1
|
Ma Q, He B, Tang G, Xie R, Zheng P. Enzymatic Protein Immobilization on Amino-Functionalized Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010379. [PMID: 36615576 PMCID: PMC9822503 DOI: 10.3390/molecules28010379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
The immobilization of proteins on nanoparticles has received much attention in recent years. Among different approaches, enzymatic protein immobilization shows unique advantages because of its site-specific connection. OaAEP1 is a recently engineered peptide ligase which can specifically recognize an N-terminal GL residue (NH2-Gly-Leu) and a C-terminal NGL amino acid residue (Asn-Gly-Leu-COOH) and ligates them efficiently. Herein, we report OaAEP1-mediated protein immobilization on synthetic magnetic nanoparticles. Our work showed that OaAEP1 could mediate C-terminal site-specific protein immobilization on the amino-functionalized Fe3O4 nanoparticles. Our work demonstrates a new method for site-specific protein immobilization on nanoparticles.
Collapse
|
2
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
3
|
Frazier CL, Weeks AM. Engineered peptide ligases for cell signaling and bioconjugation. Biochem Soc Trans 2020; 48:1153-1165. [PMID: 32539119 PMCID: PMC8350744 DOI: 10.1042/bst20200001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022]
Abstract
Enzymes that catalyze peptide ligation are powerful tools for site-specific protein bioconjugation and the study of cellular signaling. Peptide ligases can be divided into two classes: proteases that have been engineered to favor peptide ligation, and protease-related enzymes with naturally evolved peptide ligation activity. Here, we provide a review of key natural peptide ligases and proteases engineered to favor peptide ligation activity. We cover the protein engineering approaches used to generate and improve these tools, along with recent biological applications, advantages, and limitations associated with each enzyme. Finally, we address future challenges and opportunities for further development of peptide ligases as tools for biological research.
Collapse
Affiliation(s)
- Clara L. Frazier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
n-Butylamine production from glucose using a transaminase-mediated synthetic pathway in Escherichia coli. J Biosci Bioeng 2020; 129:99-103. [DOI: 10.1016/j.jbiosc.2019.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022]
|
5
|
Nuijens T, Toplak A, Schmidt M, Ricci A, Cabri W. Natural Occurring and Engineered Enzymes for Peptide Ligation and Cyclization. Front Chem 2019; 7:829. [PMID: 31850317 PMCID: PMC6895249 DOI: 10.3389/fchem.2019.00829] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
The renaissance of peptides as prospective therapeutics has fostered the development of novel strategies for their synthesis and modification. In this context, besides the development of new chemical peptide ligation approaches, especially the use of enzymes as a versatile tool has gained increased attention. Nowadays, due to their inherent properties such as excellent regio- and chemoselectivity, enzymes represent invaluable instruments in both academic and industrial laboratories. This mini-review focuses on natural- and engineered peptide ligases that can form a new peptide (amide) bond between the C-terminal carboxy and N-terminal amino group of a peptide and/or protein. The pro's and cons of several enzyme classes such as Sortases, Asparaginyl Endoproteases, Trypsin related enzymes and as a central focus subtilisin-derived variants are summarized. Most recent developments with regards to ligation and cyclization are highlighted.
Collapse
Affiliation(s)
- Timo Nuijens
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
| | - Ana Toplak
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
| | - Marcel Schmidt
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
| | | | - Walter Cabri
- Fresenius Kabi iPSUM, I&D Center EnzyPep B.V., Geleen, Netherlands
- Fresenius Kabi iPSUM Srl, Villadose, Italy
| |
Collapse
|
6
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
7
|
Pentaglycine lipid derivates – rp-HPLC analytics for bioorthogonal anchor molecules in targeted, multiple-composite liposomal drug delivery systems. Int J Pharm 2018; 547:602-610. [DOI: 10.1016/j.ijpharm.2018.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022]
|
8
|
Sortase-Mediated Ligation of Purely Artificial Building Blocks. Polymers (Basel) 2018; 10:polym10020151. [PMID: 30966187 PMCID: PMC6414994 DOI: 10.3390/polym10020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 01/16/2023] Open
Abstract
Sortase A (SrtA) from Staphylococcus aureus has been often used for ligating a protein with other natural or synthetic compounds in recent years. Here we show that SrtA-mediated ligation (SML) is universally applicable for the linkage of two purely artificial building blocks. Silica nanoparticles (NPs), poly(ethylene glycol) and poly(N-isopropyl acrylamide) are chosen as synthetic building blocks. As a proof of concept, NP–polymer, NP–NP, and polymer–polymer structures are formed by SrtA catalysis. Therefore, the building blocks are equipped with the recognition sequence needed for SrtA reaction—the conserved peptide LPETG—and a pentaglycine motif. The successful formation of the reaction products is shown by means of transmission electron microscopy (TEM), matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS), and dynamic light scattering (DLS). The sortase catalyzed linkage of artificial building blocks sets the stage for the development of a new approach to link synthetic structures in cases where their synthesis by established chemical methods is complicated.
Collapse
|
9
|
Ge B, Lin X, Chen Y, Wang X, Chen H, Jiang P, Huang F. Combinational biosynthesis of dual-functional streptavidin-phycobiliproteins for high-throughput-compatible immunoassay. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Raeeszadeh-Sarmazdeh M, Parthasarathy R, Boder ET. Fine-tuning sortase-mediated immobilization of protein layers on surfaces using sequential deprotection and coupling. Biotechnol Prog 2017; 33:824-831. [PMID: 28218499 DOI: 10.1002/btpr.2449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/08/2017] [Indexed: 12/23/2022]
Abstract
Increasing interest in protein immobilization on surfaces has heightened the need for techniques enabling layer-by-layer protein attachment. Here, we report a technique for controlling enzyme-mediated immobilization of layers of protein on the surface using a genetically encoded protecting group. An enterokinase-cleavable peptide sequence was inserted at the N-terminus of bifunctional fluorescent proteins containing Sortase A substrate recognition tags at both ends to control Sortase A-mediated protein immobilization on the surface layer-by-layer. Efficient, sequential immobilization of a second layer of protein using Sortase A required removal of the N-terminal protecting group, suggesting the method enables multilayer synthesis using cyclic deprotection and coupling steps. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:824-831, 2017.
Collapse
Affiliation(s)
| | | | - Eric T Boder
- Dept. of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996
| |
Collapse
|
11
|
Qafari SM, Ahmadian G, Mohammadi M. One-step purification and oriented attachment of protein A on silica and graphene oxide nanoparticles using sortase-mediated immobilization. RSC Adv 2017. [DOI: 10.1039/c7ra12128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-step purification and oriented immobilization of protein A on functionalized carriers.
Collapse
Affiliation(s)
- Seyed Mehdi Qafari
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Gholamreza Ahmadian
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| |
Collapse
|
12
|
Matsumoto T, Isogawa Y, Minamihata K, Tanaka T, Kondo A. Twigged streptavidin polymer as a scaffold for protein assembly. J Biotechnol 2016; 225:61-6. [PMID: 27002233 DOI: 10.1016/j.jbiotec.2016.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
Protein assemblies are an emerging tool that is finding many biological and bioengineering applications. We here propose a method for the site-specific assembly of proteins on a twigged streptavidin (SA) polymer using streptavidin as a functional scaffold. SA was genetically appended with a G tag (sortase A recognition sequence) and a Y tag (HRP recognition sequence) on its N- and C-termini, respectively, to provide G-SA-Y. G-SA-Y was polymerized using HPR-mediated tyrosine coupling, then fluorescent proteins were immobilized on the polymer by biotin-SA affinity and sortase A-mediated ligation. Fluorescence measurements showed that the proteins were immobilized in close proximity to each other. Hydrolyzing enzymes were also functionally assembled on the G-SA-Y polymer. The site-specific assembly of proteins on twigged SA polymer may find new applications in various biological and bioengineering fields.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuki Isogawa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Kosuke Minamihata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Cambria E, Renggli K, Ahrens CC, Cook C, Kroll C, Krueger A, Imperiali B, Griffith LG. Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation. Biomacromolecules 2015; 16:2316-26. [PMID: 26098148 PMCID: PMC4613866 DOI: 10.1021/acs.biomac.5b00549] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Indexed: 02/01/2023]
Abstract
Synthetic extracellular matrices are widely used in regenerative medicine and as tools in building in vitro physiological culture models. Synthetic hydrogels display advantageous physical properties, but are challenging to modify with large peptides or proteins. Here, a facile, mild enzymatic postgrafting approach is presented. Sortase-mediated ligation was used to conjugate human epidermal growth factor fused to a GGG ligation motif (GGG-EGF) to poly(ethylene glycol) (PEG) hydrogels containing the sortase LPRTG substrate. The reversibility of the sortase reaction was then exploited to cleave tethered EGF from the hydrogels for analysis. Analyses of the reaction supernatant and the postligation hydrogels showed that the amount of tethered EGF increases with increasing LPRTG in the hydrogel or GGG-EGF in the supernatant. Sortase-tethered EGF was biologically active, as demonstrated by stimulation of DNA synthesis in primary human hepatocytes and endometrial epithelial cells. The simplicity, specificity, and reversibility of sortase-mediated ligation and cleavage reactions make it an attractive approach for modification of hydrogels.
Collapse
Affiliation(s)
- Elena Cambria
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Kasper Renggli
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Caroline C. Ahrens
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Christi
D. Cook
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Carsten Kroll
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Andrew
T. Krueger
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Barbara Imperiali
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Linda G. Griffith
- Department
of Biological Engineering, Department of Chemical Engineering, Center for Gynepathology
Research, Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| |
Collapse
|
14
|
Walper SA, Turner KB, Medintz IL. Enzymatic bioconjugation of nanoparticles: developing specificity and control. Curr Opin Biotechnol 2015; 34:232-41. [PMID: 25955793 DOI: 10.1016/j.copbio.2015.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Nanoparticles are finding increasing roles in biotechnology for applications as contrast agents, probes, sensors, therapeutics and increasingly new value-added hybrid materials such as molecular logic devices. In most cases these materials must be conjugated to different types of biologicals such as proteins or DNA to accomplish this. However, most traditional methods of bioconjugation result in heterogeneous attachment and loss of activity. Bioorthogonal chemistries and in particular enzymatic labeling chemistries offer new strategies for catalyzing specific biomolecular attachment. We highlight current enzymatic labeling methods available for bioconjugating nanoparticles, some materials they have been used with, and how the resulting bioconjugates were applied. A discussion of the benefits and remaining issues associated with this type of bioconjugation chemistry and a brief perspective on how this field will develop is also provided.
Collapse
Affiliation(s)
- Scott A Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, DC 20375, USA
| | - Kendrick B Turner
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, DC 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, DC 20375, USA.
| |
Collapse
|
15
|
Raeeszadeh-Sarmazdeh M, Parthasarathy R, Boder ET. Site-specific immobilization of protein layers on gold surfaces via orthogonal sortases. Colloids Surf B Biointerfaces 2015; 128:457-463. [PMID: 25773291 DOI: 10.1016/j.colsurfb.2015.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/10/2015] [Accepted: 02/23/2015] [Indexed: 12/23/2022]
Abstract
We report a site-specific, sortase-mediated ligation to immobilize proteins layer-by-layer on a gold surface. Recombinant fluorescent proteins with a Sortase A recognition tag at the C-terminus were immobilized on peptide-modified gold surfaces. We used two sortases with different substrate specificities (Streptococcus pyogenes Sortase A and Staphylococcus aureus Sortase A) to immobilize layers of GFP and mCherry site-specifically on the gold surface. Surfaces were characterized using fluorescence and atomic force microscopy after immobilizing each layer of protein. Fluorescent micrographs showed that both protein immobilization on the modified gold surface and protein oligomerization are sortase-dependent. AFM images showed that either homogenous protein monolayers or layers of protein oligomers can be generated using appropriately tagged substrate proteins. Using Sortase A variants with orthogonal peptide substrate specificities, site-specific immobilization of appropriately tagged GFP onto a layer of immobilized mCherry was achieved without disruption of the underlying protein layer.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Department of Chemical and Biomolecular Engineering and Institute for Biomedical Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, United States
| | - Ranganath Parthasarathy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19114, United States
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering and Institute for Biomedical Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, United States.
| |
Collapse
|
16
|
Noda S, Matsumoto T, Tanaka T, Kondo A. Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host. Microb Cell Fact 2015; 14:5. [PMID: 25582841 PMCID: PMC4328045 DOI: 10.1186/s12934-014-0188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/26/2014] [Indexed: 12/04/2022] Open
Abstract
Background Streptavidin is a tetrameric protein derived from Streptomyces avidinii, and has tight and specific biotin binding affinity. Applications of the streptavidin-biotin system have been widely studied. Streptavidin is generally produced using protein expression in Escherichia coli. In the present study, the secretory production of streptavidin was carried out using Streptomyces lividans as a host. Results In this study, we used the gene encoding native full-length streptavidin, whereas the core region is generally used for streptavidin production in E. coli. Tetrameric streptavidin composed of native full-length streptavidin monomers was successfully secreted in the culture supernatant of S. lividans transformants, and had specific biotin binding affinity as strong as streptavidin produced by E. coli. The amount of Sav using S. lividans was about 9 times higher than using E. coli. Surprisingly, streptavidin produced by S. lividans exhibited affinity to biotin after boiling, despite the fact that tetrameric streptavidin is known to lose its biotin binding ability after brief boiling. Conclusion We successfully produced a large amount of tetrameric streptavidin as a secretory-form protein with unique thermotolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuhei Noda
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Takuya Matsumoto
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
17
|
Kim W, Haller C, Dai E, Wang X, Hagemeyer CE, Liu DR, Peter K, Chaikof EL. Targeted antithrombotic protein micelles. Angew Chem Int Ed Engl 2014; 54:1461-5. [PMID: 25504546 DOI: 10.1002/anie.201408529] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/09/2014] [Indexed: 12/26/2022]
Abstract
Activated platelets provide a promising target for imaging inflammatory and thrombotic events along with site-specific delivery of a variety of therapeutic agents. Multifunctional protein micelles bearing targeting and therapeutic proteins were now obtained by one-pot transpeptidation using an evolved sortase A. Conjugation to the corona of a single-chain antibody (scFv), which binds to the ligand-induced binding site (LIBS) of activated GPIIb/IIIa receptors, enabled the efficient detection of thrombi. The inhibition of thrombus formation was subsequently accomplished by incorporating the catalytically active domain of thrombomodulin (TM) onto the micelle corona for the local generation of activated protein C, which inhibits the formation of thrombin. An effective strategy has been developed for the preparation of protein micelles that can be targeted to sites of activated platelets with broad potential for treatment of acute thrombotic events.
Collapse
Affiliation(s)
- Wookhyun Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St, Suite 9F, Boston, MA 02115 (USA); the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA (USA)
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim W, Haller C, Dai E, Wang X, Hagemeyer CE, Liu DR, Peter K, Chaikof EL. Targeted Antithrombotic Protein Micelles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Uth C, Zielonka S, Hörner S, Rasche N, Plog A, Orelma H, Avrutina O, Zhang K, Kolmar H. A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. Angew Chem Int Ed Engl 2014; 53:12618-23. [PMID: 25070515 DOI: 10.1002/anie.201404616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 12/23/2022]
Abstract
The immobilization of bioactive molecules onto nanocellulose leads to constructs that combine the properties of the grafted compounds with the biocompatibility and low cytotoxicity of cellulose carriers and the advantages given by their nanometer dimensions. However, the methods commonly used for protein grafting suffer from lack of selectivity, long reaction times, nonphysiological pH ranges and solvents, and the necessity to develop a tailor-made reaction strategy for each individual case. To overcome these restrictions, a generic two-step procedure was developed that takes advantage of the highly efficient oxime ligation combined with enzyme-mediated protein coupling onto the surface of peptide-modified crystalline nanocellulose. The described method is based on efficient and orthogonal transformations, requires no organic solvents, and takes place under physiological conditions. Being site-directed and regiospecific, it could be applied to a vast number of functional proteins.
Collapse
Affiliation(s)
- Christina Uth
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Uth C, Zielonka S, Hörner S, Rasche N, Plog A, Orelma H, Avrutina O, Zhang K, Kolmar H. Eine chemoenzymatische Kupplungsstrategie zur Immobilisierung von Proteinen auf kristalliner Nanocellulose. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Abstract
Bioorthogonal, chemoselective ligation methods are an essential part of the tools utilized to investigate biochemical pathways. Specifically enzymatic approaches are valuable methods in this context due to the inherent specificity of the deployed enzymes and the mild conditions of the modification reactions. One of the most common strategies is based on the transpeptidation catalyzed by sortase A derived from Staphylococcus aureus. The procedure is well established and a wide variety of applications have been published to date. Here, implementations of sortase A, which range from protein labeling using fluorescence dyes and the preparation of cyclic proteins to the modification of entire cells, are summarized. Furthermore, there is a focus on the optimization approaches established to solve the drawbacks of sortase-mediated transpeptidation.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Bielefeld University, Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Universitätsstrasse 25, 33615 Bielefeld (Germany).
| |
Collapse
|
22
|
Schmohl L, Schwarzer D. Chemo-enzymatic three-fragment assembly of semisynthetic proteins. J Pept Sci 2014; 20:145-51. [PMID: 24402733 DOI: 10.1002/psc.2600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/10/2022]
Abstract
Here, we report the development of a method for three-fragment assemblies of semisynthetic proteins by combining sortase-mediated ligation with site-specific bioconjugation catalyzed by the 4'-phosphopantetheine transferase Sfp. This method enables the introduction of synthetic peptides into central regions of proteins without the need to purify intermediates. The assembled proteins are linked at the N-terminal junction with a 4'-phosphopantetheine moiety and with a peptide bond at the C-terminal ligation site. We have demonstrated the applicability of this method by assembling a semisynthetic model protein derived from fluorescence resonance energy transfer-based reporters from three fragments in a one-pot reaction.
Collapse
Affiliation(s)
- Lena Schmohl
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, D-72076, Tuebingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, D-72076, Tuebingen, Germany
| |
Collapse
|
23
|
Mori Y, Wakabayashi R, Goto M, Kamiya N. Protein supramolecular complex formation by site-specific avidin-biotin interactions. Org Biomol Chem 2012; 11:914-22. [PMID: 23104386 DOI: 10.1039/c2ob26625c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The precise accumulation of protein functions on a nanoscale to fabricate advanced biomaterials has become possible by a bottom-up approach based on molecular self-assembly. The avidin-biotin interaction is widely employed in the design of functional protein self-assemblies. Herein we assessed how the spatial arrangement of the avidin-biotin interaction between protein building blocks affects the formation of a protein supramolecular complex (PSC). The enzymatic site-specific internal labeling of a symmetric protein scaffold, bacterial alkaline phosphatase (AP), with specifically designed biotinylation substrates revealed that the precise positioning of the biotinylation sites on AP and the linker flexibility of the substrate are critical factors for the growth of PSCs in the presence of streptavidin (SA). A potential diagnostic application of the PSCs comprised of AP and SA was demonstrated in an enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Yutaro Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | | | | | | |
Collapse
|
24
|
Matsumoto T, Tanaka T, Kondo A. Enzyme-mediated methodologies for protein modification and bioconjugate synthesis. Biotechnol J 2012; 7:1137-46. [DOI: 10.1002/biot.201200022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 12/14/2022]
|