1
|
Yoshizu D, Shimizu S, Tsuchiya M, Tomita K, Kouzuma A, Watanabe K. Isolation of Electrochemically Active Bacteria from an Anaerobic Digester Treating Food Waste and Their Characterization. Microorganisms 2024; 12:1645. [PMID: 39203487 PMCID: PMC11356707 DOI: 10.3390/microorganisms12081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Studies have used anaerobic-digester sludge and/or effluent as inocula for bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs), for power generation, while limited studies have isolated and characterized electrochemically active bacteria (EAB) that inhabit anaerobic digesters. In the present work, single-chamber MFCs were operated using the anaerobic-digester effluent as the sole source of organics and microbes, and attempts were made to isolate EAB from anode biofilms in MFCs by repeated anaerobic cultivations on agar plates. Red colonies were selected from those grown on the agar plates, resulting in the isolation of three phylogenetically diverse strains affiliated with the phyla Bacillota, Campylobacterota and Deferribacterota. All these strains are capable of current generation in pure-culture BESs, while they exhibit different electrochemical properties as assessed by cyclic voltammetry. The analyses of their cell-free extracts show that cytochromes are abundantly present in their cells, suggesting their involvement in current generation. The results suggest that anaerobic digesters harbor diverse EAB, and it would be of interest to examine their ecological niches in anaerobic digestion.
Collapse
Affiliation(s)
- Daichi Yoshizu
- Laboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (D.Y.); (S.S.); (K.T.); (A.K.)
- J &T Recycling Corporation, Yokohama 230-0044, Japan;
| | - Soranosuke Shimizu
- Laboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (D.Y.); (S.S.); (K.T.); (A.K.)
| | - Miyu Tsuchiya
- J &T Recycling Corporation, Yokohama 230-0044, Japan;
| | - Keisuke Tomita
- Laboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (D.Y.); (S.S.); (K.T.); (A.K.)
| | - Atsushi Kouzuma
- Laboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (D.Y.); (S.S.); (K.T.); (A.K.)
| | - Kazuya Watanabe
- Laboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (D.Y.); (S.S.); (K.T.); (A.K.)
| |
Collapse
|
2
|
Rodríguez-Torres LM, Huerta-Miranda GA, Martínez-García AL, Mazón-Montijo DA, Hernández-Eligio A, Miranda-Hernández M, Juárez K. Influence of support materials on the electroactive behavior, structure and gene expression of wild type and GSU1771-deficient mutant of Geobacter sulfurreducens biofilms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33612-3. [PMID: 38758442 DOI: 10.1007/s11356-024-33612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, Fe2O3 on FTO, graphite, and stainless steel) by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regulator that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the electrochemical environment where it grows.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Torres
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Antonio Huerta-Miranda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Ana Luisa Martínez-García
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
| | - Dalia Alejandra Mazón-Montijo
- Centro de Investigación en Materiales Avanzados S. C., Subsede Monterrey, Grupo de Investigación DORA-Lab, 66628, Apodaca, N. L, México
- Centro de Investigación e Innovación Tecnológica (CIIT), Grupo de Investigación DORA-Lab, Tecnológico Nacional de México Campus Nuevo León (TECNL), 66629, Apodaca, N. L, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
- Investigadores Por México, CONAHCYT, Ciudad de México, México
| | - Margarita Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, 62580, Temixco, Morelos, México
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
3
|
Yang G, Xia X, Nie W, Qin B, Hou T, Lin A, Yao S, Zhuang L. Bidirectional extracellular electron transfer pathways of Geobacter sulfurreducens biofilms: Molecular insights into extracellular polymeric substances. ENVIRONMENTAL RESEARCH 2024; 245:118038. [PMID: 38147916 DOI: 10.1016/j.envres.2023.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The basis for bioelectrochemical technology is the capability of electroactive bacteria (EAB) to perform bidirectional extracellular electron transfer (EET) with electrodes, i.e. outward- and inward-EET. Extracellular polymeric substances (EPS) surrounding EAB are the necessary media for EET, but the biochemical and molecular analysis of EPS of Geobacter biofilms on electrode surface is largely lacked. This study constructed Geobacter sulfurreducens-biofilms performing bidirectional EET to explore the bidirectional EET mechanisms through EPS characterization using electrochemical, spectroscopic fingerprinting and proteomic techniques. Results showed that the inward-EET required extracellular redox proteins with lower formal potentials relative to outward-EET. Comparing to the EPS extracted from anodic biofilm (A-EPS), the EPS extracted from cathodic biofilm (C-EPS) exhibited a lower redox activity, mainly due to a decrease of protein/polysaccharide ratio and α-helix content of proteins. Furthermore, less cytochromes and more tyrosine- and tryptophan-protein like substances were detected in C-EPS than in A-EPS, indicating a diminished role of cytochromes and a possible role of other redox proteins in inward-EET. Proteomic analysis identified a variety of redox proteins including cytochrome, iron-sulfur clusters-containing protein, flavoprotein and hydrogenase in EPS, which might serve as an extracellular redox network for bidirectional EET. Those redox proteins that were significantly stimulated in A-EPS and C-EPS might be essential for outward- and inward-EET and warranted further research. This work sheds light on the mechanism of bidirectional EET of G. sulfurreducens biofilms and has implications in improving the performance of bioelectrochemical technology.
Collapse
Affiliation(s)
- Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xue Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Weijie Nie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Baoli Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Tiqun Hou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Annian Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Sijie Yao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Ghanam A, Cecillon S, Sabac A, Mohammadi H, Amine A, Buret F, Haddour N. Untreated vs. Treated Carbon Felt Anodes: Impacts on Power Generation in Microbial Fuel Cells. MICROMACHINES 2023; 14:2142. [PMID: 38138311 PMCID: PMC10744851 DOI: 10.3390/mi14122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
This research sought to enhance the efficiency and biocompatibility of anodes in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs), with an aim toward large-scale, real-world applications. The study focused on the effects of acid-heat treatment and chemical modification of three-dimensional porous pristine carbon felt (CF) on power generation. Different treatments were applied to the pristine CF, including coating with carbon nanofibers (CNFs) dispersed using dodecylbenzene sulfonate (SDBS) surfactant and biopolymer chitosan (CS). These processes were expected to improve the hydrophilicity, reduce the internal resistance, and increase the electrochemically active surface area of CF anodes. A high-resolution scanning electron microscopy (HR-SEM) analysis confirmed successful CNF coating. An electrochemical analysis showed improved conductivity and charge transfer toward [Fe(CN)6]3-/4- redox probe with treated anodes. When used in an air cathode single-chamber MFC system, the untreated CF facilitated quicker electroactive biofilm growth and reached a maximum power output density of 3.4 W m-2, with an open-circuit potential of 550 mV. Despite a reduction in charge transfer resistance (Rct) with the treated CF anodes, the power densities remained unchanged. These results suggest that untreated CF anodes could be most promising for enhancing power output in BESs, offering a cost-effective solution for large-scale MFC applications.
Collapse
Affiliation(s)
- Abdelghani Ghanam
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P 146, Mohammedia 20000, Morocco (A.A.)
| | - Sebastien Cecillon
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| | - Andrei Sabac
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| | - Hasna Mohammadi
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P 146, Mohammedia 20000, Morocco (A.A.)
| | - Aziz Amine
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P 146, Mohammedia 20000, Morocco (A.A.)
| | - François Buret
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| | - Naoufel Haddour
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France (F.B.)
| |
Collapse
|
5
|
Bensalah F, Pézard J, Haddour N, Erouel M, Buret F, Khirouni K. Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3144. [PMID: 34835905 PMCID: PMC8622003 DOI: 10.3390/nano11113144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The development of high-performance anode materials is one of the greatest challenges for the practical implementation of Microbial Fuel Cell (MFC) technology. Copper (Cu) has a much higher electrical conductivity than carbon-based materials usually used as anodes in MFCs. However, it is an unsuitable anode material, in raw state, for MFC application due to its corrosion and its toxicity to microorganisms. In this paper, we report the development of a Cu anode material coated with a corrosion-resistant composite made of Polydimethylsiloxane (PDMS) doped with carbon nanofiber (CNF). The surface modification method was optimized for improving the interfacial electron transfer of Cu anodes for use in MFCs. Characterization of CNF-PDMS composites doped at different weight ratios demonstrated that the best electrical conductivity and electrochemical properties are obtained at 8% weight ratio of CNF/PDMS mixture. Electrochemical characterization showed that the corrosion rate of Cu electrode in acidified solution decreased from (17 ± 6) × 103 μm y-1 to 93 ± 23 μm y-1 after CNF-PDMS coating. The performance of Cu anodes coated with different layer thicknesses of CNF-PDMS (250 µm, 500 µm, and 1000 µm), was evaluated in MFC. The highest power density of 70 ± 8 mW m-2 obtained with 500 µm CNF-PDMS was about 8-times higher and more stable than that obtained through galvanic corrosion of unmodified Cu. Consequently, the followed process improves the performance of Cu anode for MFC applications.
Collapse
Affiliation(s)
- Fatma Bensalah
- Laboratoire Ampère, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (F.B.); (J.P.); (F.B.)
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment, Faculty of Sciences in Gabes, Gabes University, Gabes 6072, Tunisia; (M.E.); (K.K.)
| | - Julien Pézard
- Laboratoire Ampère, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (F.B.); (J.P.); (F.B.)
| | - Naoufel Haddour
- Laboratoire Ampère, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (F.B.); (J.P.); (F.B.)
| | - Mohsen Erouel
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment, Faculty of Sciences in Gabes, Gabes University, Gabes 6072, Tunisia; (M.E.); (K.K.)
| | - François Buret
- Laboratoire Ampère, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France; (F.B.); (J.P.); (F.B.)
| | - Kamel Khirouni
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment, Faculty of Sciences in Gabes, Gabes University, Gabes 6072, Tunisia; (M.E.); (K.K.)
| |
Collapse
|
6
|
Sapireddy V, Katuri KP, Muhammad A, Saikaly PE. Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell. NPJ Biofilms Microbiomes 2021; 7:47. [PMID: 34059681 PMCID: PMC8166840 DOI: 10.1038/s41522-021-00218-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/07/2021] [Indexed: 02/04/2023] Open
Abstract
Maintaining functional stability of microbial electrolysis cell (MEC) treating wastewater depends on maintaining functional redundancy of efficient electroactive bacteria (EAB) on the anode biofilm. Therefore, investigating whether efficient EAB competing for the same resources (electron donor and acceptor) co-exist at the anode biofilm is key for the successful application of MEC for wastewater treatment. Here, we compare the electrochemical and kinetic properties of two efficient acetoclastic EAB, Geobacter sulfurreducens (GS) and Desulfuromonas acetexigens (DA), grown as monoculture in MECs fed with acetate. Additionally, we monitor the evolution of DA and GS in co-culture MECs fed with acetate or domestic wastewater using fluorescent in situ hybridization. The apparent Monod kinetic parameters reveal that DA possesses higher jmax (10.7 ± 0.4 A/m2) and lower KS, app (2 ± 0.15 mM) compared to GS biofilms (jmax: 9.6 ± 0.2 A/m2 and KS, app: 2.9 ± 0.2 mM). Further, more donor electrons are diverted to the anode for respiration in DA compared to GS. In acetate-fed co-culture MECs, DA (98% abundance) outcompete GS for anode-dependent growth. In contrast, both EAB co-exist (DA: 55 ± 2%; GS: 24 ± 1.1%) in wastewater-fed co-culture MECs despite the advantage of DA over GS based on kinetic parameters alone. The co-existence of efficient acetoclastic EAB with high current density in MECs fed with wastewater is significant in the context of functional redundancy to maintain stable performance. Our findings also provide insight to future studies on bioaugmentation of wastewater-fed MECs with efficient EAB to enhance performance.
Collapse
Affiliation(s)
- Veerraghavulu Sapireddy
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Ali Muhammad
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
He X, Chadwick G, Jiménez Otero F, Orphan V, Meile C. Spatially Resolved Electron Transport through Anode‐Respiring
Geobacter sulfurreducens
Biofilms: Controls and Constraints. ChemElectroChem 2021. [DOI: 10.1002/celc.202100111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaojia He
- Department of Marine Sciences University of Georgia Athens GA USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | | | - Victoria Orphan
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | - Christof Meile
- Department of Marine Sciences University of Georgia Athens GA USA
| |
Collapse
|
8
|
Bio-functional metal organic framework composite as bioanode for enhanced electricity generation by a microbial fuel cell. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
d'Ippolito G, Squadrito G, Tucci M, Esercizio N, Sardo A, Vastano M, Lanzilli M, Fontana A, Cristiani P. Electrostimulation of hyperthermophile Thermotoga neapolitana cultures. BIORESOURCE TECHNOLOGY 2021; 319:124078. [PMID: 33254443 DOI: 10.1016/j.biortech.2020.124078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Hyperthermophile bioelectrochemical systems are seldom investigated although their superior control of microbial consortium and thermodynamic advantages. Hyperthermophilic Thermotogales, for instance, are able to produce hydrogen and lactic acid from wastes better than mesophilic bacteria. Here, the electrostimulation of Thermotoga neapolitana in single-chamber electrochemical bioreactors is studied. The glucose fermentation under CO2 pressure, as model metabolism, was tested at 80 °C. Results show that a dynamic polarization (±0.8 to ±1.2 V) drives glucose fermentation and biofilm stasis on electrodes. Under this condition, production of lactic acid (33 vs 12 mM) and yields of acetate and hydrogen (with lactic/acetic acid ratio of 1.18) were higher than those achieved with static polarization or open-circuit. Dynamic polarization is possibly exploitable to stimulate T. neapolitana in a hyperthermophile electrochemical system for various applications including control of power-to-gas processes or production of value-added products (hydrogen and lactic acid) from sugary wastes.
Collapse
Affiliation(s)
- G d'Ippolito
- Institute of Biomolecular Chemsitry (ICB), National Research Council (CNR), Pozzuoli, Na, Italy
| | - G Squadrito
- Istitute of Advanced Tecnologies for Energy (ITAE), National Research Council (CNR), Messina, Italy
| | - M Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km29, 300 00015 Monterotondo, Rome, Italy; e-Bio Center, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - N Esercizio
- Institute of Biomolecular Chemsitry (ICB), National Research Council (CNR), Pozzuoli, Na, Italy
| | - A Sardo
- Institute of Biomolecular Chemsitry (ICB), National Research Council (CNR), Pozzuoli, Na, Italy
| | - M Vastano
- Institute of Biomolecular Chemsitry (ICB), National Research Council (CNR), Pozzuoli, Na, Italy
| | - M Lanzilli
- Institute of Biomolecular Chemsitry (ICB), National Research Council (CNR), Pozzuoli, Na, Italy
| | - A Fontana
- Institute of Biomolecular Chemsitry (ICB), National Research Council (CNR), Pozzuoli, Na, Italy
| | - P Cristiani
- Ricerca sul Sistema Energetico - RSE S.p.A., via Rubattino, 54, 20134 Milano, Italy.
| |
Collapse
|
10
|
Long X, Wang H, Wang C, Li X. The synergistic effect of biophoto anode for the enhancement of current generation and degradation. ENVIRONMENTAL TECHNOLOGY 2020; 41:3420-3430. [PMID: 31025900 DOI: 10.1080/09593330.2019.1611936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The demand for removal of refractory organic pollutants limits the application of microbial fuel cells. In this study, the synergistic effects of bioelectrochemical and photocatalysis methods were captured by constructing a biophoto anode from a combination of WO3/TiO2 and carbon felt. This biophoto electrode was able to decrease the aniline concentration from 63.3 ± 6.2 to 9.3 ± 5.5 mg/L. The structure of the benzene ring was broken through strong oxidation by photocatalysis. Electrochemical analysis showed that photocatalysis also enhanced the extracellular electron transfer of microorganisms and reduced the resistance of the anode from 136.9 Ω to 69.9 Ω. In addition, the maximum current output increased by 28.5% under the composite biophoto electrode. Further analysis of the microbial community indicated that the biophoto electrode promoted the enrichment of Geobacter in the anode. This biophoto electrode provided a method for overcoming the disadvantages of anaerobic degradation of refractory organics.
Collapse
Affiliation(s)
- Xizi Long
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Hui Wang
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Chuqiao Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Katuri KP, Kamireddy S, Kavanagh P, Muhammad A, Conghaile PÓ, Kumar A, Saikaly PE, Leech D. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. WATER RESEARCH 2020; 185:116284. [PMID: 32818731 DOI: 10.1016/j.watres.2020.116284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Surface chemistry is known to influence the formation, composition, and electroactivity of electron-conducting biofilms. However, understanding of the evolution of microbial composition during biofilm development and its impact on the electrochemical response is limited. Here we present voltammetric, microscopic and microbial community analysis of biofilms formed under fixed applied potential for modified graphite electrodes during early (90 h) and mature (340 h) growth phases. Electrodes modified to introduce hydrophilic groups (-NH2, -COOH and -OH) enhance early-stage biofilm formation compared to unmodified or electrodes modified with hydrophobic groups (-C2H5). In addition, early-stage films formed on hydrophilic electrodes are dominated by the gram-negative sulfur-reducing bacterium Desulfuromonas acetexigens while Geobacter sp. dominates on -C2H5 and unmodified electrodes. As biofilms mature, current generation becomes similar, and D. acetexigens dominates in all biofilms irrespective of surface chemistry. Electrochemistry of pure culture D. acetexigens biofilms reveal that this microbe is capable of forming electroactive biofilms producing considerable current density of > 9 A/m2 in a short period of potential-induced growth (~19 h following inoculation) using acetate as an electron donor. The inability of D. acetexigens biofilms to use H2 as a sole source electron donor for current generation shows promise for maximizing H2 recovery in single-chambered microbial electrolysis cell systems treating wastewaters.
Collapse
Affiliation(s)
- Krishna P Katuri
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sirisha Kamireddy
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Paul Kavanagh
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Ali Muhammad
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Peter Ó Conghaile
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Amit Kumar
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
12
|
Microbial electroactive biofilms dominated by Geoalkalibacter spp. from a highly saline-alkaline environment. NPJ Biofilms Microbiomes 2020; 6:38. [PMID: 33051461 PMCID: PMC7555509 DOI: 10.1038/s41522-020-00147-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022] Open
Abstract
Understanding of the extreme microorganisms that possess extracellular electron transfer (EET) capabilities is pivotal to advance electromicrobiology discipline and to develop niche-specific microbial electrochemistry-driven biotechnologies. Here, we report on the microbial electroactive biofilms (EABs) possessing the outward EET capabilities from a haloalkaline environment of the Lonar lake. We used the electrochemical cultivation approach to enrich haloalkaliphilic EABs under 9.5 pH and 20 g/L salinity conditions. The electrodes controlled at 0.2 V vs. Ag/AgCl yielded the best-performing biofilms in terms of maximum bioelectrocatalytic current densities of 548 ± 23 and 437 ± 17 µA/cm2 with acetate and lactate substrates, respectively. Electrochemical characterization of biofilms revealed the presence of two putative redox-active moieties with the mean formal potentials of 0.183 and 0.333 V vs. Ag/AgCl, which represent the highest values reported to date for the EABs. 16S-rRNA amplicon sequencing of EABs revealed the dominance of unknown Geoalkalibacter sp. at ~80% abundance. Further investigations on the haloalkaliphilic EABs possessing EET components with high formal potentials might offer interesting research prospects in electromicrobiology.
Collapse
|
13
|
Long X, Cao X, Wang C, Liu S, Li X. Preparation of needle-like Fe3O4/Fe2O3 nanorods on stainless steel plates to form inexpensive, high-performance bioanodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Liu X, Zhuo S, Jing X, Yuan Y, Rensing C, Zhou S. Flagella act as Geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer. Biosens Bioelectron 2019; 146:111748. [DOI: 10.1016/j.bios.2019.111748] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 11/24/2022]
|
15
|
Liu P, Zhang C, Liang P, Jiang Y, Zhang X, Huang X. Enhancing extracellular electron transfer efficiency and bioelectricity production by vapor polymerization Poly (3,4-ethylenedioxythiophene)/MnO2 hybrid anode. Bioelectrochemistry 2019; 126:72-78. [DOI: 10.1016/j.bioelechem.2018.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
|
16
|
Jarosz M, Grudzień J, Kamiński K, Gawlak K, Wolski K, Nowakowska M, Sulka GD. Novel bioelectrodes based on polysaccharide modified gold surfaces and electrochemically active Lactobacillus rhamnosus GG biofilms. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Zhang X, Prévoteau A, Louro RO, Paquete CM, Rabaey K. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Biosens Bioelectron 2018; 121:183-191. [DOI: 10.1016/j.bios.2018.08.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
18
|
Yilmazel YD, Zhu X, Kim KY, Holmes DE, Logan BE. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry 2017; 119:142-149. [PMID: 28992595 DOI: 10.1016/j.bioelechem.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Few microorganisms have been examined for current generation under thermophilic (40-65°C) or hyperthermophilic temperatures (≥80°C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68±0.11A/m2 was attained in F. placidus MECs at 85°C, and 0.57±0.10A/m2 in G. ahangari MECs at 80°C, with an applied voltage of 0.7V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of -0.39V (vs. Ag/AgCl) for F. placidus and -0.37V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.
Collapse
Affiliation(s)
- Yasemin D Yilmazel
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Kyoung-Yeol Kim
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dawn E Holmes
- Department of Biology, Western New England University, Springfield, MA, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Zhang X, Philips J, Roume H, Guo K, Rabaey K, Prévoteau A. Rapid and Quantitative Assessment of Redox Conduction Across Electroactive Biofilms by using Double Potential Step Chronoamperometry. ChemElectroChem 2017. [DOI: 10.1002/celc.201600853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Zhang
- Center for Microbial Ecology and Technology (cmet); Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Jo Philips
- Center for Microbial Ecology and Technology (cmet); Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Hugo Roume
- Center for Microbial Ecology and Technology (cmet); Ghent University; Coupure Links 653 9000 Ghent Belgium
- MetaGenoPolis; INRA; Université Paris-Saclay Domaine de Vilvert; Bâtiment 325 78350 Jouy-en-Josas France
| | - Kun Guo
- Center for Microbial Ecology and Technology (cmet); Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (cmet); Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (cmet); Ghent University; Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
20
|
Mahmoud M, Parameswaran P, Torres CI, Rittmann BE. Electrochemical techniques reveal that total ammonium stress increases electron flow to anode respiration in mixed-species bacterial anode biofilms. Biotechnol Bioeng 2017; 114:1151-1159. [PMID: 28067404 DOI: 10.1002/bit.26246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 02/02/2023]
Abstract
When anode-respiring bacteria (ARB) respire electrons to an anode in microbial electrochemical cells (MXCs), they harvest only a small amount of free energy. This means that ARB must have a high substrate-oxidation rate coupled with a high ratio of electrons used for respiration compared to total electrons removed by substrate utilization. It also means that they are especially susceptible to inhibition that slows anode respiration or lowers their biomass yield. Using several electrochemical techniques, we show that a relatively high total ammonium-nitrogen (TAN) concentration (2.2 g TAN/L) induced significant stress on the ARB biofilms, lowering their true yield and forcing the ARB to boost the ratio of electrons respired per electrons consumed from the substrate. In particular, a higher respiration rate, measured as current density (j), was associated with slower growth and a lower net yield, compared to an ARB biofilm grown with a lower ammonium concentration (0.2 g TAN/L). Further increases in influent TAN (to 3 and then to 4.4 g TAN/L) caused nearly complete inhibition of anode respiration. However, the ARB could recover from high-TAN inhibition after a shift of the MXC's feed to 0.2 g TAN/L. In summary, ARB biofilms were inhibited by a high TAN concentration, but could divert more electron flow toward anode respiration with modest inhibition and recover when severe inhibition was relieved. Biotechnol. Bioeng. 2017;114: 1151-1159. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre, 33 EL Bohouth St., Dokki, Cairo 12311, Egypt.,Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, Arizona 85287-5701.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
| | - Prathap Parameswaran
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, Arizona 85287-5701.,Department of Civil Engineering, Kansas State University, Manhattan, Kansas
| | - César I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, Arizona 85287-5701.,School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, Arizona 85287-5701.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
| |
Collapse
|
21
|
Cytochrome OmcZ is essential for the current generation by Geobacter sulfurreducens under low electrode potential. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Zhao CE, Gai P, Song R, Chen Y, Zhang J, Zhu JJ. Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 2017; 46:1545-1564. [DOI: 10.1039/c6cs00044d] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The review provides comprehensive discussions about electrode materials of BFCs and prospects of this technology for real-word applications.
Collapse
Affiliation(s)
- Cui-e Zhao
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Panpan Gai
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Rongbin Song
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Ying Chen
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Jianrong Zhang
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Jun-Jie Zhu
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| |
Collapse
|
23
|
Yasri NG, Nakhla G. Electrochemical Behavior of Anode-Respiring Bacteria on Doped Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35150-35162. [PMID: 27966869 DOI: 10.1021/acsami.6b09907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cultivating anodic respiring bacteria (ARB) on anodes doped with metal-enhanced biological growth and affected higher electocatalytic activity (ECA). The anode doped with calcium sulfide (CaS) proved more favorable for ARB than the magnetite (Fe3O4) or iron(II) sulfide (FeS). Average anodic current densities of 8.4 Am2- (Fe3O4), 11.1 Am2- (FeS), and 22.0 Am2- (CaS) were achieved as compared to that of nondoped carbon (5.1 A m-2). Thus, CaS-doped graphite represents a promising anode material which is suitable for highly efficient bioelectrochemical systems (BES). Electrochemical evaluation during turnover and starvation using simple cycle voltammetry (CV) and derivative cycle voltammetry (DCV) indicated several extracellular electron transfer (EET) pathways characterized with lower potentials for biofilms. However, despite the high affinity of bacteria to iron, their lower ECA was kinetically attributed to the accumulation of self-produced mediators on iron-doped anodes.
Collapse
Affiliation(s)
- Nael G Yasri
- Department of Chemical and Biochemical Engineering, University of Western Ontario , London, Ontario N6A 5B9, Canada
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, University of Western Ontario , London, Ontario N6A 5B9, Canada
| |
Collapse
|
24
|
PENG L, ZHANG XT, KAWAICHI S, XIE DT, LI ZL. Using Acetate and Formate as the Substrates for Geobacter sulfurreducens Exoelectrogenesis Resulted in Different Half-saturation Potentials. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Luo PENG
- School of Resources & Environment, Southwest University
- Biofunctional Catalysts Research Team, RIKEN Center for Sustainable Resource Science
| | | | - Satoshi KAWAICHI
- Biofunctional Catalysts Research Team, RIKEN Center for Sustainable Resource Science
| | - De-Ti XIE
- School of Resources & Environment, Southwest University
| | - Zhen-Lun LI
- School of Resources & Environment, Southwest University
| |
Collapse
|
25
|
Strycharz-Glaven SM, Roy J, Boyd D, Snider R, Erickson JS, Tender LM. Electron Transport through Early Exponential-Phase Anode-GrownGeobacter sulfurreducensBiofilms. ChemElectroChem 2014. [DOI: 10.1002/celc.201402168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Zhang E, Cai Y, Luo Y, Piao Z. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells. Can J Microbiol 2014; 60:753-9. [PMID: 25345758 DOI: 10.1139/cjm-2014-0389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Great attention has been focused on Gram-negative bacteria in the application of microbial fuel cells. In this study, the Gram-positive bacterium Enterococcus faecalis was employed in microbial fuel cells. Bacterial biofilms formed by E. faecalis ZER6 were investigated with respect to electricity production through the riboflavin-shuttled extracellular electron transfer. Trace riboflavin was shown to be essential for transferring electrons derived from the oxidation of glucose outside the peptidoglycan layer in the cell wall of E. faecalis biofilms formed on the surface of electrodes, in the absence of other potential electron mediators (e.g., yeast extract).
Collapse
Affiliation(s)
- Enren Zhang
- a Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City 225002, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Roy JN, Babanova S, Garcia KE, Cornejo J, Ista LK, Atanassov P. Catalytic biofilm formation by Shewanella oneidensis MR-1 and anode characterization by expanded uncertainty. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Jana PS, Katuri K, Kavanagh P, Kumar A, Leech D. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Phys Chem Chem Phys 2014; 16:9039-46. [DOI: 10.1039/c4cp01023j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transport throughGeobacter sulfurreducensbiofilms increases with film thickness, as more porous films improves ion transport upon electrolysis.
Collapse
Affiliation(s)
- Partha Sarathi Jana
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| | - Krishna Katuri
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
- Water Desalination and Reuse Research Center
- King Abdullah University of Science and Technology
| | - Paul Kavanagh
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| | - Amit Kumar
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| | - Dónal Leech
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| |
Collapse
|
29
|
Kalathil S, Khan MM, Lee J, Cho MH. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnol Adv 2013; 31:915-24. [DOI: 10.1016/j.biotechadv.2013.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 04/26/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|
30
|
Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. mBio 2013; 4:e00144-13. [PMID: 23631915 PMCID: PMC3648901 DOI: 10.1128/mbio.00144-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity of Geobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the highest-current-producing member documented for the Geobacteraceae family of the Deltaproteobacteria. Here we report high current densities generated by haloalkaliphilic Geoalkalibacter spp., thus broadening the capability for high anode respiration rates by including other genera within the Geobacteraceae. In this study, acetate-fed pure cultures of two related Geoalkalibacter spp. produced current densities of 5.0 to 8.3 and 2.4 to 3.3 A m−2 under alkaline (pH 9.3) and saline (1.7% NaCl) conditions, respectively. Chronoamperometric studies of halophilic Glk. subterraneus DSM 23483 and alkaliphilic Glk. ferrihydriticus DSM 17813 suggested that cells performed long-range electron transfer through electrode-attached biofilms and not through soluble electron shuttles. Glk. ferrihydriticus also oxidized ethanol directly to produce current, with maximum current densities of 5.7 to 7.1 A m−2 and coulombic efficiencies of 84 to 95%. Cyclic voltammetry (CV) elicited a sigmoidal response with characteristic onset, midpoint, and saturation potentials, while CV performed in the absence of an electron donor suggested the involvement of redox molecules in the biofilm that were limited by diffusion. These results matched those previously reported for actively respiring Gb. sulfurreducens biofilms producing similar current densities (~5 to 9 A m−2). This study establishes the highest current densities ever achieved by pure cultures of anode-respiring bacteria (ARB) under alkaline and saline conditions in microbial electrochemical cells (MXCs) and provides the first electrochemical characterization of the genus Geoalkalibacter. Production of high current densities among the Geobacteraceae is no longer exclusive to Geobacter sulfurreducens, suggesting greater versatility for this family in fundamental and applied microbial electrochemical cell (MXC) research than previously considered. Additionally, this work raises the possibility that different members of the Geobacteraceae have conserved molecular mechanisms governing respiratory extracellular electron transfer to electrodes. Thus, the capacity for high current generation may exist in other uncultivated members of this family. Advancement of MXC technology for practical uses must rely on an expanded suite of ARB capable of using different electron donors and producing high current densities under various conditions. Geoalkalibacter spp. can potentially broaden the practical capabilities of MXCs to include energy generation and waste treatment under expanded ranges of salinity and pH.
Collapse
|
31
|
Bonanni PS, Bradley DF, Schrott GD, Busalmen JP. Limitations for current production in Geobacter sulfurreducens biofilms. CHEMSUSCHEM 2013; 6:711-720. [PMID: 23417889 DOI: 10.1002/cssc.201200671] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/15/2012] [Indexed: 06/01/2023]
Abstract
Devices that exploit electricity produced by electroactive bacteria such as Geobacter sulfurreducens have not yet been demonstrated beyond the laboratory scale. The current densities are far from the maximum that the bacteria can produce because fundamental properties such as the mechanism of extracellular electron transport and factors limiting cell respiration remain unclear. In this work, a strategy for the investigation of electroactive biofilms is presented. Numerical modeling of the response of G. sulfurreducens biofilms cultured on a rotating disk electrode has allowed for the discrimination of different limiting steps in the process of current production within a biofilm. The model outputs reveal that extracellular electron transport limits the respiration rate of the cells furthest from the electrode to the extent that cell division is not possible. The mathematical model also demonstrates that recent findings such as the existence of a redox gradient in actively respiring biofilms can be explained by an electron hopping mechanism but not when considering metallic-like conductivities.
Collapse
Affiliation(s)
- P Sebastian Bonanni
- Lab. de bioelectroquímica, Area de electroquímica y corrosíón INTEMA, Juan B. Justo 4302, Mar del Plata, Argentina.
| | | | | | | |
Collapse
|
32
|
Bonanni PS, Massazza D, Busalmen JP. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Phys Chem Chem Phys 2013; 15:10300-6. [DOI: 10.1039/c3cp50411e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Carmona-Martínez AA, Pierra M, Trably E, Bernet N. High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus. Phys Chem Chem Phys 2013; 15:19699-707. [DOI: 10.1039/c3cp54045f] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Patil SA, Hägerhäll C, Gorton L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0033-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Roy JN, Luckarift HR, Lau C, Falase A, Garcia KE, Ista LK, Chellamuthu P, Ramasamy RP, Gadhamshetty V, Wanger G, Gorby YA, Nealson KH, Bretschger O, Johnson GR, Atanassov P. A study of the flavin response by Shewanella cultures in carbon-limited environments. RSC Adv 2012. [DOI: 10.1039/c2ra21727a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|