1
|
Vashishtha A, Phimphachanh A, Gaillard T, Schmitt J, Gerardin C, Rydzek G, Aubert T. Hybrid Silica Cage-Type Nanostructures Made from Triply Hydrophilic Block Copolymers Single Micelles. ACS NANO 2024; 18:29008-29020. [PMID: 39396244 DOI: 10.1021/acsnano.4c09887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Controlling the structure and functionality of porous silica nanoparticles has been a continuous source of innovation with important potential for advanced biomedical applications. Their synthesis, however, usually involves passive surfactants or amphiphilic copolymers that do not add value to the material after synthesis. In contrast, polyion complex (PIC) micelles based on hydrophilic block copolymers allow for the direct synthesis of intrinsically functional hybrid materials. While most previous studies have focused on bulk materials made from double-hydrophilic block copolymers (DHBC), in this work we have synthesized a triple-hydrophilic block copolymer (THBC) and demonstrated both its PIC micellization and its potential for hybrid mesoporous silica nanomaterials. Introducing this THBC has allowed to direct the transition from bulk three-dimensional (3D) materials to zero-dimensional (0D) nanomaterials with cage-type structures. The stabilization and isolation of these nanostructures formed around discrete individual micelles has been made possible by the careful design of the three different blocks that each play a key role. These nanostructures could also be synthesized from hybrid PIC micelles based on THBC-multivalent metal ions complexes, offering a direct route to metal/silica composite nanoparticles. This class of THBC polymers therefore creates significant opportunities for the synthesis of nanostructures with complex and functional architectures.
Collapse
Affiliation(s)
- Anu Vashishtha
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | | | - Thomas Gaillard
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Julien Schmitt
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
- Saint-Gobain Research Provence, LSFC, CNRS, 84300 Cavaillon, France
| | - Corine Gerardin
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | | | - Tangi Aubert
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|
2
|
Fauquignon M, Solberg A, Porcar L, Chapel JP, Christensen BE, Schatz C. Micellar Nanogels from Alginate-Based Diblock Copolysaccharides. Biomacromolecules 2024; 25:6555-6569. [PMID: 39351822 DOI: 10.1021/acs.biomac.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Alginates are marine polysaccharides known for their ability to selectively bind calcium ions and form hydrogels. They are widely used in biomedical applications but are challenging to produce as nanogels. Here we introduce a self-assembly route to create stable alginate-based nanogels under near-equilibrium conditions. Guluronate (G) blocks, which interact with divalent cations such as Ca2+, Ba2+, and Sr2+, were extracted from alginates and covalently linked through their reducing end to the reducing end of dextran (Dex) chains, forming linear block copolymers that self-assemble into micellar nanogels with a core-corona structure in the presence of these ions. Real-time dynamic light scattering (DLS) and small-angle neutron scattering (SANS) were used to study the self-assembly mechanism of the copolymer during dialysis against divalent ions. For the G12-b-Dex51 copolymer, we achieved spherical micelles with an 8 nm radius and an aggregation number of around 20. Although the type of divalent cation affected micelle stability, it did not influence their size. Micellar nanogels are dynamic structures, capable of ion exchange, and can disassemble with chelating agents like ethylenediamine tetraacetic acid (EDTA).
Collapse
Affiliation(s)
- Martin Fauquignon
- Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, F-33600 Pessac, France
| | - Amalie Solberg
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Lionel Porcar
- Institut Laue-Langevin (ILL), F-38042 Grenoble, France
| | - Jean-Paul Chapel
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Université de Bordeaux, F-33600 Pessac, France
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Christophe Schatz
- Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, F-33600 Pessac, France
| |
Collapse
|
3
|
Peng L, Gineste S, Coudret C, Ciuculescu-Pradines D, Benoît-Marquié F, Mingotaud C, Marty JD. Iron-based hybrid polyionic complexes as chemical reservoirs for the pH-triggered synthesis of Prussian blue nanoparticles. J Colloid Interface Sci 2023; 649:900-908. [PMID: 37390537 DOI: 10.1016/j.jcis.2023.06.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
HYPOTHESIS Hybrid polyion complexes (HPICs) obtained from the complexation in aqueous solution of a double hydrophilic block copolymer and metal ions can act as efficient precursors for the controlled synthesis of nanoparticles. In particular, the possibility to control the availability of metal ions by playing on the pH conditions is of special interest to obtain nanoparticles with controlled size and composition. EXPERIMENTS HPICs based on Fe3+ ions were used to initiate the formation of Prussian blue (PB) nanoparticles in presence of potassium ferrocyanide in reaction media with varying pH values. FINDINGS Complexed Fe3+ ions within HPICs can be easily released by adjusting the pH value either through the addition of a base/acid or by using a merocyanine photoacid. This allows to modulate the reactivity of Fe3+ ions with potassium ferrocyanide present in solution. As a result, PB nanoparticles with different structures (core, core-shell), composition and controlled size are obtained.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Coudret
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Diana Ciuculescu-Pradines
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Florence Benoît-Marquié
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
4
|
Odnoroh M, Coutelier O, Mingotaud C, Destarac M, Marty JD. Diblock versus block-random copolymer architecture effect on physical properties of Gd 3+-based hybrid polyionic complexes. J Colloid Interface Sci 2023; 649:655-664. [PMID: 37369167 DOI: 10.1016/j.jcis.2023.06.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
HYPOTHESIS Random insertion of vinylphosphonic acid (VPA) units into a of PEG-PAA block copolymer improves the chemical stability and properties of hybrid nanoobjects obtained from the complexation of the copolymer with metal ions. EXPERIMENTS Block polymers based on poly(acrylic acid) (PAA) and poly(ethylene glycol) (PEG) are modified by random insertion of 0 to 100 % of phosphonic acid functions in PAA block by a RAFT polymerization process. These polymers are then used to form hybrid polyionic complexes (HPICs) by complexation with gadolinium or europium ions. The properties of the obtained assemblies are evaluated by magnetic relaxivity, fluorescence and light scattering measurements. FINDINGS The insertion of VPA units within the PAA block increases the chemical stability of the hybrid micelles by maintaining their integrity even at low pH. This insertion also minimizes the exchange of ions between HPICs and the surrounding medium thanks to a strengthening of interactions toward lanthanide ions. When such systems are used as MRI contrast agents or luminescent probe, 50/50 AA/VPA composition appears to be a good compromise to achieve optimal relaxivity or luminescent properties while ensuring a good chemical stability.
Collapse
Affiliation(s)
- Maksym Odnoroh
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France
| | - Olivier Coutelier
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France
| | - Mathias Destarac
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
5
|
Bhowmik S, Pham TT, Takahashi R, Kim D, Matsuoka H, Ishihara K, Yusa SI. Preparation of Water-Soluble Polyion Complex (PIC) Micelles with Random Copolymers Containing Pendant Quaternary Ammonium and Sulfonate Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37235722 DOI: 10.1021/acs.langmuir.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cationic random copolymers (PCm) consisting of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC; P) with methacroylcholine chloride (MCC; C) and anionic random copolymers (PSn) consisting of MPC and potassium 3-(methacryloyloxy)propanesulfonate (MPS; S) were prepared via a reversible addition-fragmentation chain transfer method. "m" and "n" represent the compositions (mol %) of the MCC and MPS units in the copolymers, respectively. The degrees of polymerization for the copolymers were 93-99. Water-soluble MPC unit contains a pendant zwitterionic phosphorylcholine group whose charges are neutralized in pendant groups. MCC and MPS units contain the cationic quaternary ammonium and anionic sulfonate groups, respectively. The stoichiometrically charge-neutralized mixture of a matched pair of PCm and PSn aqueous solutions resulted in the spontaneous formation of water-soluble PCm/PSn polyion complex (PIC) micelles. These PIC micelles have the MPC-rich surface and MCC/MPS core. These PIC micelles were characterized using 1H NMR, dynamic and static light scattering, and transmission electron microscopic measurements. The hydrodynamic radius of these PIC micelles depends on the mixing ratio of the oppositely charged random copolymers. The charge-neutralized mixture formed maximum-size PIC micelles.
Collapse
Affiliation(s)
- Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Thu Thao Pham
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Rintaro Takahashi
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Dongwook Kim
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
6
|
Gineste S, Mingotaud C. Double-hydrophilic block copolymer-metal ion associations: Structures, properties and applications. Adv Colloid Interface Sci 2023; 311:102808. [PMID: 36442323 DOI: 10.1016/j.cis.2022.102808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Hybrid polyionic complexes (HPICs), constructed from double-hydrophilic block copolymers and metal ions, have been largely developed with increasing interest in the past decade in the fields of catalysis, materials science and biological applications. The chemical natures of both blocks are very versatile, but one block should be able to interact with ions, and the second one should be neutral. Many metals have been used to form HPICs, which have, in their simplest architectural form, a core-shell structure of a few tens of nanometers in radius with an external shell made of the neutral block of the copolymer. In this review, we focus our discussion on the stability, shape, size and inner structure of these hybrid micelles. We then describe the most recent applications of HPICs, as reported in the literature, and point out the current challenges, missing structural information and future perspectives for this class of organized structures.
Collapse
Affiliation(s)
- Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
7
|
Tawfik NM, Teiama MS, Iskandar SS, Osman A, Hammad SF. A Novel Nanoemulsion Formula for an Improved Delivery of a Thalidomide Analogue to Triple-Negative Breast Cancer; Synthesis, Formulation, Characterization and Molecular Studies. Int J Nanomedicine 2023; 18:1219-1243. [PMID: 36937550 PMCID: PMC10016366 DOI: 10.2147/ijn.s385166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2023] Open
Abstract
Background Thalidomide (THD) and its analogues were recently reported as a promising treatment for different types of solid tumors due to their antiangiogenic effect. Methods In this work, we synthesized a novel THD analogue (TA), and its chemistry was confirmed with different techniques such as IR, mass spectroscopy, elemental analysis as well as 1H and 13C NMR. To increase solubility and anticancer efficacy, a new oil in water (O/W) nanoemulsion (NE) was used in the formulation of the analogue. The novel formula's surface charge, size, stability, FTIR, FE-TEM, in vitro drug release and physical characteristics were investigated. Furthermore, molecular docking studies were conducted to predict the possible binding modes and molecular interactions behind the inhibitory activities of the THD and TA. Results TA showed a significant cytotoxic activity with IC50 ranging from 0.326 to 43.26 µmol/mL when evaluated against cancerous cells such as MCF-7, HepG2, Caco-2, LNCaP and RKO cell lines. The loaded analogue showed more potential cytotoxicity against MDA-MB-231 and MCF-7-ADR cell lines with IC50 values of 0.0293 and 0.0208 nmol/mL, respectively. Moreover, flow cytometry of cell cycle analysis and apoptosis were performed showing a suppression in the expression levels of TGF-β, MCL-1, VEGF, TNF-α, STAT3 and IL-6 in the MDA-MB-231 cell line. Conclusion The novel NE formula dramatically reduced the anticancer dosage of TA from micromolar efficiency to nanomolar efficiency. This indicates that the synthesized analogue exhibited high potency in the NE formulation and proved its efficacy against triple-negative breast cancer cell line.
Collapse
Affiliation(s)
- Noran M Tawfik
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohammed S Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Sameh Samir Iskandar
- Fellow and Head of Surgical Oncology Department, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif F Hammad
- PharmD Programs, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
9
|
Gineste S, Lonetti B, Yon M, Giermanska J, Di Cola E, Sztucki M, Coppel Y, Mingotaud AF, Chapel JP, Marty JD, Mingotaud C. Hybrid polymeric micelles stabilized by gallium ions: Structural investigation. J Colloid Interface Sci 2021; 609:698-706. [PMID: 34862046 DOI: 10.1016/j.jcis.2021.11.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The addition of gallium ions to a solution of a double-hydrophilic block copolymer, i.e. poly(ethylene oxide)-block-poly(acrylic acid), leads to the spontaneous formation of highly monodisperse micelles with a Hybrid PolyIon Complexes (HPICs) core. By combining several techniques, a precise description of the HPIC architecture was achieved. In particular and for the first time, NMR and anomalous small angle X-ray scattering (ASAXS) enable tracking of the inorganic ions in solution and highlighting the co-localization of the gallium and the poly(acrylic acid) blocks in a rigid structure at the core of the micelle. Such a core has a radius of ca 4.3 nm while the complete nano-object with its poly(ethylene oxide) shell has a total radius of ca 11 nm. The aggregation number was also estimated using the ASAXS results. This comprehensive structural characterization of the Ga HPICs corroborates the assumptions made for HPICs based on other inorganic ions and demonstrates the universality of the HPIC structure leading, for example, to new families of contrast agents in medical imaging.
Collapse
Affiliation(s)
- Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Marjorie Yon
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Joanna Giermanska
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux,115, Avenue du Dr Albert Schweitzer 33600 Pessac, France
| | | | - Michael Sztucki
- European Synchrotron Radiation Facility, 71, avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Yannick Coppel
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Jean-Paul Chapel
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux,115, Avenue du Dr Albert Schweitzer 33600 Pessac, France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| |
Collapse
|
10
|
Guazzelli E, Masotti E, Calosi M, Kriechbaum M, Uhlig F, Galli G, Martinelli E. Single-chain folding and self-assembling of amphiphilic polyethyleneglycol-modified fluorinated styrene homopolymers in water solution. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Jeong YH, Ahn T, Yu W, Lee SM. Cholesterol-Functionalized Linear/Brush Block Copolymers for Metal-Incorporated Nanostructures with Modulated Core Density and Enhanced Self-Assembly Efficiency. ACS Macro Lett 2021; 10:492-497. [PMID: 35549233 DOI: 10.1021/acsmacrolett.1c00112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal-mediated self-assembly of chelating double-hydrophilic block copolymer has become a facile preparation strategy of great importance for the metal-chelated hybrid nanostructures. Herein, we present a delicate control over the morphology regulation of metal-chelated nanostructures by a terminal modification of polymer building blocks with mesogenic cholesterol. Such a molecular design motif at an end of chelating linear/brush-type block copolymer imparts not only additional hydrophobicity for enhanced cohesive force to facilitate the metal-mediated self-assembly, but also significant morphological alteration of a metal-chelated core that otherwise generally forms a spherical interior with cholesterol-free block copolymers. The presence of cholesterol entities localized at the central core further allows for the density modulation of the final PtII-chelated nanostructures while maintaining the colloidal stability, comparable to that of the cholesterol-free nanoparticles in physiological conditions. This metal-mediated assembly strategy with modified polymer building blocks can provide a potential platform for the delivery of inorganic agents.
Collapse
Affiliation(s)
- Yun-Ho Jeong
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Taekyung Ahn
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Wonjeong Yu
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Sang-Min Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| |
Collapse
|
12
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Sproncken CM, Magana JR, Voets IK. 100th Anniversary of Macromolecular Science Viewpoint: Attractive Soft Matter: Association Kinetics, Dynamics, and Pathway Complexity in Electrostatically Coassembled Micelles. ACS Macro Lett 2021; 10:167-179. [PMID: 33628618 PMCID: PMC7894791 DOI: 10.1021/acsmacrolett.0c00787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Electrostatically coassembled micelles constitute a versatile class of functional soft materials with broad application potential as, for example, encapsulation agents for nanomedicine and nanoreactors for gels and inorganic particles. The nanostructures that form upon the mixing of selected oppositely charged (block co)polymers and other ionic species greatly depend on the chemical structure and physicochemical properties of the micellar building blocks, such as charge density, block length (ratio), and hydrophobicity. Nearly three decades of research since the introduction of this new class of polymer micelles shed significant light on the structure and properties of the steady-state association colloids. Dynamics and out-of-equilibrium processes, such as (dis)assembly pathways, exchange kinetics of the micellar constituents, and reaction-assembly networks, have steadily gained more attention. We foresee that the broadened scope will contribute toward the design and preparation of otherwise unattainable structures with emergent functionalities and properties. This Viewpoint focuses on current efforts to study such dynamic and out-of-equilibrium processes with greater spatiotemporal detail. We highlight different approaches and discuss how they reveal and rationalize similarities and differences in the behavior of mixed micelles prepared under various conditions and from different polymeric building blocks.
Collapse
Affiliation(s)
- Christian
C. M. Sproncken
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - J. Rodrigo Magana
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
14
|
Cantarano A, Yao J, Matulionyte M, Lifante J, Benayas A, Ortgies DH, Vetrone F, Ibanez A, Gérardin C, Jaque D, Dantelle G. Autofluorescence-Free In Vivo Imaging Using Polymer-Stabilized Nd 3+-Doped YAG Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51273-51284. [PMID: 33156603 DOI: 10.1021/acsami.0c15514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neodymium-doped yttrium aluminum garnet (YAG:Nd3+) has been widely developed during roughly the past 60 years and has been an outstanding fluorescent material. It has been considered as the gold standard among multipurpose solid-state lasers. Yet, the successful downsizing of this system into the nanoregimen has been elusive, so far. Indeed, the synthesis of a garnet structure at the nanoscale, with enough crystalline quality for optical applications, was found to be quite challenging. Here, we present an improved solvothermal synthesis method producing YAG:Nd3+ nanocrystals of remarkably good structural quality. Adequate surface functionalization using asymmetric double-hydrophilic block copolymers, constituted of a metal-binding block and a neutral water-soluble block, provides stabilized YAG:Nd3+ nanocrystals with long-term colloidal stability in aqueous suspensions. These newly stabilized nanoprobes offer spectroscopic quality (long lifetimes, narrow emission lines, and large Stokes shifts) close to that of bulk YAG:Nd3+. The narrow emission lines of YAG:Nd3+ nanocrystals are exploited by differential infrared fluorescence imaging, thus achieving an autofluorescence-free in vivo readout. In addition, nanothermometry measurements, based on the ratiometric fluorescence of the stabilized YAG:Nd3+ nanocrystals, are demonstrated. The progress here reported paves the way for the implementation of this new stabilized YAG:Nd3+ system in the preclinical arena.
Collapse
Affiliation(s)
- Alexandra Cantarano
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Jingke Yao
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes (Québec) J3X 1S2, Canada
| | - José Lifante
- Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo, 2, Madrid 28029, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Antonio Benayas
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Dirk H Ortgies
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes (Québec) J3X 1S2, Canada
| | - Alain Ibanez
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Corine Gérardin
- ICGM, Univ. Montpellier, CNRS UMR 5253, ENSCM, 240 Avenue E. Jeanbrau, 34296 Montpellier cedex 5, France
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Géraldine Dantelle
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
15
|
Alginate-Based Platforms for Cancer-Targeted Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1487259. [PMID: 33083451 PMCID: PMC7563048 DOI: 10.1155/2020/1487259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.
Collapse
|
16
|
Mestivier M, Li JR, Camy A, Frangville C, Mingotaud C, Benoît‐Marquié F, Marty J. Copper‐Based Hybrid Polyion Complexes for Fenton‐Like Reactions. Chemistry 2020; 26:14152-14158. [DOI: 10.1002/chem.202002362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Mathieu Mestivier
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Jun Rong Li
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Aurèle Camy
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Camille Frangville
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christophe Mingotaud
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Florence Benoît‐Marquié
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Jean‐Daniel Marty
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
17
|
Sohn H, Shin HW, Lee SM. Metal-Mediated Morphology Regulation of Self-Assembled Double-Hydrophilic Block Copolymers. ACS Macro Lett 2020; 9:600-605. [PMID: 35648493 DOI: 10.1021/acsmacrolett.0c00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report a nanoscale morphology-regulation strategy of self-assembled double-hydrophilic block copolymers with square planar PtII compounds. The selective coordination of PtII on the chelating blocks of poly(acrylic acid)-b-poly(ethylene glycol) (PAA-b-PEG) induced the self-association of metal-chelated unimers by the known cohesive force of PtII. The block-length variation of PAA with constant PEG led to the shape transition from normal core/shell and crew-cut spheres to anisotropic pearl-string structures. On the other hand, PtII adsorption on PEG blocks by extensive hydrogen bonding can further modify the molecular geometry of metal-chelated unimers by decreasing the volume of hydrophilic segments, eventually leading to the shape transition to vesicular structures. This result was well correlated to the structural constraint of PEG conformation estimated by the quantitative 1H NMR analysis. The vesicles also exhibited the enclosing nature for the fluorescent guest molecules, which demonstrated the promising potential for the encapsulating delivery vehicle.
Collapse
Affiliation(s)
- Hyerin Sohn
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Hyeon-Woo Shin
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Sang-Min Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| |
Collapse
|
18
|
Fluoride in Drinking Water and Nanotechnological Approaches for Eliminating Excess Fluoride. JOURNAL OF NANOTECHNOLOGY 2019. [DOI: 10.1155/2019/2192383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arising awareness of health hazards due to long-term exposure of fluoride has led researchers to seek for more innovative strategies to eliminate excess fluoride in drinking water. Fluoride-bearing chemicals in both natural and anthropogenic sources contaminate drinking water, which mainly cause for human fluoride ingestion. Hence, developing sustainable approaches toward alleviation is essential. Among many emerging techniques of defluoridation, nanotechnological approaches stand out owing to its high efficiency, and hence, as in many areas, nanotechnology for excess fluoride removal in water is gaining ground compared to other conventional adsorbents and process. The present review focuses on some of the advanced and recent nanoadsorbents including their strengths and shortcomings (e.g., CNT, LDH, graphene-based nanomaterials, and magnetic nanomaterials) and other processes involving nanotechnology while discussing basic aspects of hydrochemistry of fluoride and geological conditions leading for water fluoride contamination. Considering all the findings in survey, it is evident that developing more sustainable techniques is essential rather than conducting batch-type experiments solely.
Collapse
|
19
|
Heo TY, Kim I, Chen L, Lee E, Lee S, Choi SH. Effect of Ionic Group on the Complex Coacervate Core Micelle Structure. Polymers (Basel) 2019; 11:E455. [PMID: 30960439 PMCID: PMC6473896 DOI: 10.3390/polym11030455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
Pairs of ionic group dependence of the structure of a complex coacervate core micelle (C3M) in an aqueous solution was investigated using DLS, cryo-TEM, and SANS with a contrast matching technique and a detailed model analysis. Block copolyelectrolytes were prepared by introducing an ionic group (i.e., ammonium, guanidinium, carboxylate, and sulfonate) to poly(ethylene oxide-b-allyl glycidyl ether) (NPEO = 227 and NPAGE = 52), and C3Ms were formed by simple mixing of two oppositely-charged block copolyelectrolyte solutions with the exactly same degree of polymerization. All four C3Ms are spherical with narrow distribution of micelle dimension, and the cores are significantly swollen by water, resulting in relatively low brush density of PEO chains on the core surface. With the pair of strong polyelectrolytes, core radius and aggregation number increases, which reflects that the formation of complex coacervates are significantly sensitive to the pairs of ionic groups rather than simple charge pairing.
Collapse
Affiliation(s)
- Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul 04066, Korea.
| | - Inhye Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea.
| | - Liwen Chen
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Sangwoo Lee
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Korea.
| |
Collapse
|
20
|
Wang C, Cui B, Guo L, Wang A, Zhao X, Wang Y, Sun C, Zeng Z, Zhi H, Chen H, Liu G, Cui H. Fabrication and Evaluation of Lambda-Cyhalothrin Nanosuspension by One-Step Melt Emulsification Technique. NANOMATERIALS 2019; 9:nano9020145. [PMID: 30678132 PMCID: PMC6409978 DOI: 10.3390/nano9020145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 01/19/2023]
Abstract
Recent years have witnessed significant progress in nanotechnology and pesticide research in pest control and crop protection. There are more motivations to develop nanoformulations that are less harmful to environment than conventional formulations. The use of nanosuspension has been proposed as a novel formulation to process poorly soluble pesticides. In this study, the lambda-cyhalothrin nanosuspension (LCNS) was prepared in a melt emulsification method. The prepared nanosuspension had a mean particle size of 12.0 ± 0.1 nm and a polydispersity index of 0.279 ± 0.135. The smaller particle size and polydispersity confer better wettability, stability and bioavailability than conventional suspension concentrates. The excellent properties of the nanosuspension were attributed to the reduced particle size and the emulsification and dispersion of the surfactants. The LCNS eliminates the need for organic solvents and significantly reduces the amount of surfactant required. The simple production process of LCNS saves production and equipment costs. The results indicate that lambda-cyhalothrin nanosuspensions would have a broad application prospect in agricultural production systems.
Collapse
Affiliation(s)
- Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | | | | | | | | | | | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Heng Zhi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongyan Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guoqiang Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | |
Collapse
|
21
|
Hu X, Lu F, Chen L, Tang Y, Hu W, Lu X, Ji Y, Yang Z, Zhang W, Yin C, Huang W, Fan Q. Perylene Diimide-Grafted Polymeric Nanoparticles Chelated with Gd 3+ for Photoacoustic/T 1-Weighted Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30458-30469. [PMID: 28825456 DOI: 10.1021/acsami.7b09633] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing versatile and easily prepared nanomaterials with both imaging and therapeutic properties have received significant attention in cancer diagnostics and therapeutics. Here, we facilely fabricated Gd3+-chelated poly(isobutylene-alt-maleic anhydride) (PMA) framework pendent with perylene-3,4,9,10-tetracarboxylic diimide (PDI) derivatives and poly(ethylene glycol) (PEG) as an efficient theranostic platform for dual-modal photoacoustic imaging (PAI) and magnetic resonance imaging (MRI)-guided photothermal therapy. The obtained polymeric nanoparticles (NPs) chelated with Gd3+ (PMA-PDI-PEG-Gd NPs) exhibited a high T1 relaxivity coefficient (13.95 mM-1 s-1) even at the higher magnetic fields. After 3.5 h of tail vein injection of PMA-PDI-PEG-Gd NPs, the tumor areas showed conspicuous enhancement in both photoacoustic signal and T1-weighted MRI intensity, indicating the efficient accumulation of PMA-PDI-PEG-Gd NPs owing to the enhanced permeation and retention effect. In addition, the excellent tumor ablation therapeutic effect in vivo was demonstrated with living mice. Overall, our work illustrated a straightforward synthetic strategy for engineering multifunctional polymeric nanoparticles for dual-modal imaging to obtain more accurate information for efficient diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaoming Hu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Liang Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University , Wuhan, Hubei 430071, China
| | - Yufu Tang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Yu Ji
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Zhen Yang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Wansu Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Chao Yin
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
22
|
Zhang X, Wang H, Dai Y. Interlayer-crosslinked micelles prepared from star-shaped copolymers via click chemistry for sustained drug release. NANOTECHNOLOGY 2017; 28:205601. [PMID: 28429685 DOI: 10.1088/1361-6528/aa6907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To balance the stability and the particle size of polymeric micelles, star-shaped copolymers Hx-yne-N3-PEG containing both alkynyl and azido groups were synthesized from hyperbranched 2,2-bismethylolpropionic acid polyester (H20 with 16 hydroxyl, H30 with 32 hydroxyl, H40 with 64 hydroxyl) to develop interlayer-crosslinked micelles by click chemistry. The results of dynamic light scattering indicate that the crosslinking could enhance the stability of polymeric micelles. The crosslinked micelles are regular nanosized (approximately 20 nm) spheres observed by a transmission electron microscope. The crosslinked micelles have better drug loading capacity and more sustained drug release behavior than the un-crosslinked micelles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | | | | |
Collapse
|
23
|
Characterization of Comb-Shaped Copolymers by Multidetection SEC, DLS and SANS. Polymers (Basel) 2017; 9:polym9020061. [PMID: 30970739 PMCID: PMC6432231 DOI: 10.3390/polym9020061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 12/02/2022] Open
Abstract
PolyCarboxylate ether-based superplasticizers (PCEs) are a type of comb-shaped copolymers used as polymeric dispersants in cementitious materials. PCEs have a high degree of dispersity, which limits the suitability of conventional characterization techniques, such as Size Exclusion Chromatography (SEC). Properties of PCEs strongly depend on their molecular structure and a comprehensive characterization is needed to fully understand the structure–property relationships. PCEs with well-defined molecular structures were synthesized to study their solution conformation by SEC and scattering techniques. The combined use of SEC, dynamic light scattering and small-angle neutron scattering allowed us to demonstrate the validity of a scaling law describing the radius of gyration of comb-shaped copolymers as a function of their molecular structure. Moreover, we show that the use of SEC with standard calibration, although widely spread, is not adequate for PCEs.
Collapse
|
24
|
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28252] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Lin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| |
Collapse
|
25
|
Frangville C, Li Y, Billotey C, Talham DR, Taleb J, Roux P, Marty JD, Mingotaud C. Assembly of Double-Hydrophilic Block Copolymers Triggered by Gadolinium Ions: New Colloidal MRI Contrast Agents. NANO LETTERS 2016; 16:4069-4073. [PMID: 27224089 DOI: 10.1021/acs.nanolett.6b00664] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mixing double-hydrophilic block copolymers containing a poly(acrylic acid) block with gadolinium ions in water leads to the spontaneous formation of polymeric nanoparticles. With an average diameter near 20 nm, the nanoparticles are exceptionally stable, even after dilution and over a large range of pH and ionic strength. High magnetic relaxivities were measured in vitro for these biocompatible colloids, and in vivo magnetic resonance imaging on rats demonstrates the potential utility of such polymeric assemblies.
Collapse
Affiliation(s)
- Camille Frangville
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Yichen Li
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Claire Billotey
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Daniel R Talham
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Jacqueline Taleb
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Patrick Roux
- EMR 3738 Ciblage Thérapeutique en Oncologie, Université de Lyon, Université Jean Monnet , Hospices Civils de Lyon, 42023 Saint-Etienne Cedex 2, France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier , 118, route de Narbonne 31062 Toulouse Cedex 9, France
| |
Collapse
|
26
|
Abolmaali SS, Tamaddon AM, Mohammadi S, Amoozgar Z, Dinarvand R. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:897-907. [DOI: 10.1016/j.msec.2016.02.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/04/2016] [Accepted: 02/17/2016] [Indexed: 11/24/2022]
|
27
|
Thermo-sensitive complex micelles from sodium alginate- graft -poly( N -isopropylacrylamide) for drug release. Int J Biol Macromol 2016; 86:296-301. [DOI: 10.1016/j.ijbiomac.2016.01.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/22/2022]
|
28
|
Ohno S, Ishihara K, Yusa SI. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3945-3953. [PMID: 27048989 DOI: 10.1021/acs.langmuir.6b00637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A random copolymer (p(A/MaU)) of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and sodium 11-methacrylamidoundecanate (MaU) was prepared via conventional radical polymerization, which formed a unimer micelle under acidic conditions due to intramolecular hydrophobic interactions between the pendant undecanoic acid groups. Under basic conditions, unimer micelles were opened up to an expanded chain conformation by electrostatic repulsion between the pendant sulfonate and undecanoate anions. A cationic diblock copolymer (P163M99) consisting of poly(3-(methacrylamido)propyl)trimethylammonium chloride (PMAPTAC) and hydrophilic polybetaine, 2-(methacryloyloxy)ethylphosphorylcholine (MPC), blocks was prepared via controlled radical polymerization. Mixing of p(A/MaU) and P163M99 in 0.1 M aqueous NaCl under acidic conditions resulted in the formation of spherical polyion complex (PIC) micelles and vesicles, depending on polymer concentration before mixing. Shapes of the PIC micelles and vesicles changed under basic conditions due to collapse of the charge balance between p(A/MaU) and P163M99. The PIC vesicles can incorporate nonionic hydrophilic guest molecules, and the PIC micelles and vesicles can accept hydrophobic guest molecules in the hydrophobic core formed from p(A/MaU).
Collapse
Affiliation(s)
- Sayaka Ohno
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo , 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo , 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
29
|
Markiewicz KH, Seiler L, Misztalewska I, Winkler K, Harrisson S, Wilczewska AZ, Destarac M, Marty JD. Advantages of poly(vinyl phosphonic acid)-based double hydrophilic block copolymers for the stabilization of iron oxide nanoparticles. Polym Chem 2016. [DOI: 10.1039/c6py01558a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ethylene glycol)–poly(vinylphosphonic acid) double hydrophilic block copolymers were synthesized by RAFT/MADIX polymerization and used to prepare stable iron oxide nanoparticles.
Collapse
Affiliation(s)
- K. H. Markiewicz
- Institute of Chemistry
- University of Bialystok
- 15-245 Bialystok
- Poland
| | - L. Seiler
- IMRCP
- CNRS UMR 5623
- Université de Toulouse
- 31062 Toulouse Cedex 09
- France
| | - I. Misztalewska
- Institute of Chemistry
- University of Bialystok
- 15-245 Bialystok
- Poland
| | - K. Winkler
- Institute of Chemistry
- University of Bialystok
- 15-245 Bialystok
- Poland
| | - S. Harrisson
- IMRCP
- CNRS UMR 5623
- Université de Toulouse
- 31062 Toulouse Cedex 09
- France
| | - A. Z. Wilczewska
- Institute of Chemistry
- University of Bialystok
- 15-245 Bialystok
- Poland
| | - M. Destarac
- IMRCP
- CNRS UMR 5623
- Université de Toulouse
- 31062 Toulouse Cedex 09
- France
| | - J.-D. Marty
- IMRCP
- CNRS UMR 5623
- Université de Toulouse
- 31062 Toulouse Cedex 09
- France
| |
Collapse
|
30
|
Zhang L, Wang J, Ni C, Zhang Y, Shi G. Preparation of polyelectrolyte complex nanoparticles of chitosan and poly(2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:724-9. [PMID: 26478364 DOI: 10.1016/j.msec.2015.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/15/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022]
Abstract
A new kind of polyelectrolyte complex (PEC) based on cationic chitosan (CS) and anionic poly(2-acry1amido-2-methylpropanesulfonic acid) (PAMPS) was prepared using a polymer-monomer pair reaction system. Chitosan was mixed with 2-acry1amido-2-methylpropanesulfonic acid) (AMPS) in an aqueous solution, followed by polymerization of AMPS. The complex was formed by electrostatic interaction of NH3(+) groups of CS and SO3(-) groups of AMPS, leading to a formation of complex nanoparticles of CS-PAMPS. A series of nanoparticles were obtained by changing the weight ratio of CS to AMPS, the structure and properties of nanoparticles were investigated. It was observed that the nanoparticles possessed spherical morphologies with average diameters from 255 nm to 390 nm varied with compositions of the nanoparticles. The nanoparticles were used as drug vehicles for doxorubicin, displaying relative high drug loading rate and encapsulation rate. The vitro release profiles revealed that the drug release could be controlled by adjusting pH of the release media. The nanoparticles demonstrated apparent advantages such as simple preparation process, free of organic solvents, size controllable, good biodegradability and biocompatibility, and they could be potentially used in drug controlled release field.
Collapse
Affiliation(s)
- Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yanan Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Layrac G, Gérardin C, Tichit D, Harrisson S, Destarac M. Hybrid polyion complex micelles from poly(vinylphosphonic acid)-based double hydrophilic block copolymers and divalent transition metal ions. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Huang G, Tong G, Liu J, Zhang W, Chen L, Quan C, Jiang Q, Sun H, Zhang C. Construction of Silver Nanoparticle-Loaded MicellesViaCoordinate Interaction and Their Antibacterial Activity. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1030655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Sachse A, Cardoso L, Kostov KL, Gérardin C, Belamie E, Alonso B. Mesoporous alumina from colloidal biotemplating of Al clusters. Chemistry 2015; 21:3206-10. [PMID: 25588647 DOI: 10.1002/chem.201405444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 11/12/2022]
Abstract
A simple and green synthesis route was disclosed for the achievement of mesoporous alumina microparticles employing polysaccharide nanoparticles (α-chitin nanorods) as templates. Pore textures can be tuned by the cationic alumina precursor. Compared to small cations, the use of Al13 and Al30 oxo-hydroxo clusters leads to better defined and elongated mesopores. Electron microscopy and spectroscopic ((13) C, (27) Al NMR, XPS) measurements demonstrated that this is related to the effective coating of α-chitin nanorods by these pre-condensed colloids.
Collapse
Affiliation(s)
- Alexander Sachse
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS/UM2/ENSCM/UM1, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 (France)
| | | | | | | | | | | |
Collapse
|
34
|
Sutton AT, Read E, Maniego AR, Thevarajah JJ, Marty JD, Destarac M, Gaborieau M, Castignolles P. Purity of double hydrophilic block copolymers revealed by capillary electrophoresis in the critical conditions. J Chromatogr A 2014; 1372C:187-195. [DOI: 10.1016/j.chroma.2014.10.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
35
|
Yin Q, Han X, Ponsinet V, Liu H. Controlled assembly of plasmonic nanoparticles using neutral-charged diblock copolymers. J Colloid Interface Sci 2014; 431:97-104. [DOI: 10.1016/j.jcis.2014.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/18/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
36
|
Layrac G, Destarac M, Gérardin C, Tichit D. Highly stable layered double hydroxide colloids: a direct aqueous synthesis route from hybrid polyion complex micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9663-9671. [PMID: 25087853 DOI: 10.1021/la502159x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aqueous suspensions of highly stable Mg/Al layered double hydroxide (LDH) nanoparticles were obtained via a direct and fully colloidal route using asymmetric poly(acrylic acid)-b-poly(acrylamide) (PAA-b-PAM) double hydrophilic block copolymers (DHBCs) as growth and stabilizing agents. We showed that hybrid polyion complex (HPIC) micelles constituted of almost only Al(3+) were first formed when mixing solutions of Mg(2+) and Al(3+) cations and PAA3000-b-PAM10000 due to the preferential complexation of the trivalent cations. Then mineralization performed by progressive hydroxylation with NaOH transformed the simple DHBC/Al(3+) HPIC micelles into DHBC/aluminum hydroxide colloids, in which Mg(2+) ions were progressively introduced upon further hydroxylation leading to the Mg-Al LDH phase. The whole process of LDH formation occurred then within the confined environment of the aqueous complex colloids. The hydrodynamic diameter of the DHBC/LDH colloids could be controlled: it decreased from 530 nm down to 60 nm when the metal complexing ratio R (R = AA/(Mg + Al)) increased from 0.27 to 1. This was accompanied by a decrease of the average size of individual LDH particles as R increased (for example from 35 nm at R = 0.27 down to 17 nm at R = 0.33), together with a progressive favored intercalation of polyacrylate rather than chloride ions in the interlayer space of the LDH phase. The DHBC/LDH colloids have interesting properties for biomedical applications, that is, high colloidal stability as a function of time, stability in phosphate buffered saline solution, as well as the required size distribution for sterilization by filtration. Therefore, they could be used as colloidal drug delivery systems, especially for hydrosoluble negatively charged drugs.
Collapse
Affiliation(s)
- Géraldine Layrac
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Matériaux Avancés pour la Catalyse et la Santé (MACS), Ecole Nationale Supérieure de Chimie, 8, rue de l'Ecole Normale, 34296, Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
37
|
Abolmaali SS, Tamaddon A, Yousefi G, Javidnia K, Dinarvand R. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links. Int J Nanomedicine 2014; 9:2833-48. [PMID: 24944513 PMCID: PMC4057327 DOI: 10.2147/ijn.s61614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.
Collapse
Affiliation(s)
- Samira Sadat Abolmaali
- Department of Pharmaceutics, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Tamaddon
- Department of Pharmaceutics, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoun Javidnia
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Fan H, Jin Z. Freezing polystyrene-b-poly(2-vinylpyridine) micelle nanoparticles with different nanostructures and sizes. SOFT MATTER 2014; 10:2848-2855. [PMID: 24668189 DOI: 10.1039/c3sm53049c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Herein we report how to control the nanostructures and sizes of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) nanoparticles via manipulating freezing in solvent-exchange. By characterizing and analyzing the distinct structural features of the obtained nanoparticles, we recognized that micelle self-assembly happens in the precipitation of PS-b-P2VP when water is added into the block copolymer (BCP) solution. Solvent properties significantly influence micelle types that are vesicles in acetone/H2O and spherical micelles in tetrahydrofuran/H2O, respectively, thus further inducing different frozen nanostructures of the obtained nanoparticles, onion-like in acetone/H2O and large compound micelles in tetrahydrofuran/H2O. By changing the concentration of the block copolymers and the Vsolvent/VH2O ratio to modify the freezing stage at which block copolymer micelles are frozen, we can further control the size of the nanoparticles. Moreover, small molecules (phosphotungstic acid, pyrene, 1-pyrenebutyric acid) can be trapped into the block copolymer nanoparticles via the freezing process. Their distribution in the nanoparticles relies not only on the solvent property, but also on their interactions with block copolymers. The hybrid nanoparticles with ordered distribution of small molecules can be further changed to partially-void nanoparticles. Our study demonstrated that manipulating the freezing of block copolymers in the solvent exchange process is a simple and controllable fabrication method to generate BCP nanoparticles with different architectures.
Collapse
Affiliation(s)
- Hailong Fan
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | | |
Collapse
|
39
|
Kim TH, Song C, Han YS, Jang JD, Choi MC. Spontaneous unilamellar polymer vesicles in aqueous solution. SOFT MATTER 2014; 10:484-490. [PMID: 24652418 DOI: 10.1039/c3sm52519h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A unilamellar polymeric vesicle is a self-assembled structure of a block copolymer that forms a spherical single bilayer structure with a hydrophobic interlayer and a hydrophilic surface. Due to their enhanced colloidal stability and mechanical property, controllable surface functionality, or tunable membrane thickness, polymeric vesicles are useful in nano and bio-science, providing potential applications as nanosized carriers for catalysts, drugs, and enzymes. For fabrication of a unilamellar vesicle, however, preparative procedures with a few steps are inherently required. Herein, without complicated preparative procedures, we report spontaneous unilamellar polymeric vesicles with nanometer sizes (<100 nm), which are prepared by simply mixing a triblock copolymer, Pluronic P85 (PEO26PPO40PEO26), and an organic derivative, 5-methyl salicylic acid (5mS), in aqueous solution. Depending on the 5mS concentration and the temperature, the P85-5mS mixtures presented various self-assembled nanostructures such as spherical and cylindrical micelles or vesicles, which were characterized by small angle neutron scattering and cryo-TEM, resulting in a phase diagram drawn as a function of temperature and the 5mS concentration. Interestingly the critical temperature for the micelle-to-vesicle phase transition was easily controlled by varying the 5mS concentration, i.e. it was decreased with increasing the 5mS concentration.
Collapse
Affiliation(s)
- Tae-Hwan Kim
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353, Republic of Korea.
| | | | | | | | | |
Collapse
|
40
|
Pothayee N, Chen DY, Aronova MA, Qian C, Bouraoud N, Dodd S, Leapman RD, Koretsky AP. Self-organized Mn 2+-Block Copolymer Complexes and Their Use for In Vivo MR Imaging of Biological Processes. J Mater Chem B 2014; 2:7055-7064. [PMID: 25364506 PMCID: PMC4213148 DOI: 10.1039/c4tb00911h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-block copolymer complexes (MnBCs) that contain paramagnetic Mn ions complexed with ionic-nonionic poly(ethylene oxide-b-poly(methacrylate) have been developed for use as a T1-weighted MRI contrast agent. By encasing Mn ion within ionized polymer matrices, r1 values could be increased by 250-350 % in comparison with free Mn ion at relative high fields of 4.7 to 11.7 T. MnBCs were further manipulated by treatment with NaOH to achieve more stable complexes (iMnBCs). iMnBCs delayed release of Mn2+ which could be accelerated by low pH, indeed by cellular uptake via endocytosis into acidic compartments. Both complexes exhibited good T1 contrast signal enhancement in liver following intravenous infusion. The contrast was observed in gallbladder due to the clearance of Mn ion from liver to biliary process. iMnBCs, notably, showed a delayed contrast enhancement profile in gallbladder, which was interpreted to be due to degradation and excretion of Mn2+ ions into the gallbladder. Intracortical injection of iMnBCs into the rat brain also led to delayed neuronal transport to thalamus. The delayed enhancement feature may have benefits for targeting MRI contrast to specific cells and surface receptors that are known to be internalized by endocytosis.
Collapse
Affiliation(s)
- Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Der-Yow Chen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
41
|
Nakai K, Nishiuchi M, Inoue M, Ishihara K, Sanada Y, Sakurai K, Yusa SI. Preparation and characterization of polyion complex micelles with phosphobetaine shells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9651-9661. [PMID: 23845059 DOI: 10.1021/la401063b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A pair of oppositely charged diblock copolymers, poly(2-(methacryloyloxy)ethyl phosphorylcholine)-block-poly((3-(methacryloylamino)propyl)trimethylammonium chloride) (PMPC-b-PMAPTAC) and poly(2-(methacryloyloxy)ethyl phosphorylcholine)-block-poly(sodium 2-(acrylamido)-2-methylpropanesulfonate) (PMPC-b-PAMPS), was prepared via reversible addition-fragmentation chain transfer radical polymerization using a PMPC-based macro chain transfer agent. The pendant phosphorylcholine group in the hydrophilic PMPC block has anionic phosphate and cationic quaternary amino groups, which are neutralized within the pendant group. Therefore, the mixing of aqueous solutions of PMPC-b-PMAPTAC and PMPC-b-PAMPS leads to the spontaneous formation of simple core-shell spherical polyion complex (PIC) micelles comprising of a segregated PIC core and PMPC shells. The PIC micelles were characterized using (1)H NMR spin-spin (T2) and spin-lattice relaxation times (T1), diffusion-ordered NMR spectroscopy, static light scattering, dynamic light scattering (DLS), and transmission electron microscopy techniques. The hydrodynamic size of the PIC micelle depended on the mixing ratio of PMPC-b-PMAPTAC and PMPC-b-PAMPS; the maximum size occurred at the mixing ratio yielding stoichiometric charge neutralization. The PIC micelles disintegrated to become unimers with the addition of salts.
Collapse
Affiliation(s)
- Keita Nakai
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo , 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Polymeric micelles based on poly(methacrylic acid) block-containing copolymers with different membrane destabilizing properties for cellular drug delivery. Int J Pharm 2013; 454:611-20. [PMID: 23792466 DOI: 10.1016/j.ijpharm.2013.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
Abstract
Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance.
Collapse
|
43
|
Wang Y, Zhang X, Yu P, Li C. Glycopolymer micelles with reducible ionic cores for hepatocytes-targeting delivery of DOX. Int J Pharm 2013; 441:170-80. [DOI: 10.1016/j.ijpharm.2012.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/23/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
44
|
Tarasov K, Houssein D, Destarac M, Marcotte N, Gérardin C, Tichit D. Stable aqueous colloids of ZnS quantum dots prepared using double hydrophilic block copolymers. NEW J CHEM 2013. [DOI: 10.1039/c2nj40738h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|