1
|
Raghuwanshi VS, Browne C, Batchelor W, Garnier G. Self-assembly of cellulose nanocrystals of different lengths. J Colloid Interface Sci 2023; 630:249-259. [DOI: 10.1016/j.jcis.2022.10.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
2
|
Conformational Behavior of Single Circular Semiflexible Polyelectrolyte in Presence of Multivalent Counterions. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Dickmeis C, Kauth L, Commandeur U. From infection to healing: The use of plant viruses in bioactive hydrogels. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1662. [PMID: 32677315 DOI: 10.1002/wnan.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Plant viruses show great diversity in shape and size, but each species forms unique nucleoprotein particles that are symmetrical and monodisperse. The genetically programed structure of plant viruses allows them to be modified by genetic engineering, bioconjugation, or encapsulation to form virus nanoparticles (VNPs) that are suitable for a broad range of applications. Plant VNPs can be used to present foreign proteins or epitopes, to construct inorganic hybrid materials, or to carry molecular cargos, allowing their utilization as imaging reagents, immunomodulators, therapeutics, nanoreactors, and biosensors. The medical applications of plant viruses benefit from their inability to infect and replicate in human cells. The structural properties of plant viruses also make them useful as components of hydrogels for tissue engineering. Hydrogels are three-dimensional networks composed of hydrophilic polymers that can absorb large amounts of water. They are used as supports for tissue regeneration, as reservoirs for controlled drug release, and are found in contact lenses, many wound healing materials, and hygiene products. They are also useful in ecological applications such as wastewater treatment. Hydrogel-based matrices are structurally similar to the native extracellular matrix (ECM) and provide a scaffold for the attachment of cells. To fully replicate the functions of the ECM it is necessary to augment hydrogels with biological cues that regulate cellular interactions. This can be achieved by incorporating functionalized VNPs displaying ligands that influence the mechanical characteristics of hydrogels and their biological properties, promoting the survival, proliferation, migration, and differentiation of embedded cells. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Louisa Kauth
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Stelmakh A, Cai W, Baumketner A. Attraction between Like-Charged Macroions Mediated by Specific Counterion Configurations. J Phys Chem B 2019; 123:9971-9983. [PMID: 31657573 DOI: 10.1021/acs.jpcb.9b06545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Attraction between like-charged macroions is fundamental to many processes in biology, chemistry, and physics. It also plays an important role in industrial applications such as ion-extraction processes or catalysis. In this work, we report a novel mechanism by which attraction can be realized between spherical macroions at high ionic strength. It consists of specific configurations of two, three, and more counterions that appear between macroions with high statistical probability. The attraction is manifested in a minimum in the potential of mean force between the macroions at short distances. Its depth increases with increasing charge of the macroion, demonstrating that the attraction is electrostatic in nature. It is shown that the implicit solvent model with a distance-dependent dielectric constant can capture both the geometry and thermodynamics of charge-stabilized macroion dimers on the qualitative level. The results obtained for a model colloid with a smooth surface are extrapolated to more realistic systems. Evidence is found that the reported mechanism can be observed in small chemical compounds with encapsulated ions such as fullerenes.
Collapse
Affiliation(s)
- A Stelmakh
- Department of Chemistry , Ivan Franko Lviv National University , 6 Kyrylo and Mefodii Street , Lviv 79005 , Ukraine.,Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zurich , Vladimir Prelog Weg 1 , CH-8093 Zurich , Switzerland
| | - W Cai
- Department of Mathematics , Southern Methodist University , 3200 Dyer Street , Dallas , Texas 75275 , United States
| | - A Baumketner
- Institute for Condensed Matter Physics , NAS of Ukraine , 1 Svientsistsky Str , Lviv , 79011 , Ukraine
| |
Collapse
|
6
|
Anaya-Plaza E, Aljarilla A, Beaune G, Timonen JVI, de la Escosura A, Torres T, Kostiainen MA. Phthalocyanine-Virus Nanofibers as Heterogeneous Catalysts for Continuous-Flow Photo-Oxidation Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902582. [PMID: 31392780 DOI: 10.1002/adma.201902582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The generation of highly reactive oxygen species (ROS) at room temperature for application in organic synthesis and wastewater treatment represents a great challenge of the current chemical industry. In fact, the development of biodegradable scaffolds to support ROS-generating active sites is an important prerequisite for the production of environmentally benign catalysts. Herein, the electrostatic cocrystallization of a cationic phthalocyanine (Pc) and negatively charged tobacco mosaic virus (TMV) is described, together with the capacity of the resulting crystals to photogenerate ROS. To this end, a novel peripherally crowded zinc Pc (1) is synthesized. With 16 positive charges, this photosensitizer shows no aqueous aggregation, and is able to act as a molecular glue in the unidimensional assembly of TMV. A step-wise decrease of ionic strength in mixtures of both components results in exceptionally long fibers, constituted by hexagonally bundled viruses thoroughly characterized by electron and confocal microscopy. The fibers are able to produce ROS in a proof-of-concept microfluidic device, where they are immobilized and irradiated in several cycles, showing a resilient performance. The bottom-up approach also enables the light-triggered disassembly of fibers after use. This work represents an important example of a biohybrid material with projected application in light-mediated heterogeneous catalysis.
Collapse
Affiliation(s)
- Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Ana Aljarilla
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Grégory Beaune
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid (UAM), Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
7
|
Korpi A, Anaya-Plaza E, Välimäki S, Kostiainen M. Highly ordered protein cage assemblies: A toolkit for new materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1578. [PMID: 31414574 DOI: 10.1002/wnan.1578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022]
Abstract
Protein capsids are specialized and versatile natural macromolecules with exceptional properties. Their homogenous, spherical, rod-like or toroidal geometry, and spatially directed functionalities make them intriguing building blocks for self-assembled nanostructures. High degrees of functionality and modifiability allow for their assembly via non-covalent interactions, such as electrostatic and coordination bonding, enabling controlled self-assembly into higher-order structures. These assembly processes are sensitive to the molecules used and the surrounding conditions, making it possible to tune the chemical and physical properties of the resultant material and generate multifunctional and environmentally sensitive systems. These materials have numerous potential applications, including catalysis and drug delivery. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Antti Korpi
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Eduardo Anaya-Plaza
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Salla Välimäki
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Mauri Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| |
Collapse
|
8
|
Virus capsid assembly across different length scales inspire the development of virus-based biomaterials. Curr Opin Virol 2019; 36:38-46. [PMID: 31071601 DOI: 10.1016/j.coviro.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/26/2023]
Abstract
In biology, there are an abundant number of self-assembled structures organized according to hierarchical levels of complexity. In some examples, the assemblies formed at each level exhibit unique properties and behaviors not present in individual components. Viruses are an example of such where first individual subunits come together to form a capsid structure, some utilizing a scaffolding protein to template or catalyze the capsid formation. Increasing the level of complexity, the viral capsids can then be used as building blocks of higher-level assemblies. This has inspired scientists to design and construct virus capsid-based functional nano-materials. This review provides some insight into the assembly of virus capsids across several length scales, and certain properties that arise at different levels, providing examples found in naturally occurring systems and those that are synthetically designed.
Collapse
|
9
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
10
|
Bohinc K, Bossa GV, May S. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interface Sci 2017; 249:220-233. [PMID: 28571611 DOI: 10.1016/j.cis.2017.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
Abstract
An electric double layer forms when the small mobile ions of an electrolyte interact with an extended charged object, a macroion. The competition between electrostatic attraction and translational entropy loss of the small ions results in a diffuse layer of partially immobilized ions in the vicinity of the macroion. Modeling structure and energy of the electric double layer has a long history that has lead to the classical Poisson-Boltzmann theory and numerous extensions that account for ion-ion correlations and structural ion and solvent properties. The present review focuses on approaches that instead of going beyond the mean-field character of Poisson-Boltzmann theory introduce structural details of the ions and the solvent into the Poisson-Boltzmann modeling framework. The former include not only excluded volume effects but also the presence of charge distributions on individual ions, spatially extended ions, and internal ionic degrees of freedom. The latter treat the solvent either explicitly as interacting Langevin dipoles or in the form of effective non-electrostatic interactions, in particular Yukawa interactions, that are added to the Coulomb potential. We discuss how various theoretical models predict structural properties of the electric double layer such as the differential capacitance and compare some of these predictions with computer simulations.
Collapse
Affiliation(s)
- Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | | | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
11
|
Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel. Colloids Surf B Biointerfaces 2017; 158:620-626. [DOI: 10.1016/j.colsurfb.2017.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 11/19/2022]
|
12
|
Schenk AS, Eiben S, Goll M, Reith L, Kulak AN, Meldrum FC, Jeske H, Wege C, Ludwigs S. Virus-directed formation of electrocatalytically active nanoparticle-based Co 3O 4 tubes. NANOSCALE 2017; 9:6334-6345. [PMID: 28387406 DOI: 10.1039/c7nr00508c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spinel-type Co3O4 finds applications in a wide range of fields, including clean energy conversion, where nanostructured Co3O4 may provide a cost-efficient alternative to platinum- and iridium-based catalysts for electrocatalytic water-splitting. We here describe a novel strategy in which basic cobalt carbonate - a precursor to Co3O4 - is precipitated as sheet-like structures and microspheres covered with fine surface protrusions, via ammonium carbonate decomposition at room temperature. Importantly, these mild reaction conditions enable us to employ bio-inspired templating approaches to further control the mineral structure. Rod-like tobacco mosaic viruses (TMV) were used as biotemplates for mineral deposition, where we profit from the ability of Co(ii) ions to mediate the ordered assembly of the virus nanorods to create complex tubular superstructures of TMV/ basic cobalt carbonate. Calcination of these tubules is then achieved with retention of the gross morphology, and generates a hierarchically-structured solid comprising interconnected Co3O4 nanoparticles. Evaluation of these Co3O4 materials as electrocatalysts for the oxygen evolution reaction (OER) demonstrates that the activity of Co3O4 prepared by calcination of ammonia diffusion-grown precursors in both, the absence or presence of TMV exceeds that of a commercial nanopowder.
Collapse
Affiliation(s)
- A S Schenk
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu M, Huo Z, Liu T, Shen Y, He R, Zhou C. Self-Assembling Halloysite Nanotubes into Concentric Ring Patterns in a Sphere-on-Flat Geometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3088-3098. [PMID: 28025883 DOI: 10.1021/acs.langmuir.6b04460] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Highly ordered and concentric ring patterns consisting of halloysite nanotubes (HNTs) with hierarchical cholesteric architectures are prepared by evaporation-induced self-assembly in a sphere-on-flat geometry. The structure and properties of HNTs are investigated. HNTs show a perfect tubular morphology on the nanoscale with high dispersion stability in water. Upon drying the HNTs aqueous suspension in a sphere-on-flat confined space, regular concentric HNTs rings are formed on the substrate via a self-assembly process. The widths of the inner and outer rings and the spacing between the adjacent rings increase with an increase in the concentration of the HNTs suspension. The highly ordered and concentric HNTs rings show a pronounced Maltese cross-like pattern under crossed polarizers, which suggests the formation of hierarchical cholesteric architectures. Scanning electron microscopy and atomic force microscopy observations show a disclination alignment of HNTs in the ring strips, especially with a high concentration of the HNTs suspension. The patterned rough surfaces of the HNTs show low cytotoxicity and can be used as a cell-supporting scaffold. The HNTs rings can guide the growth and orientation of C2C12 myoblast cells perpendicular to the rings. This work provides a simple, repeatable, mild, and high-efficiency method for obtaining HNTs with hierarchical architectures, which show potential for a large variety of applications, for example, in vascular grafts and skin regeneration.
Collapse
Affiliation(s)
- Mingxian Liu
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510632, PR China
| | - Zhuohao Huo
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510632, PR China
| | - Tengfei Liu
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510632, PR China
| | - Yan Shen
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510632, PR China
| | - Rui He
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510632, PR China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University , Guangzhou 510632, PR China
| |
Collapse
|
14
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Dutta S, Jho YS. Strong-coupling electrostatic theory of polymer counterions close to planar charges. Phys Rev E 2016; 93:012504. [PMID: 26871115 DOI: 10.1103/physreve.93.012504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Strong-coupling phenomena, such as like-charge macroion attraction, opposite-charged macroion repulsion, charge renormalization, and charge inversion, are known to be mediated by multivalent counterions. Most theories treat the counterions as point charges and describe the system by a single coupling parameter that measures the strength of the Coulomb interactions. In many biological systems, the counterions are highly charged and have finite sizes and can be well-described by polyelectrolytes. The shapes and orientations of these polymer counterions play a major role in the thermodynamics of these systems. In this work we apply a field-theoretic description in the strong-coupling regime to the polymer counterions in the presence of a fixed charge distribution. We work out the special cases of rodlike polymer counterions confined by one, and two charged walls, respectively. The effects of the geometry of the rodlike counterions and the excluded volume of the walls on the density, pressure, and free energy of the rodlike counterions are discussed.
Collapse
Affiliation(s)
- Sandipan Dutta
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784, Korea
| | - Y S Jho
- Department of Physics, Pohang University of Science and Technology, Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784, Korea
| |
Collapse
|
16
|
Vilona D, Di Lorenzo R, Carraro M, Licini G, Trainotti L, Bonchio M. Viral nano-hybrids for innovative energy conversion and storage schemes. J Mater Chem B 2015; 3:6718-6730. [PMID: 32262464 DOI: 10.1039/c5tb00924c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Typical rod-like viruses (the Tobacco Mosaic Virus (TMV) and the Bacteriophage M13) are biological nanostructures that couple a 1D mono-dispersed morphology with a precisely defined topology of surface spaced and orthogonal reactive domains. These biogenic scaffolds offer a unique alternative to synthetic nano-platforms for the assembly of functional molecules and materials. Spatially resolved 1D arrays of inorganic-organic hybrid domains can thus be obtained on viral nano-templates resulting in the functional arrangement of photo-triggers and catalytic sites with applications in light energy conversion and storage. Different synthetic strategies are herein highlighted depending on the building blocks and with a particular emphasis on the molecular design of viral-templated nano-interfaces holding great potential for the dream-goal of artificial photosynthesis.
Collapse
Affiliation(s)
- D Vilona
- CNR-ITM and Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Vilona D, Sorarù A, Maccato C, Bortolaso R, Trainotti L, Valentini F, Boaretto A, Cepek C, Bonchio M, Carraro M. Viral Nanotemplates Armed with Oxygenic Polyoxometalates for Hydrogen Peroxide Detoxification. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Debora Vilona
- ITM‐CNR and Department of Chemical Sciences, University of Padova Via Marzolo 1, 35131 Padova, Italy, http://www.chimica.unipd.it/NanoMolCat/
| | - Antonio Sorarù
- ITM‐CNR and Department of Chemical Sciences, University of Padova Via Marzolo 1, 35131 Padova, Italy, http://www.chimica.unipd.it/NanoMolCat/
| | - Chiara Maccato
- ITM‐CNR and Department of Chemical Sciences, University of Padova Via Marzolo 1, 35131 Padova, Italy, http://www.chimica.unipd.it/NanoMolCat/
| | - Rossella Bortolaso
- Department of Biology, University of Padova Viale G. Colombo 3, 35121 Padova, Italy
| | - Livio Trainotti
- Department of Biology, University of Padova Viale G. Colombo 3, 35121 Padova, Italy
| | - Federica Valentini
- Department of Chemical Science and Technology, University of Rome “Tor Vergata” Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Aldrei Boaretto
- Department of Chemical Science and Technology, University of Rome “Tor Vergata” Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Cinzia Cepek
- Istituto Officina dei Materiali CNR Area Science Park, Basovizza, Edificio MM, Strada Statale 14, Km.163.5, 34149 Trieste, Italy
| | - Marcella Bonchio
- ITM‐CNR and Department of Chemical Sciences, University of Padova Via Marzolo 1, 35131 Padova, Italy, http://www.chimica.unipd.it/NanoMolCat/
| | - Mauro Carraro
- ITM‐CNR and Department of Chemical Sciences, University of Padova Via Marzolo 1, 35131 Padova, Italy, http://www.chimica.unipd.it/NanoMolCat/
| |
Collapse
|
18
|
Palmer LC, Leung CY, Kewalramani S, Kumthekar R, Newcomb CJ, Olvera de la Cruz M, Bedzyk MJ, Stupp SI. Long-Range Ordering of Highly Charged Self-Assembled Nanofilaments. J Am Chem Soc 2014; 136:14377-80. [DOI: 10.1021/ja5082519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Samuel I. Stupp
- Department
of Medicine and Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
19
|
Wang H, Wang X, Li T, Lee B. Transient viscoelasticity study of tobacco mosaic virus/Ba(2+) superlattice. NANOSCALE RESEARCH LETTERS 2014; 9:300. [PMID: 24994956 PMCID: PMC4067107 DOI: 10.1186/1556-276x-9-300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Recently, we reported a new method to synthesize the rod-like tobacco mosaic virus (TMV) superlattice. To explore its potentials in nanolattice templating and tissue scaffolding, this work focused the viscoelasticity of the superlattice with a novel transient method via atomic force microscopy (AFM). For measuring viscoelasticity, in contrast to previous methods that assessed the oscillating response, the method proposed in this work enabled us to determine the transient response (creep or relaxation) of micro/nanobiomaterials. The mathematical model and numerical process were elaborated to extract the viscoelastic properties from the indentation data. The adhesion between the AFM tip and the sample was included in the indentation model. Through the functional equation method, the elastic solution for the indentation model was extended to the viscoelastic solution so that the time dependent force vs. displacement relation could be attained. To simplify the solving of the differential equation, a standard solid model was modified to obtain the elastic and viscoelastic components of the sample. The viscoelastic responses with different mechanical stimuli and the dynamic properties were also investigated.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Mechanical Engineering, North Dakota State University, Fargo ND 58108, USA
| | - Xinnan Wang
- Department of Mechanical Engineering, North Dakota State University, Fargo ND 58108, USA
| | - Tao Li
- X-ray Science Division, Advanced Photon Source of Argonne National Laboratory, 9700 S. Cass Avenue, Argonne IL 60439, USA
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source of Argonne National Laboratory, 9700 S. Cass Avenue, Argonne IL 60439, USA
| |
Collapse
|
20
|
Young KL, Personick ML, Engel M, Damasceno PF, Barnaby SN, Bleher R, Li T, Glotzer SC, Lee B, Mirkin CA. A Directional Entropic Force Approach to Assemble Anisotropic Nanoparticles into Superlattices. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Young KL, Personick ML, Engel M, Damasceno PF, Barnaby SN, Bleher R, Li T, Glotzer SC, Lee B, Mirkin CA. A Directional Entropic Force Approach to Assemble Anisotropic Nanoparticles into Superlattices. Angew Chem Int Ed Engl 2013; 52:13980-4. [DOI: 10.1002/anie.201306009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 11/07/2022]
|
22
|
Li T, Zan X, Sun Y, Zuo X, Li X, Senesi A, Winans RE, Wang Q, Lee B. Self-assembly of rodlike virus to superlattices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12777-12784. [PMID: 24044529 DOI: 10.1021/la402933q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Rodlike tobacco mosaic virus (TMV) has been found to assemble into superlattices in aqueous solution using the polymer methylcellulose to induce depletion and free volume entropy-based attractive forces. Both transmission electron microscopy and small-angle X-ray scattering show that the superlattices form in both semidilute and concentrated regimes of polymer, where the free volume entropy and the depletion interaction are the dominant driving force, respectively. The superlattices are NaCl and temperature responsive. The rigidity of the rodlike nanoparticles also plays an important role for the formation of superlattices through the free volume entropy mechanism. Compared to the rigid TMV particle, flexible bacteriophage M13 particles are only responsive to the depletion force and thus only assemble in highly concentrated polymer solution, where depletion interaction is dominant.
Collapse
Affiliation(s)
- Tao Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou S. Density functional analysis of like-charged attraction between two similarly charged cylinder polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12490-12501. [PMID: 24020499 DOI: 10.1021/la402860r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A systematic theoretical investigation is performed for electrostatic potential of mean force (EPMF) between two similarly charged rods (modeling DNA) immersed in a primitive model electrolyte solution. Two scientific anomalies are disclosed: (i) although a like-charge attraction (LCA) generally becomes stronger with bulk electrolyte concentration, the opposite effect unexpectedly occurs if the two rod surfaces involved are sufficiently charged and (2) contrary to what is often asserted, that the presence of multivalent counterion is necessary to induce the LCA, it is found that the univalent counterion induces the LCA solely only if bulk electrolyte concentration rises sufficiently and the rod surface charge quantities are high. On the basis of the system energetics calculated first by a classical density functional theory in three-dimensional space, a hydrogen-bonding style mechanism is advanced to reveal the origin of the LCA, and by appealing to fairly common-sense concepts such as bond energy, bond length, number of hydrogen bonds formed, and counterion single-layer saturation adsorption capacity, the present mechanism successfully explains the scientific anomalies and effects of counterion and co-ion diameters in eliciting the LCA first investigated in this work. To add weight to the hydrogen-bonding style mechanism, a theoretical investigation is further performed regarding the effects of the rod surface charge density, co-ion valence, relative permittivity of the medium, temperature, nonelectrostatic interion interactions, and rod diameter in modifying the EPMF, and several novel phenomena are first confirmed, which is self-consistently explained by the present hydrogen-bonding style mechanism.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Physics and Electronics, Central South University , Changsha, Hunan 410083, China
| |
Collapse
|
24
|
Xiao C, Maligal-Ganesh RV, Li T, Qi Z, Guo Z, Brashler KT, Goes S, Li X, Goh TW, Winans RE, Huang W. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. CHEMSUSCHEM 2013; 6:1915-1922. [PMID: 24039118 DOI: 10.1002/cssc.201300524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 06/02/2023]
Abstract
We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures.
Collapse
Affiliation(s)
- Chaoxian Xiao
- Department of Chemistry, Iowa State University, Ames Laboratory, USDOE, Ames, IA 50011 (USA)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Alonso J, Górzny M, Bittner A. The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends Biotechnol 2013; 31:530-8. [DOI: 10.1016/j.tibtech.2013.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 05/31/2013] [Indexed: 12/16/2022]
|
26
|
Yin P, Li T, Forgan RS, Lydon C, Zuo X, Zheng ZN, Lee B, Long D, Cronin L, Liu T. Exploring the Programmable Assembly of a Polyoxometalate–Organic Hybrid via Metal Ion Coordination. J Am Chem Soc 2013; 135:13425-32. [DOI: 10.1021/ja404777g] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Panchao Yin
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Tao Li
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ross S. Forgan
- WestCHEM,
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Claire Lydon
- WestCHEM,
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Xiaobing Zuo
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zhaoxiong Norm Zheng
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Byeongdu Lee
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Deliang Long
- WestCHEM,
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Leroy Cronin
- WestCHEM,
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Tianbo Liu
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
27
|
Li T, Zan X, Winans RE, Wang Q, Lee B. Biomolecular Assembly of Thermoresponsive Superlattices of the Tobacco Mosaic Virus with Large Tunable Interparticle Distances. Angew Chem Int Ed Engl 2013; 52:6638-42. [DOI: 10.1002/anie.201209299] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/15/2013] [Indexed: 12/25/2022]
|
28
|
Li T, Zan X, Winans RE, Wang Q, Lee B. Biomolecular Assembly of Thermoresponsive Superlattices of the Tobacco Mosaic Virus with Large Tunable Interparticle Distances. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Ray JR, Lee B, Baltrusaitis J, Jun YS. Formation of iron(III) (hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:13167-75. [PMID: 23153372 DOI: 10.1021/es302124g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To better understand the transport of contaminants in aqueous environments, we need more accurate information about heterogeneous and homogeneous nucleation of iron(III) hydroxide nanoparticles in the presence of organics. We combined synchrotron-based grazing incidence small-angle X-ray scattering (GISAXS) and SAXS and other nanoparticle and substrate surface characterization techniques to observe iron(III) (hydr)oxide [10⁻⁴ M Fe(NO₃)₃ in 10 mM NaNO₃] precipitation on quartz and on polyaspartate- and alginate-coated glass substrates and in solution (pH = 3.7 ± 0.2). Polyaspartate was determined to be the most negatively charged substrate and quartz the least; however, after 2 h, total nanoparticle volume calculations--from GISAXS--indicate that positively charged precipitation on quartz is twice that of alginate and 10 times higher than on polyaspartate, implying that electrostatics do not govern iron(III) (hydr)oxide nucleation. On the basis of contact angle measurements and surface characterization, we concluded that the degree of hydrophilicity may control heterogeneous nucleation on quartz and organic-coated substrates. The arrangement of functional groups at the substrate surface (--OH and --COOH) may also contribute. These results provide new information for elucidating the effects of polymeric organic substrate coatings on the size, volume, and location of nucleating iron hydroxides, which will help predict nanoparticle interactions in natural and engineered systems.
Collapse
Affiliation(s)
- Jessica R Ray
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
30
|
|
31
|
Liu Z, Qiao J, Niu Z, Wang Q. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev 2012; 41:6178-94. [DOI: 10.1039/c2cs35108k] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|