1
|
Trojánek A, Mareček V, Samec Z. Bovine serum albumin adsorption at a polarized water/1,2‐dichloroethane interface with no effect on the ion transfer kinetics. ChemElectroChem 2022. [DOI: 10.1002/celc.202200409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonín Trojánek
- J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences: Ustav fyzikalni chemie J Heyrovskeho Akademie Ved Ceske Republiky Department of biophysics Dolejškova 3 18223 Prague 8 CZECH REPUBLIC
| | - Vladimír Mareček
- J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences: Ustav fyzikalni chemie J Heyrovskeho Akademie Ved Ceske Republiky Management Dolejskova 3 18223 Prague 8 CZECH REPUBLIC
| | - Zdenek Samec
- J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences: Ustav fyzikalni chemie J Heyrovskeho Akademie Ved Ceske Republiky Department of Electrocatalysis Dolejskova 3 18223 Prague 8 CZECH REPUBLIC
| |
Collapse
|
2
|
Gamero-Quijano A, Bhattacharya S, Cazade PA, Molina-Osorio AF, Beecher C, Djeghader A, Soulimane T, Dossot M, Thompson D, Herzog G, Scanlon MD. Modulating the pro-apoptotic activity of cytochrome c at a biomimetic electrified interface. SCIENCE ADVANCES 2021; 7:eabg4119. [PMID: 34739310 PMCID: PMC8570605 DOI: 10.1126/sciadv.abg4119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Programmed cell death via apoptosis is a natural defence against excessive cell division, crucial for fetal development to maintenance of homeostasis and elimination of precancerous and senescent cells. Here, we demonstrate an electrified liquid biointerface that replicates the molecular machinery of the inner mitochondrial membrane at the onset of apoptosis. By mimicking in vivo cytochrome c (Cyt c) interactions with cell membranes, our platform allows us to modulate the conformational plasticity of the protein by simply varying the electrochemical environment at an aqueous-organic interface. We observe interfacial electron transfer between an organic electron donor decamethylferrocene and O2, electrocatalyzed by Cyt c. This interfacial reaction requires partial Cyt c unfolding, mimicking Cyt c in vivo peroxidase activity. As proof of concept, we use our electrified liquid biointerface to identify drug molecules, such as bifonazole, that can potentially down-regulate Cyt c and protect against uncontrolled neuronal cell death in neurodegenerative disorders.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Shayon Bhattacharya
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Pierre-André Cazade
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Andrés F. Molina-Osorio
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Cillian Beecher
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Ahmed Djeghader
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Manuel Dossot
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Damien Thompson
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Micheál D. Scanlon
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| |
Collapse
|
3
|
Pasquier C, Pezennec S, Bouchoux A, Cabane B, Lechevalier V, Le Floch-Fouéré C, Paboeuf G, Pasco M, Dollet B, Lee LT, Beaufils S. Protein Transport upon Advection at the Air/Water Interface: When Charge Matters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12278-12289. [PMID: 34636247 DOI: 10.1021/acs.langmuir.1c01591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of dense protein interfacial layers at a free air-water interface is known to result from both diffusion and advection. Furthermore, protein interactions in concentrated phases are strongly dependent on their overall positive or negative net charge, which is controlled by the solution pH. As a consequence, an interesting question is whether the presence of an advection flow of water toward the interface during protein adsorption produces different kinetics and interfacial structure of the adsorbed layer, depending on the net charge of the involved proteins and, possibly, on the sign of this charge. Here we test a combination of the following parameters using ovalbumin and lysozyme as model proteins: positive or negative net charge and the presence or absence of advection flow. The formation and the organization of the interfacial layers are studied by neutron reflectivity and null-ellipsometry measurements. We show that the combined effect of a positive charge of lysozyme and ovalbumin and the presence of advection flow does induce the formation of interfacial multilayers. Conversely, negatively charged ovalbumin forms monolayers, whether advection flow is present or not. We show that an advection/diffusion model cannot correctly describe the adsorption kinetics of multilayers, even in the hypothesis of a concentration-dependent diffusion coefficient as in colloidal filtration, for instance. Still, it is clear that advection is a necessary condition for making multilayers through a mechanism that remains to be determined, which paves the way for future research.
Collapse
Affiliation(s)
- Coralie Pasquier
- INRAE, Institut Agro, STLO, F-35042 Rennes, France
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
| | | | - Antoine Bouchoux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | | | | | - Gilles Paboeuf
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
- Université Rennes 1, CNRS, ScanMAT - UMS 2001, F-35042 Rennes, France
| | | | - Benjamin Dollet
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Lay-Theng Lee
- Laboratoire Léon Brillouin CEA - Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Sylvie Beaufils
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
- Université Rennes 1, CNRS, ScanMAT - UMS 2001, F-35042 Rennes, France
| |
Collapse
|
4
|
Pouraghaei Sevari S, Kim JK, Chen C, Nasajpour A, Wang CY, Krebsbach PH, Khademhosseini A, Ansari S, Weiss PS, Moshaverinia A. Whitlockite-Enabled Hydrogel for Craniofacial Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35342-35355. [PMID: 34297530 DOI: 10.1021/acsami.1c07453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Growth-factor-free bone regeneration remains a challenge in craniofacial engineering. Here, we engineered an osteogenic niche composed of a commercially modified alginate hydrogel and whitlockite microparticles (WHMPs), which impart tunable physicochemical properties that can direct osteogenesis of human gingival mesenchymal stem cells (GMSCs). Our in vitro studies demonstrate that WHMPs induce osteogenesis of GMSCs more effectively than previously demonstrated hydroxyapatite microparticles (HApMPs). Alginate-WHMP hydrogels showed higher elasticity without any adverse effects on the viability of the encapsulated GMSCs. Moreover, the alginate-WHMP hydrogels upregulate the mitogen-activated protein kinase (MAPK) pathway, which in turn orchestrates several osteogenic markers, such as RUNX2 and OCN, in the encapsulated GMSCs. Concurrent coculture studies with human osteoclasts demonstrate that GMSCs encapsulated in alginate-WHMP hydrogels downregulate osteoclastic activity, potentially due to release of Mg2+ ions from the WHMPs along with secretion of osteoprotegerin from the GMSCs. In vivo studies demonstrated that the GMSCs encapsulated in our osteogenic niche were able to promote bone repair in calvarial defects in murine models. Altogether, our results confirmed the development of a promising treatment modality for craniofacial bone regeneration based on an injectable growth-factor-free hydrogel delivery system.
Collapse
Affiliation(s)
- Sevda Pouraghaei Sevari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jin Koo Kim
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amir Nasajpour
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cun-Yu Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul H Krebsbach
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Restan MS, Jensen H, Shen X, Huang C, Martinsen ØG, Kubáň P, Gjelstad A, Pedersen-Bjergaard S. Comprehensive study of buffer systems and local pH effects in electromembrane extraction. Anal Chim Acta 2017; 984:116-123. [DOI: 10.1016/j.aca.2017.06.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022]
|
6
|
Alvarez de Eulate E, O'Sullivan S, Arrigan DWM. Electrochemically Induced Formation of Cytochrome c
Oligomers at Soft Interfaces. ChemElectroChem 2017. [DOI: 10.1002/celc.201600851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eva Alvarez de Eulate
- Nanochemistry Research Institute & Department of Chemistry; Curtin University; GPO Box U1987 Perth Western Australia, Australia 6845
| | - Shane O'Sullivan
- Nanochemistry Research Institute & Department of Chemistry; Curtin University; GPO Box U1987 Perth Western Australia, Australia 6845
| | - Damien W. M. Arrigan
- Nanochemistry Research Institute & Department of Chemistry; Curtin University; GPO Box U1987 Perth Western Australia, Australia 6845
| |
Collapse
|
7
|
Poulsen NN, Østergaard J, Petersen NJ, Daasbjerg K, Iruthayaraj J, Dedinaite A, Makuska R, Jensen H. Automated coating procedures to produce poly(ethylene glycol) brushes in fused-silica capillaries. J Sep Sci 2016; 40:779-788. [DOI: 10.1002/jssc.201600878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/05/2016] [Accepted: 11/09/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jesper Østergaard
- Department of Pharmacy; University of Copenhagen; Copenhagen Denmark
| | | | - Kim Daasbjerg
- Department of Chemistry; Aarhus University; Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Aarhus Denmark
- Carbon Dioxide Activation Center; Aarhus University; Aarhus Denmark
| | - Joseph Iruthayaraj
- Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Aarhus Denmark
- Biological and Chemical Engineering Division; Aarhus University; Aarhus N Denmark
| | - Andra Dedinaite
- Department of Chemistry; Surface and Corrosion Science; School of Chemical Sciences and Engineering; KTH Royal Institute of Technology; Stockholm Sweden
| | - Ricardas Makuska
- Department of Polymer Chemistry; Vilnius University; Vilnius Lithuania
| | - Henrik Jensen
- Department of Pharmacy; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
8
|
Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2016; 112:31-43. [PMID: 27744219 DOI: 10.1016/j.biomaterials.2016.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022]
Abstract
Bone remodeling process relies on complex signaling pathway between osteoblasts and osteoclasts and control mechanisms to achieve homeostasis of their growth and differentiation. Despite previous achievements in understanding complicated signaling pathways between cells and bone extracellular matrices during bone remodeling process, a role of local ionic concentration remains to be elucidated. Here, we demonstrate that synthetic whitlockite (WH: Ca18Mg2(HPO4)2(PO4)12) nanoparticles can recapitulate early-stage of bone regeneration through stimulating osteogenic differentiation, prohibiting osteoclastic activity, and transforming into mechanically enhanced hydroxyapatite (HAP)-neo bone tissues by continuous supply of PO43- and Mg2+ under physiological conditions. In addition, based on their structural analysis, the dynamic phase transformation from WH into HAP contributed as a key factor for rapid bone regeneration with denser hierarchical neo-bone structure. Our findings suggest a groundbreaking concept of 'living bone minerals' that actively communicate with the surrounding system to induce self-healing, while previous notions about bone minerals have been limited to passive products of cellular mineralization.
Collapse
|
9
|
Alvarez de Eulate E, O'Sullivan S, Fletcher S, Newsholme P, Arrigan DWM. Ion-Transfer Electrochemistry of Rat Amylin at the Water-Organogel Microinterface Array and Its Selective Detection in a Protein Mixture. Chem Asian J 2013; 8:2096-101. [DOI: 10.1002/asia.201300215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Indexed: 11/11/2022]
|
10
|
O’Sullivan S, Arrigan DWM. Impact of a Surfactant on the Electroactivity of Proteins at an Aqueous–Organogel Microinterface Array. Anal Chem 2013; 85:1389-94. [DOI: 10.1021/ac302222u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shane O’Sullivan
- Nanochemistry Research
Institute, Department
of Chemistry, Curtin University, G.P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Damien W. M. Arrigan
- Nanochemistry Research
Institute, Department
of Chemistry, Curtin University, G.P.O. Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
11
|
|
12
|
|
13
|
Herzog G, Flynn S, Johnson C, Arrigan DW. Electroanalytical Behavior of Poly-l-Lysine Dendrigrafts at the Interface between Two Immiscible Electrolyte Solutions. Anal Chem 2012; 84:5693-9. [DOI: 10.1021/ac300856w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Grégoire Herzog
- Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
| | - Shane Flynn
- Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
| | - Colm Johnson
- Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
| | - Damien W.M. Arrigan
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
14
|
Steinkuehler J, Charwat V, Richter L, Ertl P. Characterization of double layer alterations induced by charged particles and protein-membrane interactions using contactless impedance spectroscopy. J Phys Chem B 2012; 116:10461-9. [PMID: 22594659 DOI: 10.1021/jp3008392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double layer interactions between charged particles and surfaces play a vital role in a variety of technical and biological systems because they determine the stability of, e.g., protein-membrane biointerfaces. The underlying theoretical principle is based on the overlap of two different double layers that induce surface charges to be shifted to a new equilibrium distribution, which can be approximated by the Poisson-Boltzmann equation. In the present work we show theoretical and experimental results involving double layer capacitance of surfaces that exhibit charge regulation behavior. Charge regulation is an important parameter to consider when investigating protein-membrane interactions because it defines surface properties between ideal constant charge and constant potential behavior. In this work we introduce a novel theoretical model that also includes charge regulation behavior and can assess changes of double layer disruptions at TiO(2) and supported lipid-bilayers (SLB). The selected surfaces represent important biointerfaces that can be found on implants or cell membranes. We also demonstrate that contactless impedance spectroscopy is well suited to measure double layer capacitance interactions using differently charged silica beads. The combination of a theoretical model with experimental data allowed us further to identify charge regulation effects during protein adsorption (BSA and Annexin V) events at supported lipid-bilayers (SLB) used as a simple cell membrane model. Finally, the first indications of changed charge regulation behavior during protein surface crystallization events were also documented.
Collapse
Affiliation(s)
- Jan Steinkuehler
- AIT Austrian Institute of Technology GmbH, Muthgasse 11/2, 1190 Vienna, Austria
| | | | | | | |
Collapse
|