1
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
2
|
Rong LH, Cheng X, Ge J, Wang H, Cao PF, Caldona EB, Advincula RC. On the Interfacial Behavior of Catenated Poly(l-lactide) at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9751-9759. [PMID: 35921602 DOI: 10.1021/acs.langmuir.2c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial properties of polymeric materials are significantly influenced by their architectural structures and spatial features, while such a study of topologically interesting macromolecules is rarely reported. In this work, we reported, for the first time, the interfacial behavior of catenated poly(l-lactide) (C-PLA) at the air-water interface and compared it with its linear analogue (L-PLA). The isotherms of surface pressure-area per repeating unit showed significant interfacial behavioral differences between the two polymers with different topologies. Isobaric creep experiments and compression-expansion cycles also showed that C-PLA demonstrated higher stability at the air-water interface. Interestingly, when the films at different surface pressures were transferred via the Langmuir-Blodgett method, successive atomic force microscopy imaging displayed distinct nanomorphologies, in which the surface of C-PLA exhibited nanofibrous structures, while that of the L-PLA revealed a smoother topology with less fiber-like structures.
Collapse
Affiliation(s)
- Li-Han Rong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiang Cheng
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jin Ge
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Hanyu Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Eugene B Caldona
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
3
|
Popescu MT, Tsitsilianis C. Gold/Pentablock Terpolymer Hybrid Multifunctional Nanocarriers for Controlled Delivery of Tamoxifen: Effect of Nanostructure on Release Kinetics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123764. [PMID: 35744890 PMCID: PMC9231331 DOI: 10.3390/molecules27123764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Here, we describe the preparation and characterization of organic/inorganic hybrid polymer multifunctional nanocarriers. Novel nanocomposites of gold nanoparticles using pH-responsive coordination pentablock terpolymers of poly(ε-caprolactone)-b-poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide)-b-poly(ε-caprolactone), bearing or not bearing partially quaternized vinylpyridine moieties, were studied. The template morphology of the coordination pentablock terpolymer at physiological pH ranges from crew-cut to multicompartmentalized micelles which can be tuned by chemical modification of the central block. Additionally, the presence of 2VP groups allows the coordination of gold ions, which can be reduced in situ to construct gold@polymer nanohybrids. Furthermore, the possibility of tuning the gold distribution in the micelles, through partial quaternization of the central P2VP block, was also investigated. Various morphological gold colloidal nanoparticles such as gold@core-corona nanoparticles and gold@core-gold@corona nanoparticles were synthesized on the corresponding template of the pentablock terpolymer, first by coordination with gold ions, followed by reduction with NaBH4. The pentablock and gold@pentablock nanoparticles could sparingly accommodate a water-soluble drug, Tamoxifen (TAX), in their hydrophobic micellar cores. The nanostructure of the nanocarrier remarkably affects the TAX delivery kinetics. Importantly, the hybrid gold@polymer nanoparticles showed prolonged release profiles for the guest molecule, relative to the corresponding bare amphiphilic pentablock polymeric micelles. These Gold@pentablock terpolymer hybrid nanoparticles could act as a multifunctional theranostic nanoplatform, integrating sustainable pH-controlled drug delivery, diagnostic function and photothermal therapy.
Collapse
|
4
|
Abstract
The PVP and its derivatives have been broadly applied in polymers, organic
syntheses, and catalysis processes. The crosslinked PVP is a well-known polymer support
for numerous reagents and catalysts. Cross-linked PVPs are commercially available polymers
and have attracted much attention over the past due to their interesting properties
such as the facile functionalization, high accessibility of functional groups, being nonhygroscopic,
easy to prepare, easy filtration, and swelling in many organic solvents. A
brief explanation of the reported applications of PVPs in different fields followed by the
discussion on the implementation of methodologies for catalytic efficiency of PVP-based
reagents in the organic synthesis is included. The aim is to summarize the literature under
a few catalytic categories and to present each as a short scheme involving reaction conditions.
In the text, discussions on the synthesis and the structural determination of some typical polymeric reagents
are presented, and the mechanisms of some organic reactions are given. Where appropriate, advantages
of reagents in comparison with the previous reports are presented. This review does not include patent literature.
Collapse
Affiliation(s)
- Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hanna S. Abbo
- Department of Chemistry, University of Basrah, Basrah, Iraq
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
5
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299:64-89. [DOI: 10.1016/j.jconrel.2019.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022]
|
6
|
Thin polymer films grafted to the solid surface with in situ synthesized CdS nanocrystals. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0807-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Popescu MT, Tasis D, Tsitsilianis C. Ionizable Star Copolymer-Assisted Graphene Phase Transfer between Immiscible Liquids: Organic Solvent/Water/Ionic Liquid. ACS Macro Lett 2014; 3:981-984. [PMID: 35610780 DOI: 10.1021/mz500443q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study reports on the development of a simple two-step process toward the isolation of nearly defect-free mono- and few-layer graphenes in various media. This was achieved by liquid phase pre-exfoliation of pristine graphite in the presence of an ionizable PSnP2VPn heteroarm star copolymer in an organic solvent and subsequent graphene shuttle between immiscible media, that is, organic solvent/water and water/ionic liquid. This polymer-assisted phase transfer of graphene sheets gave rise to enrichment of suspended nanostructures in monolayers, especially in an aqueous environment. The exfoliation efficiency was assessed through Raman and electron microscopy. Relatively high concentration suspensions of efficiently exfoliated graphene sheets of large size and in high solubilization yield, could be prepared in any kind of solvent, that is, organic low boiling point medium, aqueous environment, or ionic liquid, whereas the shuttle transfer was found to be a reversible process between organic and aqueous phases.
Collapse
Affiliation(s)
- Maria-Theodora Popescu
- Foundation of
Research and Technology Hellas, Institute of Chemical Engineering
Sciences (ICE-HT), P.O. Box 1414, 26504 Patras, Greece
- Department
of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Dimitrios Tasis
- Foundation of
Research and Technology Hellas, Institute of Chemical Engineering
Sciences (ICE-HT), P.O. Box 1414, 26504 Patras, Greece
- Department
of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Constantinos Tsitsilianis
- Foundation of
Research and Technology Hellas, Institute of Chemical Engineering
Sciences (ICE-HT), P.O. Box 1414, 26504 Patras, Greece
- Department
of Chemical Engineering, University of Patras, 26504 Patras, Greece
| |
Collapse
|
8
|
Wang X, Davis JL, Hinestrosa JP, Mays JW, Kilbey SM. Control of Self-Assembled Structure through Architecturally and Compositionally Complex Block Copolymer Surfactant Mixtures. Macromolecules 2014. [DOI: 10.1021/ma5012667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xu Wang
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jesse L. Davis
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Juan Pablo Hinestrosa
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jimmy W. Mays
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - S. Michael Kilbey
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Jirawutthiwongchai J, Draeger G, Chirachanchai S. Rapid hybridization of chitosan-gold-antibodies via metal-free click in water-based systems: a model approach for naked-eye detectable antigen sensors. Macromol Rapid Commun 2014; 35:1204-10. [PMID: 24729187 DOI: 10.1002/marc.201400092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/17/2014] [Indexed: 11/09/2022]
Abstract
A surface plasmon resonance (SPR) expression after hybridization of chitosan-gold nanoparticle-antibody (CS-AuNPs-Ab) based on: i) metal-free click chemistry, and, ii) in water system as an approach for a rapid antigen sensing, is proposed. The chitosan-hydroxybenzyl triazole complex enables us to carry out the conjugation of mPEG and trifluoromethylated oxanorbornadiene (OND) in water. CS-mPEG-OND further allows metal-free click to hybridize chitosan (CS) with azido-modified gold nanoparticles (azido-AuNPs) in aqueous solution at room temperature. The CS-mPEG-OND conjugated with LipL32 antibody (Ab) not only effectively binds with LipL32 antigen (Ag) but also performs the cycloaddition with azido-AuNPs to display a change in color within 2 min. The phenomenon leads to a simple and efficient naked-eye antigen detection technique.
Collapse
|
10
|
Kodiyath R, Choi I, Patterson B, Tsitsilianis C, Tsukruk VV. Interfacial behavior of pH responsive ampholytic heteroarm star block terpolymers. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Zhang H, Liu Y, Yao D, Yang B. Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem Soc Rev 2012; 41:6066-88. [PMID: 22641116 DOI: 10.1039/c2cs35038f] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) with diversified functionalities are promising candidates in future optoelectronic and biomedical applications, which greatly depend on the capability to arrange NPs into higher-order architectures in a controllable way. This issue is considered to be solved by means of self-assembly. NPs can participate in self-assembly in different manners, such as smart self-organization with blended molecules, as the carriers of host molecules for assembly and disassembly with guest molecules, as netpoints to endow the architectures specific functionalities, and so forth. To enhance the structural stability of the as-prepared assembly architectures, polymers have been utilized to create NP-polymer composites. Meanwhile, such a strategy also demonstrates the possibility of integrating the functionalities of NPs and/or polymers by forming regular architectures. The emerging interest in the current optoelectronic and biological areas strongly demands intelligent nanocomposites, which are produced by combination of the excellent functionalities of NPs and the responsiveness of polymers. On the basis of the recent progress in fabricating NP-polymer composites, this critical review summarizes the development of new methods for fabricating regular self-assembly architectures, highlights the reversible assembly and disassembly behavior, and indicates the potential applications.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | | | | | | |
Collapse
|