA
| | - Phillip K. Logan
- School of Polymer Science and Engineering
- University of Southern Mississippi
- Hattiesburg
- USA
| | - Derek L. Patton
- School of Polymer Science and Engineering
- University of Southern Mississippi
- Hattiesburg
- USA
| |
Collapse
|
9
|
Yuan S, Zhang J, Yang Z, Tang S, Liang B, Pehkonen SO. Click functionalization of poly(glycidyl methacrylate) microspheres with triazole-4-carboxylic acid for the effective adsorption of Pb(ii) ions. NEW J CHEM 2017. [DOI: 10.1039/c7nj00797c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The triazole-4-carboxylic acid-modified PGMA resins exhibited high adsorption capacity towards Pb(ii) ions by electrostatic interactions and chelation or complexation.
Collapse
Affiliation(s)
- Shaojun Yuan
- Multi-phases Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jing Zhang
- Multi-phases Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhenyi Yang
- Multi-phases Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shengwei Tang
- Multi-phases Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Bin Liang
- Multi-phases Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Simo O. Pehkonen
- Department of Environmental Sciences
- University of Eastern Finland
- 70211 Kuopio
- Finland
| |
Collapse
|
10
|
Weeks CA, Aden B, Kilbey SM, Janorkar AV. Synthesis and Characterization of an Array of Elastin-like Polypeptide–Polyelectrolyte Conjugates with Varying Chemistries and Amine Content for Biomedical Applications. ACS Biomater Sci Eng 2016; 2:2196-2206. [DOI: 10.1021/acsbiomaterials.6b00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C. Andrew Weeks
- Department
of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Bethany Aden
- Departments
of Chemistry and Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - S. Michael Kilbey
- Departments
of Chemistry and Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Amol V. Janorkar
- Department
of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| |
Collapse
|
11
|
Bagán H, Kamra T, Jiang L, Ye L. Thermoresponsive Polymer Brushes on Organic Microspheres for Biomolecular Separation and Immobilization. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Héctor Bagán
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Tripta Kamra
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Lingdong Jiang
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| |
Collapse
|
12
|
Weeks CA, Aden B, Zhang J, Singh A, Hickey RD, Kilbey SM, Nyberg SL, Janorkar AV. Effect of amine content and chemistry on long-term, three-dimensional hepatocyte spheroid culture atop aminated elastin-like polypeptide coatings. J Biomed Mater Res A 2016; 105:377-388. [PMID: 27648820 DOI: 10.1002/jbm.a.35910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/22/2023]
Abstract
Culture conditions that induce hepatic spheroidal aggregates sustain liver cells with metabolism that mimics in vivo hepatocytes. Here we present an array of elastin-like polypeptide conjugate coating materials (Aminated-ELPs) that are biocompatible, have spheroid-forming capacity, can be coated atop traditional culture surfaces, and maintain structural integrity while ensuring adherence of spheroids over long culture period. The Aminated-ELPs were synthesized either by direct conjugation of ELP and various polyelectrolytes or by conjugating both ELP and various small electrolytes to the reactive polymer poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA). Spheroid morphology, cellular metabolic function, and liver-specific gene expression over the long-term, 20-day culture period were assessed through optical microscopy, measurement of total protein content and albumin and urea production, and quantitative real-time (qRT) PCR. We found that the amine content of the Aminated-ELP coatings dictated the initial hepatocyte attachment, but not the subsequent hepatocyte spheroid formation and their continued attachment. A lower amine content was generally found to sustain higher albumin production by the spheroids. Out of the 19 Aminated-ELP coatings tested, we found that the lysine-containing substrates comprising ELP-polylysine or ELP-PVDMA-butanediamine proved to consistently culture productive spheroidal hepatocytes. We suggest that the incorporation of lysine functional groups in Aminated-ELP rendered more biocompatible surfaces, increasing spheroid attachment and leading to increased liver-specific function. Taken together, the Aminated-ELP array presented here has the potential to create in vitro hepatocyte culture models that mimic in vivo liver functionality and thus, lead to better understanding of liver pathophysiology and superior screening methods for drug efficacy and toxicity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 377-388, 2017.
Collapse
Affiliation(s)
- C Andrew Weeks
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216
| | - Bethany Aden
- Departments of Chemistry & Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee, 37996
| | - Junlin Zhang
- Department of Surgery, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216
| | - Anisha Singh
- Department of Surgery, Mayo Clinic, 200 1st St SW, Rochester, Minnesota, 55905
| | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, 200 1st St SW, Rochester, Minnesota, 55905
| | - S Michael Kilbey
- Departments of Chemistry & Chemical and Biomolecular Engineering, University of Tennessee, 322 Buehler Hall, 1420 Circle Drive, Knoxville, Tennessee, 37996
| | - Scott L Nyberg
- Department of Surgery, Mayo Clinic, 200 1st St SW, Rochester, Minnesota, 55905
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216
| |
Collapse
|
13
|
Laradji AM, McNitt CD, Yadavalli NS, Popik VV, Minko S. Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene glycol) Polymer Brushes by the Grafting To Method and Their Properties. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01573] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Amine M. Laradji
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Christopher D. McNitt
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Nataraja S. Yadavalli
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Vladimir V. Popik
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Liu P, Song J. Well-controlled ATRP of 2-(2-(2-Azidoethyoxy)ethoxy)ethyl Methacrylate for High-density Click Functionalization of Polymers and Metallic Substrates. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2016; 54:1268-1277. [PMID: 27616816 PMCID: PMC5016033 DOI: 10.1002/pola.27969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido-bearing methacrylate monomers (e.g. 2-(2-(2-azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well-defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number-average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface-initiated ATRP (SI-ATRP), and effectively functionalized the azide-terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well-controlled ATRP of azido-bearing methacrylates and subsequent facile high-density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications.
Collapse
Affiliation(s)
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, Department of Cell & Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
15
|
Rein C, Nissen S, Grzelakowski M, Meldal M. Click-chemistry of polymersomes on nanoporous polymeric surfaces. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christian Rein
- Center for Evolutionary Chemical Biology, Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen 2100 Denmark
| | - Steen Nissen
- Applied Biomimetic A/S; Nordborgvej 81 Building E14-S15 Nordborg DK-6430 Denmark
| | - Mariusz Grzelakowski
- Applied Biomimetic A/S; Nordborgvej 81 Building E14-S15 Nordborg DK-6430 Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen 2100 Denmark
| |
Collapse
|
16
|
Barkakaty B, Browning KL, Sumpter B, Uhrig D, Karpisova I, Harman KW, Ivanov I, Hensley DK, Messman JM, Kilbey SM, Lokitz BS. Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO2 Fixing. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Balaka Barkakaty
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | | | - Bobby Sumpter
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - David Uhrig
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Ivana Karpisova
- Department
of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics
and Informatics, Comenius University, 84248 Bratislava, Slovakia
| | - Kevin W. Harman
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Ilia Ivanov
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Dale K. Hensley
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jamie M. Messman
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | | | - Bradley S. Lokitz
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
17
|
Hakkou K, Bueno-Martínez M, Molina-Pinilla I, Galbis JA. Degradable poly(ester triazole)s based on renewable resources. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Khalid Hakkou
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| | - Manuel Bueno-Martínez
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| | - Inmaculada Molina-Pinilla
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| | - Juan A. Galbis
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| |
Collapse
|
18
|
Müllner M, Dodds SJ, Nguyen TH, Senyschyn D, Porter CJH, Boyd BJ, Caruso F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS NANO 2015; 9:1294-304. [PMID: 25634484 DOI: 10.1021/nn505125f] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Studies of spherical nanoengineered drug delivery systems have suggested that particle size and mechanical properties are key determinants of in vivo behavior; however, for more complex structures, detailed analysis of correlations between in vitro characterization and in vivo disposition is lacking. Anisotropic materials in particular bear unknowns in terms of size tolerances for in vivo clearance and the impact of shape and rigidity. Herein, we employed cylindrical polymer brushes (CPBs) to answer questions related to the impact of size, length and rigidity on the in vivo behavior of PEGylated anisotropic structures, in particular their pharmacokinetics and biodistribution. The modular grafting assembly of CPBs allowed for the systematic tailoring of parameters such as aspect ratio or rigidity while keeping the overall chemical composition the same. CPBs with altered length were produced from polyinitiator backbones with different degrees of polymerization. The side chain grafts consisted of a random copolymer of poly[(ethylene glycol) methyl ether methacrylate] (PEGMA) and poly(glycidyl methacrylate) (PGMA), and rendered the CPBs water-soluble. The epoxy groups of PGMA were subsequently reacted with propargylamine to introduce alkyne groups, which in turn were used to attach radiolabels via copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC). Radiolabeling allowed the pharmacokinetics of intravenously injected CPBs to be followed as well as their deposition into major organs post dosing to rats. To alter the rigidity of the CPBs, core-shell-structured CPBs with polycaprolactone (PCL) as a water-insoluble and crystalline core and PEGMA-co-PGMA as the hydrophilic shell were synthesized. This modular buildup of CPBs allowed their shape and rigidity to be altered, which in turn could be used to influence the in vivo circulation behavior of these anisotropic polymer particles. Increasing the aspect ratio or altering the rigidity of the CPBs led to reduced exposure, higher clearance rates, and increased mononuclear phagocytic system (MPS) organ deposition.
Collapse
Affiliation(s)
- Markus Müllner
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Yuan S, Xiong G, He F, Jiang W, Liang B, Pehkonen S, Choong C. PCL microspheres tailored with carboxylated poly(glycidyl methacrylate)–REDV conjugates as conducive microcarriers for endothelial cell expansion. J Mater Chem B 2015; 3:8670-8683. [DOI: 10.1039/c5tb01836f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PCL microspheres were functionalized with carboxylated PGMA-REDV conjugates by a combination of surface-initiated ATRP and click reaction.
Collapse
Affiliation(s)
- Shaojun Yuan
- Multiphase Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China 610065
| | - Gordon Xiong
- Division of Materials Technology
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore
| | - Fei He
- Multiphase Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China 610065
| | - Wei Jiang
- Multiphase Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China 610065
| | - Bin Liang
- Multiphase Mass Transfer & Reaction Engineering Lab
- College of Chemical Engineering
- Sichuan University
- Chengdu
- China 610065
| | - Simo Pehkonen
- Department of Environmental Sciences
- University of Eastern Finland
- 70211 Kuopio
- Finland
| | - Cleo Choong
- Division of Materials Technology
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore
| |
Collapse
|
20
|
Kumar R, Lokitz BS, Sides SW, Chen J, Heller WT, Ankner JF, Browning JF, Kilbey II SM, Sumpter BG. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers. RSC Adv 2015. [DOI: 10.1039/c5ra00974j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effects of polydispersity in chain lengths on microphase separation in thin films of di-block copolymers are studied using self-consistent field theory (SCFT) and neutron reflectivity experiments.
Collapse
Affiliation(s)
- Rajeev Kumar
- Computer Science and Mathematics Division
- Oak Ridge National Lab
- Oak Ridge
- USA
- Center for Nanophase Materials Sciences
| | - Bradley S. Lokitz
- Center for Nanophase Materials Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | | | - Jihua Chen
- Center for Nanophase Materials Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | | | - John F. Ankner
- Spallation Neutron Source
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | | | | | - Bobby G. Sumpter
- Computer Science and Mathematics Division
- Oak Ridge National Lab
- Oak Ridge
- USA
- Center for Nanophase Materials Sciences
| |
Collapse
|
21
|
Medel S, Bosch P, de la Torre C, Ramírez P. Click chemistry to fluorescent hyperbranched polymers. 1 – Synthesis, characterization and spectroscopic properties. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Bai L, Tan L, Chen L, Liu S, Wang Y. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J Mater Chem B 2014; 2:7785-7794. [DOI: 10.1039/c4tb01383b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly[(2-methyl-2-oxazoline)-random-glycidylmethacrylate] was immobilized on a silicon/glass surface via a simple annealing procedure to obtain a covalent and cross-linked antifouling coating.
Collapse
Affiliation(s)
- Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026, P. R. China
| |
Collapse
|
23
|
Yan Y, Siegwart DJ. Scalable synthesis and derivation of functional polyesters bearing ene and epoxide side chains. Polym Chem 2014. [DOI: 10.1039/c3py01474f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Sha J, Lippmann ES, McNulty J, Ma Y, Ashton RS. Sequential Nucleophilic Substitutions Permit Orthogonal Click Functionalization of Multicomponent PEG Brushes. Biomacromolecules 2013; 14:3294-303. [DOI: 10.1021/bm400900r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jin Sha
- School of Mechanical
and Power Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | - Yulu Ma
- School of Mechanical
and Power Engineering, East China University of Science and Technology, Shanghai, China
| | | |
Collapse
|
25
|
Saha S, Bruening ML, Baker GL. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry. Macromolecules 2012; 45:10.1021/ma301556v. [PMID: 24293702 PMCID: PMC3843497 DOI: 10.1021/ma301556v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital.
Collapse
Affiliation(s)
- Sampa Saha
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Merlin L. Bruening
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Gregory L. Baker
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Hensarling RM, Hoff EA, LeBlanc AP, Guo W, Rahane SB, Patton DL. Photocaged pendent thiol polymer brush surfaces for postpolymerization modifications via thiol-click chemistry. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26468] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Knorr DB, Jaye C, Fischer DA, Shoch AB, Lenhart JL. Manipulation of interfacial amine density in epoxy-amine systems as studied by near-edge X-ray absorption fine structure (NEXAFS). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15294-15304. [PMID: 23013540 DOI: 10.1021/la3033786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, we investigate the ability to tune the quantity of surface amine functional groups in the interfacial region of epoxy-diamine composites using NEXAFS, a technique that is extremely sensitive to surface composition. Thereby, we employ a model surface (silicon wafer with the native oxide present) and, after deposition of an epoxy functionalized silane, we immersed the wafers in various diamines, followed by reaction with a diepoxy acting as a molecular probe. These results show that the number of available surface amines depends on the diamine chosen, wherein smaller molecular weight diamines provide more reaction sites. Subsequent experiments with mixtures of diamines undergoing competitive adsorption show that the amine quantity can be tailored by choice of the diamine mixture. Further experiments of diamine treated 3-(glycidoxypropyl) trimethoxysilane layers in a reacting epoxy/diamine showed that the surface reaction site density differences observed for adsorption experiments persisted in the reacting epoxy, implying that the surface reaction rate (and by extension, the surface amine concentration) dictate interfacial cross-link density up to the point of gelation.
Collapse
Affiliation(s)
- Daniel B Knorr
- U.S. Army Research Laboratory , Aberdeen Proving Ground, Maryland, United States
| | | | | | | | | |
Collapse
|
28
|
Orski SV, Sheppard GR, Arumugam S, Arnold RM, Popik VV, Locklin J. Rate determination of azide click reactions onto alkyne polymer brush scaffolds: a comparison of conventional and catalyst-free cycloadditions for tunable surface modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14693-702. [PMID: 23009188 DOI: 10.1021/la3032418] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The postpolymerization functionalization of poly(N-hydroxysuccinimide 4-vinylbenzoate) brushes with reactive alkynes that differ in relative rates of activity of alkyne-azide cycloaddition reactions is described. The alkyne-derived polymer brushes undergo "click"-type cycloadditions with azido-containing compounds by two mechanisms: a strain-promoted alkyne-azide cycloaddition (SPAAC) with dibenzocyclooctyne (DIBO) and azadibenzocyclooctyne (ADIBO) or a copper-catalyzed alkyne-azide cycloaddition (CuAAC) to a propargyl group (PPG). Using a pseudo-first-order limited rate equation, rate constants for DIBO, ADIBO, and PPG-derivatized polymer brushes functionalized with an azide-functionalized dye were calculated as 7.7 × 10(-4), 4.4 × 10(-3), and 2.0 × 10(-2) s(-1), respectively. The SPAAC click reactions of the surface bound layers were determined to be slower than the equivalent reactions in solution, but the relative ratio of the reaction rates for the DIBO and ADIBO SPAAC reactions was consistent between solution and the polymer layer. The rate of functionalization was not influenced by the diffusion of azide into the polymer scaffold as long as the concentration of azide in solution was sufficiently high. The PPG functionalization by CuAAC had an extremely fast rate, which was comparable to other surface click reaction rates. Preliminary studies of dilute solution azide functionalization indicate that the diffusion-limited regime of brush functionalization impacts a 50 nm polymer brush layer and decreases the pseudo-first-order rate by a constant diffusion-limited factor of 0.233.
Collapse
Affiliation(s)
- Sara V Orski
- Department of Chemistry, College of Engineering, and the Center for Nanoscale Science and Engineering, University of Georgia , Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
29
|
Synthesis of multifunctional polymers by combination of controlled radical polymerization (CRP) and effective polymer analogous reactions. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-04-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of controlled radical polymerization (CRP) reactions and click chemistry offers high potential for the preparation of multifunctional polymers and significantly broadens the application scope of functional soft matter materials. In order to demonstrate the strategies as well as the potential of this methodology combination, examples for end-group and side-chain modification of polymers produced by CRP methods and the use of the resulting materials in functional polymer films are given.
Collapse
|
30
|
Lokitz BS, Wei J, Hinestrosa JP, Ivanov I, Browning JF, Ankner JF, Kilbey SM, Messman JM. Manipulating Interfaces through Surface Confinement of Poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a Dually Reactive Block Copolymer. Macromolecules 2012. [DOI: 10.1021/ma300991p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bradley S. Lokitz
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jifeng Wei
- Department of Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - Juan Pablo Hinestrosa
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Ilia Ivanov
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - James F. Browning
- Spallation Neutron Source, Oak Ridge National Laboratory, One Bethel Valley Road,
Oak Ridge, Tennessee 37831, United States
| | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, One Bethel Valley Road,
Oak Ridge, Tennessee 37831, United States
| | - S. Michael Kilbey
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996,
United States
| | - Jamie M. Messman
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
31
|
Oberhansl S, Hirtz M, Lagunas A, Eritja R, Martinez E, Fuchs H, Samitier J. Facile modification of silica substrates provides a platform for direct-writing surface click chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:541-545. [PMID: 22258752 DOI: 10.1002/smll.201101875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/13/2011] [Indexed: 05/31/2023]
Abstract
Please click here: a facile two-step functionalization strategy for silicon oxide-based substrates generates a stable platform for surface click chemistry via direct writing. The suitability of the obtained substrates is proven by patterning with two different direct-writing techniques and three different molecules.
Collapse
Affiliation(s)
- Sabine Oberhansl
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), C/Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Ramanathan M, Kilbey, II SM, Ji Q, Hill JP, Ariga K. Materials self-assembly and fabrication in confined spaces. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16629a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|
34
|
Arnold RM, Huddleston NE, Locklin J. Utilizing click chemistry to design functional interfaces through post-polymerization modification. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31708g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Damiron D, Mazzolini J, Cousin F, Boisson C, D'Agosto F, Drockenmuller E. Poly(ethylene) brushes grafted to silicon substrates. Polym Chem 2012. [DOI: 10.1039/c1py00459j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Gao G, Yu K, Kindrachuk J, Brooks DE, Hancock REW, Kizhakkedathu JN. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Biomacromolecules 2011; 12:3715-27. [PMID: 21902171 DOI: 10.1021/bm2009697] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary amine containing copolymer, poly(N,N-dimethylacrylamide-co-N-(3-aminopropyl)methacrylamide hydrochloride) (poly(DMA-co-APMA)), brushes were synthesized on Ti surface by surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous conditions. A series of poly(DMA-co-APMA) copolymer brushes on titanium (Ti) surface with different molecular weights, thicknesses, compositions, and graft densities were synthesized by changing the SI-ATRP reaction conditions. Cysteine-functionalized cationic antimicrobial peptide Tet213 (KRWWKWWRRC) was conjugated to the copolymers brushes using a maleimide-thiol addition reaction after initial modification of the grafted chains using 3-maleimidopropionic acid N-hydroxysuccinimide ester. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), and ellipsometry analysis. The conjugation of the Tet213 onto brushes strongly depended on graft density of the brushes at different copolymer brush compositions. The peptide density (peptides/nm(2)) on the surface varied with the initial composition of the copolymer brushes. Higher graft density of the brushes generated high peptide density (pepetide/nm(2)) and lower number of peptides/polymer chain and vice versa. The peptide density and graft density of the chains on surface greatly influenced the antimicrobial activity of peptide grafted polymer brushes against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Guangzheng Gao
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, 2350 Health Sciences Mall, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|