1
|
Hemonnot-Girard AL, Valverde AJ, Hua J, Delaygue C, Linck N, Maurice T, Rassendren F, Hirbec H. Analysis of CX3CR1 haplodeficiency in male and female APP swe/PSEN1 dE9 mice along Alzheimer disease progression. Brain Behav Immun 2021; 91:404-417. [PMID: 33190798 DOI: 10.1016/j.bbi.2020.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 01/22/2023] Open
Abstract
Microglia, the resident immune cells of the brain, have recently emerged as key players in Alzheimer Disease (AD) pathogenesis, but their roles in AD remain largely elusive and require further investigation. Microglia functions are readily altered when isolated from their brain environment, and microglia reporter mice thus represent valuable tools to study the contribution of these cells to neurodegenerative diseases such as AD. The CX3CR1+/eGFP mice is one of the most popular microglia reporter mice, and has been used in numerous studies to investigate in vivo microglial functions, including in the context of AD research. However, until now, the impact of CX3CR1 haplodeficiency on the typical features of Alzheimer Disease has not been studied in depth. To fill this gap, we generated APPswe/PSEN1dE9:CX3CR1+/eGFP mice and analyzed these mice for Alzheimer's like pathology and neuroinflammation hallmarks. More specifically, using robust multifactorial statistical and multivariate analyses, we investigated the impact of CX3CR1 deficiency in both males and females, at three typical stages of the pathology progression: at early stage when Amyloid-β (Aβ) deposition just starts, at intermediate stage during Aβ accumulation phase and at more advanced stages when Aβ plaque number stabilizes. We found that CX3CR1 haplodeficiency had little impact on the progression of the pathology in the APPswe/PSEN1dE9 model and demonstrated that the APPswe/PSEN1dE9:CX3CR1+/eGFP line is a relevant and useful model to study the role of microglia in Alzheimer Disease. In addition, although Aβ plaques density is higher in females compared to age-matched males, we show that their glial reaction, inflammation status and memory deficits are not different.
Collapse
Affiliation(s)
- Anne-Laure Hemonnot-Girard
- IGF, Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France; Labex ICST, Montpellier, France
| | - Audrey J Valverde
- IGF, Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France; Labex ICST, Montpellier, France
| | - Jennifer Hua
- IGF, Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France; Labex ICST, Montpellier, France
| | - Charlene Delaygue
- IGF, Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France; Labex ICST, Montpellier, France
| | - Nathalie Linck
- IGF, Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France; Labex ICST, Montpellier, France
| | - Tangui Maurice
- MNDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - François Rassendren
- IGF, Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France; Labex ICST, Montpellier, France
| | - Helene Hirbec
- IGF, Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France; Labex ICST, Montpellier, France.
| |
Collapse
|
2
|
Zhang N, Qi R, Li H, Guan B, Liu Y, Han Y, Wang Y. Interaction of phospholipid vesicles with gemini surfactants of different lysine spacer lengths. SOFT MATTER 2019; 15:9458-9467. [PMID: 31742300 DOI: 10.1039/c9sm02040c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peptide surfactants have shown many potential applications in biology and medicine; however, the mechanism of their interactions with biomembranes is still unclear. This work has studied the interactions of cationic peptide gemini surfactants based on lysine spacers (12-(Lys)n-12, n = 2, 4, and 6) with model biological membranes, which are represented by the vesicles separately formed by zwitterionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), anionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG, sodium salt) and the DOPC/DOPG (1 : 1) mixture. The experiment results show that the presence of negatively charged DOPG slightly affects the interaction manners of 12-(Lys)n-12 with the vesicles, while the interaction of 12-(Lys)2-12 with the phospholipid vesicles is significantly different from that of 12-(Lys)4-12 and 12-(Lys)6-12 with the vesicles. The binding strength decreases in the order of 12-(Lys)4-12 > 12-(Lys)6-12 > 12-(Lys)2-12. The 12-(Lys)4-12 surfactant solubilizes the DOPC vesicles, and makes the DOPC molecules join the surfactant stiff fibers and changes them into long and flexible wormlike micelles, while the 12-(Lys)6-12 and 12-(Lys)2-12 aggregates are disassembled by the DOPC vesicles, and the surfactant molecules join the DOPC vesicles and convert the unilamellar vesicles into multilamellar vesicles. This work should be helpful in understanding the interaction of peptide surfactants with phospholipid membranes.
Collapse
Affiliation(s)
- Na Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haofei Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guan
- Analysis and Test Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Liu
- Analysis and Test Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuchun Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yilin Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yadav N, Chauhan MK, Chauhan VS. Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater Sci 2019; 8:84-100. [PMID: 31696870 DOI: 10.1039/c9bm01304k] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Short peptides have attracted significant attention from researchers in the past few years due to their easy design, synthesis and characterization, diverse functionalisation possibilities, low cost, possibility to make a large range of hierarchical nanostructures and most importantly their high biocompatibility and biodegradability. Generally, short peptides are also relatively more stable than their longer variants, non-immunogenic in nature and many of them self-assemble to provide an exciting range of nanostructures, including hydrogels. Thus, the development of short peptide-based hydrogels has become an area of intense investigation. Although these hydrogels have a water content of greater than 90%, they are surprisingly highly stable structures, and thus have been used for various biomedical applications, including cell therapeutics, drug delivery, tissue engineering and regeneration, contact lenses, biosensors, and wound healing, by different researchers. Herein, we review the progress of research in the rapidly expanding field of short to ultrashort peptide-based hydrogels and their possible applications. Special attention is paid to address and review this field with regard to the stability of peptide-based hydrogels, particularly to enzymatic degradation.
Collapse
Affiliation(s)
- Nitin Yadav
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India. and Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi-110017, India
| | - Meenakshi K Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi-110017, India
| | - Virander S Chauhan
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
4
|
Mohamed AH. An Efficient Approach for the Synthesis of 1,2,3‐Triazole Moiety to Generate Uracil Molecular Architectures Through Cu‐Catalyzed Azide–Alkyne Cycloaddition. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of ScienceMinia University El‐Minia Egypt
| |
Collapse
|
5
|
Chakroun RW, Wang F, Lin R, Wang Y, Su H, Pompa D, Cui H. Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. ACS NANO 2019; 13:7780-7790. [PMID: 31117370 DOI: 10.1021/acsnano.9b01689] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One key design feature in the development of any local drug delivery system is the controlled release of therapeutic agents over a certain period of time. In this context, we report the characteristic feature of a supramolecular filament hydrogel system that enables a linear and sustainable drug release over the period of several months. Through covalent linkage with a short peptide sequence, we are able to convert an anticancer drug, paclitaxel (PTX), to a class of prodrug hydrogelators with varying critical gelation concentrations. These self-assembling PTX prodrugs associate into filamentous nanostructures in aqueous conditions and consequently percolate into a supramolecular filament network in the presence of appropriate counterions. The intriguing linear drug release profile is rooted in the supramolecular nature of the self-assembling filaments which maintain a constant monomer concentration at the gelation conditions. We found that molecular engineering of the prodrug design, such as varying the number of oppositely charged amino acids or through the incorporation of hydrophobic segments, allows for the fine-tuning of the PTX linear release rate. In cell studies, these PTX prodrugs can exert effective cytotoxicity against glioblastoma cell lines and also primary brain cancer cells derived from patients and show enhanced tumor penetration in a cancer spheroid model. We believe this drug-bearing hydrogel platform offers an exciting opportunity for the local treatment of human diseases.
Collapse
Affiliation(s)
- Rami W Chakroun
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Yin Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Danielle Pompa
- Department of Biomedical Engineering , University of Utah , 201 Presidents Circle , Salt Lake City , Utah 84112 , United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
- Center for Nanomedicine, The Wilmer Eye Institute , Johns Hopkins University School of Medicine , 400 North Broadway , Baltimore , Maryland 21231 , United States
| |
Collapse
|
6
|
Qi R, Liu J, Zhang N, Ji X, Han Y, Wang Y. Assembly and Evolution of Gemini-Type Peptide Amphiphile with a Di-Lysine Spacer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6154-6160. [PMID: 30983363 DOI: 10.1021/acs.langmuir.9b00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peptide amphiphiles (PAs) can self-assemble into a variety of supramolecular structures with excellent biofunctions. However, their assembly with time has rarely been observed and reported. Here, we find that a novel gemini-type PA [12-(Lys)2-12], taking two lysine (Lys) groups as the spacer, shows an obvious assembly and evolution process with time. Driven by the strong hydrophobic interaction between the alkyl chains as well as the electrostatic force and hydrogen bonding among the peptide spacers, the 12-(Lys)2-12 molecules first self-assemble into vesicles and then transform into fibrils, ribbons, and belts with time. If replacing the -(Lys)2- spacer with four lysine groups [-(Lys)4-] or two glutamic acid groups [-(Glu)2-], the PA molecules do not show the aggregate growth with time. This indicates that the lysine structure and its length are important structural factors contributing to the dynamic aggregate evolution behavior. More interestingly, this assembly and evolution behavior is highly dependent on 12-(Lys)2-12 concentration. Only in the proper concentration region (0.5-0.7 mM), the self-assembly displays the aggregate growth with time. At lower or higher concentrations, the aggregate growth is largely delayed or inhibited. Moreover, we also find that the aggregate growth of 12-(Lys)2-12 is related to the fibril solubilization temperature ( Tf→s). The faster aggregate growth occurs when the temperature is much lower than Tf→s. This work gains new insights into the evolution of the self-assembling structures of peptide amphiphiles.
Collapse
Affiliation(s)
- Ruilian Qi
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jian Liu
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Na Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | | | - Yilin Wang
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
7
|
Li Q, Jia Y, Li J. Controlled Assembly of Chiral Structure of Diphenylalanine Peptide. ACTA CHIMICA SINICA 2019. [DOI: 10.6023/a19060241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wu R, Liu J, Qiu X, Deng M. Molecular dynamics simulation of the nanofibrils formed by amyloid-based peptide amphiphiles. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1321758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P.R. China
| | - Jun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P.R. China
| | - Xinlong Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, P.R. China
| | - Manli Deng
- Key Laboratory of Colloid and Interface Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
9
|
Ramin MA, Sindhu KR, Appavoo A, Oumzil K, Grinstaff MW, Chassande O, Barthélémy P. Cation Tuning of Supramolecular Gel Properties: A New Paradigm for Sustained Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605227. [PMID: 28151562 DOI: 10.1002/adma.201605227] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Hydrogels formed by the self-assembly of low-molecular-weight gelators (LMWGs) are promising scaffolds for drug-delivery applications. A new biocompatible hydrogel, resulting from the self-assembly of nucleotide-lipid salts can be safely injected in vivo. The resulting hydrogel provides sustained-release of protein for more than a week.
Collapse
Affiliation(s)
- Michael A Ramin
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | | | - Ananda Appavoo
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | - Khalid Oumzil
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | | | - Philippe Barthélémy
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
10
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
11
|
Ramin MA, Baillet J, Benizri S, Latxague L, Barthélémy P. Uracile based glycosyl-nucleoside-lipids as low molecular weight organogelators. NEW J CHEM 2016. [DOI: 10.1039/c6nj02675c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new low molecular weight alcogel based on glycosyl-nucleoside-lipids is reported. This material features high elastic moduli and thixotropic properties.
Collapse
Affiliation(s)
| | - Julie Baillet
- Univ. Bordeaux
- INSERM
- U1212
- CNRS UMR 5320
- ARNA Laboratory
| | | | | | | |
Collapse
|
12
|
Fu IW, Nguyen HD. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles. Biomacromolecules 2015; 16:2209-19. [DOI: 10.1021/acs.biomac.5b00595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iris W. Fu
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| | - Hung D. Nguyen
- Department
of Chemical Engineering
and Materials Science, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
13
|
Zhang G, Hu F, Zhang D. Manipulation of the aggregation and deaggregation of tetraphenylethylene and silole fluorophores by amphiphiles: emission modulation and sensing applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4593-4604. [PMID: 25331184 DOI: 10.1021/la5029367] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this Feature Article, we have summarized the recent advances in the fluorescence modulation of tetraphenylethylene and silole fluorophores by manipulating the respective aggregation/deaggregation with amphiphiles. These include (i) the assembly of neutral tetraphenylethylene analogues with the aid of an ionic amphiphile, (ii) the aggregation of ionic tetraphenylethylene and silole induced by amphiphiles, and (iii) bio/chemosensors based on the aggregation/deaggregation of AIE fluorophores tuned by ionic amphiphiles.
Collapse
Affiliation(s)
- Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang Hu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Wang M, Han Y, Qiao F, Wang Y. Aggregation behavior of a gemini surfactant with a tripeptide spacer. SOFT MATTER 2015; 11:1517-1524. [PMID: 25588349 DOI: 10.1039/c4sm02668c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A peptide gemini surfactant, 12-G(NH2)LG(NH2)-12, has been constructed with two dodecyl chains separately attached to the two terminals of a glutamic acid-lysine-glutamic acid peptide and the aggregation behavior of the surfactant was studied in aqueous solution. The 12-G(NH2)LG(NH2)-12 molecules form fiber-like precipitates around pH 7.0, and the precipitation range is widened on increasing the concentration. At pHs 3.0 and 11.0, 12-G(NH2)LG(NH2)-12 forms soluble aggregates because each molecule carries two positively charged amino groups at the two ends of the peptide spacer at pH 3.0, while each molecule carries one negatively charged carboxyl group in the middle of the peptide spacer at pH 11.0. 12-G(NH2)LG(NH2)-12 displays a similar concentration-dependent process at these two pHs: forming small micelles above the critical micelle concentration and transferring to fibers at pH 3.0 or twisted ribbons at pH 11.0 above the second critical concentration. The fibers formed at pH 3.0 tend to aggregate into bundles with twisted structure. Both the twisted fibers at pH 3.0 and the twisted ribbons at pH 11.0 contain β-sheet structure formed by the peptide spacer.
Collapse
Affiliation(s)
- Meina Wang
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | | | | | | |
Collapse
|
15
|
Jin Y, Xia Y, Wang S, Yan L, Zhou Y, Fan J, Song B. Concentration-dependent and light-responsive self-assembly of bolaamphiphiles bearing α-cyanostilbene based photochromophore. SOFT MATTER 2015; 11:798-805. [PMID: 25503396 DOI: 10.1039/c4sm02392g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, a new bolaamphiphile bearing 1-cyano-1,2-bis(phenyl)ethene (CNBE) has been synthesized. The self-assembly of this molecule in aqueous solution is concentration-dependent. Two distinct morphologies, monomolecular layered lamellas and helical nanofibres have been obtained with the as-prepared molecular configuration. Note worthily, the helical nanofibres provide an experimental evidence for the pure twisted structure in the liquid crystals, which is theoretically proposed by De Gennes. Due to the photoisomerization of CNBE, the self-assembled nanostructures undergo morphological changes upon irradiation. Although various nanostructures were observed in the solution-state, only nanofibres were obtained after the solution was cast on a substrate, which was attributed to a strong dewetting effect. This work illustrates concentration-dependent and light-responsive self-assembly and provides a novel avenue for fabricating smart soft materials.
Collapse
Affiliation(s)
- Yingzhi Jin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Dehsorkhi A, Castelletto V, Hamley IW. Self-assembling amphiphilic peptides. J Pept Sci 2014; 20:453-67. [PMID: 24729276 PMCID: PMC4237179 DOI: 10.1002/psc.2633] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 01/08/2023]
Abstract
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined.
Collapse
Affiliation(s)
- Ashkan Dehsorkhi
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Valeria Castelletto
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
17
|
Shen X, Deng X, Pang Y. Self-assembly of Cu(ii) with amyloid β19–20 peptide: relevant to Alzheimer's disease. RSC Adv 2014. [DOI: 10.1039/c4ra02758b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Latxague L, Patwa A, Amigues E, Barthélémy P. Glycosyl-Nucleolipids as new bioinspired amphiphiles. Molecules 2013; 18:12241-63. [PMID: 24084025 PMCID: PMC6270249 DOI: 10.3390/molecules181012241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022] Open
Abstract
Four new Glycosyl-NucleoLipid (GNL) analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry) indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower γlim) compared to the first generation of GNFs.
Collapse
|
19
|
He C, Han Y, Zhu L, Deng M, Wang Y. Modulation of Aβ(1–40) Peptide Fibrillar Architectures by Aβ-Based Peptide Amphiphiles. J Phys Chem B 2013; 117:10475-83. [DOI: 10.1021/jp4044286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chengqian He
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linyi Zhu
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Manli Deng
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
20
|
Shen J, Chen C, Fu W, Shi L, Li Z. Conformation-specific self-assembly of thermo-responsive poly(ethylene glycol)-b-polypeptide diblock copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6271-6278. [PMID: 23634643 DOI: 10.1021/la401095s] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Poly(ethylene glycol)-block-poly(γ-(2-methoxyethoxy)esteryl-L-glutamate) (PEG-b-poly-L-EG2Glu) was synthesized via ring-opening polymerization (ROP) of L-EG2Glu N-carboxyanhydride (NCA) using PEG-NH2 as macroinitiator. This diblock contained a thermo-responsive poly-L-EG2Glu block, which adopted primarily helical conformation in pristine aqueous solution. We found that PEG-b-poly-L-EG2Glu diblock can display two levels of self-assembly behaviors associated with hydrophobic interactions and conformation-specific reassembly, respectively. Upon temperature increase, the PEG-b-poly-L-EG2Glu diblock formed wormlike micelles, in which the poly-L-EG2Glu formed the micelle core and maintained helical conformation. However, extension of thermal annealing time drove the secondary structure transformation of the poly-L-EG2Glu block from helical conformation to β-sheet, which accounted for an assembly structure transition from wormlike micelles to nanoribbons. The critical factor was that poly-L-EG2Glu block can undergo thermo-induced hydrophobicity and conformation transformation, which offered an additional parameter to tune the nature of molecular interactions, i.e., intermolecular versus intramolecular hydrogen bonding interactions. The corresponding conformation and assembly structure changes were characterized using FTIR and electron microscopy, respectively.
Collapse
Affiliation(s)
- Junyang Shen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, and Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
21
|
Tonelli G, Oumzil K, Nallet F, Gaillard C, Navailles L, Barthélémy P. Amino acid-nucleotide-lipids: effect of amino acid on the self-assembly properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5547-5555. [PMID: 23565776 DOI: 10.1021/la400515m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hybrid amphiphiles composed of a lipid covalently linked to biomolecules are attracting considerable attention, owing to their unique physicochemical and biological properties. Herein, we have synthesized novel amino acid-nucleotide-lipids (ANLs), presenting phenylalanine and thymidine residues and saturated or unsaturated diacyl glycerol lipid moieties to investigate the effect of the specific aminoacid moieties on both aggregation properties and interactions of ANLs with single strand polyA RNA. Physicochemical studies (DLS, cryo-TEM, and small angle X-ray scattering) indicate that phenylanaline amino acids inserted at the 5' position of the nucleotide-lipids stabilize multilamellar systems, whereas unilamellar vesicles are formed preferentially in the case of nucleotide-lipids (NLs). Both NLs and ANLs exhibit weak interactions with complementary polyA RNA as revealed by isothermal titration calorimetry investigations. The multilamellar vesicles obtained with ANLs could be used as a versatile carrier, suitable for both hydrophobic and hydrophilic therapeutic molecules.
Collapse
|
22
|
Newcomb CJ, Moyer TJ, Lee SS, Stupp SI. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures. Curr Opin Colloid Interface Sci 2012. [PMID: 23204913 DOI: 10.1016/j.cocis.2012.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elucidating the structural information of nanoscale materials in their solvent-exposed state is crucial, as a result, cryogenic transmission electron microscopy (cryo-TEM) has become an increasingly popular technique in the materials science, chemistry, and biology communities. Cryo-TEM provides a method to directly visualize the specimen structure in a solution-state through a thin film of vitrified solvent. This technique complements X-ray, neutron, and light scattering methods that probe the statistical average of all species present; furthermore, cryo-TEM can be used to observe changes in structure over time. In the area of self-assembly, this tool has been particularly powerful for the characterization of natural and synthetic small molecule assemblies, as well as hybrid organic-inorganic composites. In this review, we discuss recent advances in cryogenic TEM in the context of self-assembling systems with emphasis on characterization of transitions observed in response to external stimuli.
Collapse
Affiliation(s)
- Christina J Newcomb
- Department of Materials Science and Engineering Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
23
|
Hamley IW. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 2012; 112:5147-92. [DOI: 10.1021/cr3000994] [Citation(s) in RCA: 670] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- I. W. Hamley
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD,
U.K
| |
Collapse
|