1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Eriksson M, Claesson PM, Järn M, Wallqvist V, Tuominen M, Kappl M, Teisala H, Vollmer D, Schoelkopf J, Gane PA, Mäkelä JM, Swerin A. Effects of Gas Layer Thickness on Capillary Interactions at Superhydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4801-4810. [PMID: 38386540 PMCID: PMC10919075 DOI: 10.1021/acs.langmuir.3c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Strongly attractive forces act between superhydrophobic surfaces across water due to the formation of a bridging gas capillary. Upon separation, the attraction can range up to tens of micrometers as the gas capillary grows, while gas molecules accumulate in the capillary. We argue that most of these molecules come from the pre-existing gaseous layer found at and within the superhydrophobic coating. In this study, we investigate how the capillary size and the resulting capillary forces are affected by the thickness of the gaseous layer. To this end, we prepared superhydrophobic coatings with different thicknesses by utilizing different numbers of coating cycles of a liquid flame spraying technique. Laser scanning confocal microscopy confirmed an increase in gas layer thickness with an increasing number of coating cycles. Force measurements between such coatings and a hydrophobic colloidal probe revealed attractive forces caused by bridging gas capillaries, and both the capillary size and the range of attraction increased with increasing thickness of the pre-existing gas layer. Hence, our data suggest that the amount of available gas at and in the superhydrophobic coating determines the force range and capillary growth.
Collapse
Affiliation(s)
- Mimmi Eriksson
- Materials
and Surface Design, RISE Research Institutes
of Sweden, SE-11486 Stockholm, Sweden
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
- CR
Colloidal Resource AB, Naturvetarvägen 14, SE-22362 Lund, Sweden
| | - Per M. Claesson
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Mikael Järn
- Materials
and Surface Design, RISE Research Institutes
of Sweden, SE-11486 Stockholm, Sweden
| | - Viveca Wallqvist
- Materials
and Surface Design, RISE Research Institutes
of Sweden, SE-11486 Stockholm, Sweden
| | - Mikko Tuominen
- Materials
and Surface Design, RISE Research Institutes
of Sweden, SE-11486 Stockholm, Sweden
- Nordtreat
Oy, Mestarintie 11, FI-01730 Vantaa, Finland
| | - Michael Kappl
- Department
of Physics at Interfaces, Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Hannu Teisala
- Department
of Physics at Interfaces, Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
- Amcor
Flexibles Valkeakoski Oy, Niementie 161, P.O. Box 70, 37601 Valkeakoski, Finland
| | - Doris Vollmer
- Department
of Physics at Interfaces, Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | | | - Patrick A.C. Gane
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
- Faculty of
Technology and Metallurgy, University of
Belgrade, Karnegijeva
4, Belgrade 11000, Serbia
| | - Jyrki M. Mäkelä
- Physics
Unit, Aerosol Physics Laboratory, Tampere
University, Tampere FI-33014, Finland
| | - Agne Swerin
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
- Department
of Engineering and Chemical Sciences, Karlstad
University, SE-651 88 Karlstad, Sweden
| |
Collapse
|
3
|
Wang X, Lamantia A, Jay M, Sadeghi H, Lambert CJ, Kolosov OV, Robinson BJ. Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode. NANOTECHNOLOGY 2023; 34:385704. [PMID: 37336192 DOI: 10.1088/1361-6528/acdf67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Molecular thin films, such as self-assembled monolayers (SAMs), offer the possibility of translating the optimised thermophysical and electrical properties of high-Seebeck-coefficient single molecules to scalable device architectures. However, for many scanning probe-based approaches attempting to characterise such SAMs, there remains a significant challenge in recovering single-molecule equivalent values from large-area films due to the intrinsic uncertainty of the probe-sample contact area coupled with film damage caused by contact forces. Here we report a new reproducible non-destructive method for probing the electrical and thermoelectric (TE) properties of small assemblies (10-103) of thiol-terminated molecules arranged within a SAM on a gold surface, and demonstrate the successful and reproducible measurements of the equivalent single-molecule electrical conductivity and Seebeck values. We have used a modified thermal-electric force microscopy approach, which integrates the conductive-probe atomic force microscope, a sample positioned on a temperature-controlled heater, and a probe-sample peak-force feedback that interactively limits the normal force across the molecular junctions. The experimental results are interpreted by density functional theory calculations allowing quantification the electrical quantum transport properties of both single molecules and small clusters of molecules. Significantly, this approach effectively eliminates lateral forces between probe and sample, minimising disruption to the SAM while enabling simultaneous mapping of the SAMs nanomechanical properties, as well as electrical and/or TE response, thereby allowing correlation of the film properties.
Collapse
Affiliation(s)
- Xintai Wang
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Angelo Lamantia
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Michael Jay
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Hatef Sadeghi
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Oleg V Kolosov
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Benjamin J Robinson
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
4
|
Eriksson M, Claesson PM, Järn M, Wallqvist V, Tuominen M, Kappl M, Teisala H, Vollmer D, Schoelkopf J, Gane PAC, Mäkelä JM, Swerin A. Effects of liquid surface tension on gas capillaries and capillary forces at superamphiphobic surfaces. Sci Rep 2023; 13:6794. [PMID: 37100810 PMCID: PMC10133270 DOI: 10.1038/s41598-023-33875-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
The formation of a bridging gas capillary between superhydrophobic surfaces in water gives rise to strongly attractive interactions ranging up to several micrometers on separation. However, most liquids used in materials research are oil-based or contain surfactants. Superamphiphobic surfaces repel both water and low-surface-tension liquids. To control the interactions between a superamphiphobic surface and a particle, it needs to be resolved whether and how gas capillaries form in non-polar and low-surface-tension liquids. Such insight will aid advanced functional materials development. Here, we combine laser scanning confocal imaging and colloidal probe atomic force microscopy to elucidate the interaction between a superamphiphobic surface and a hydrophobic microparticle in three liquids with different surface tensions: water (73 mN m-1), ethylene glycol (48 mN m-1) and hexadecane (27 mN m-1). We show that bridging gas capillaries are formed in all three liquids. Force-distance curves between the superamphiphobic surface and the particle reveal strong attractive interactions, where the range and magnitude decrease with liquid surface tension. Comparison of free energy calculations based on the capillary menisci shapes and the force measurements suggest that under our dynamic measurements the gas pressure in the capillary is slightly below ambient.
Collapse
Affiliation(s)
- Mimmi Eriksson
- RISE Research Institutes of Sweden, 11486, Stockholm, Sweden
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Per M Claesson
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mikael Järn
- RISE Research Institutes of Sweden, 11486, Stockholm, Sweden
| | | | - Mikko Tuominen
- RISE Research Institutes of Sweden, 11486, Stockholm, Sweden
| | - Michael Kappl
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Hannu Teisala
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Doris Vollmer
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Patrick A C Gane
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076, Aalto, Finland
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| | - Jyrki M Mäkelä
- Physics Unit, Aerosol Physics Laboratory, Tampere University, 33014, Tampere, Finland
| | - Agne Swerin
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden.
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| |
Collapse
|
5
|
McNamee CE, Kanno K. Use of Silica Nanoparticle Langmuir Films to Determine the Effect of Surface Roughness on the Change in the Forces between Two Silica Surfaces by a Liquid Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3450-3461. [PMID: 36825771 DOI: 10.1021/acs.langmuir.2c03424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We aimed to determine how surface roughness changes the effect of a liquid flow on the forces between two charged surfaces. This is because many applications require liquid to flow through charged confined areas and because all surfaces show a degree of roughness. We prepared films of different roughness by making mixed Langmuir films of silica nanoparticles (NPs) of two different diameters at air-100 mM NaCl aqueous interfaces and then by transferring and sintering these films to silicon wafers. Atomic force microscope (AFM) imaging showed that the film roughness decreased (1) with an NP diameter decrease and (2) an increased ratio of small NPs in a mixed film of small and larger NPs. This decrease was explained by a decreased NP aggregation in the film, due to the increased Brownian velocity that accompanies an NP diameter decrease. Force-separation curves were next measured with an AFM between a microsized silica particle (probe) and a smooth substrate (silicon wafer) or the rough NP films in 1 mM NaCl. In the absence of a liquid flow, the repulsive forces decreased with an increased substrate roughness. This reduction was explained by an increased difference between the real zero separation distance and apparent zero separation distance (the distance between the first point of mechanical contact between the probe and substrate) with an increased surface roughness. In the presence of a liquid flow, the repulsive forces decreased in the case of a smooth substrate. However, the repulsive forces were reduced less by a liquid flow for rough substrates. This result was explained by the difference in the effect of liquid flow on the diffuse layer for the smooth and rough surfaces. Surface roughness is postulated to modify the liquid flow trajectory near the surfaces and to cause ion concentration gradients near the surface. These factors are proposed to lessen the change in the diffuse layer brought about by a liquid flow. This would then reduce the change in the forces.
Collapse
Affiliation(s)
- Cathy E McNamee
- Shinshu University, Tokida 3-15-1, Ueda-shi, Nagano-ken 386-8567, Japan
| | - Koutarou Kanno
- Shinshu University, Tokida 3-15-1, Ueda-shi, Nagano-ken 386-8567, Japan
| |
Collapse
|
6
|
Burgess JK, Harmsen MC. Chronic lung diseases: entangled in extracellular matrix. Eur Respir Rev 2022; 31:31/163/210202. [PMID: 35264410 DOI: 10.1183/16000617.0202-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| |
Collapse
|
7
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
8
|
Richards C, Slaimi A, O’Connor NE, Barrett A, Kwiatkowska S, Regan F. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. Int J Mol Sci 2020; 21:ijms21145063. [PMID: 32709068 PMCID: PMC7404281 DOI: 10.3390/ijms21145063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023] Open
Abstract
The imitation of natural systems to produce effective antifouling materials is often referred to as “biomimetics”. The world of biomimetics is a multidisciplinary one, needing careful understanding of “biological structures”, processes and principles of various organisms found in nature and based on this, designing nanodevices and nanomaterials that are of commercial interest to industry. Looking to the marine environment for bioinspired surfaces offers researchers a wealth of topographies to explore. Particular attention has been given to the evaluation of textures based on marine organisms tested in either the laboratory or the field. The findings of the review relate to the numbers of studies on textured surfaces demonstrating antifouling potential which are significant. However, many of these are only tested in the laboratory, where it is acknowledged a very different response to fouling is observed.
Collapse
Affiliation(s)
- Chloe Richards
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Asma Slaimi
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Noel E. O’Connor
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Alan Barrett
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Sandra Kwiatkowska
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
- Correspondence:
| |
Collapse
|
9
|
Eriksson M, Swerin A. Forces at superhydrophobic and superamphiphobic surfaces. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Samanta A, Huang W, Chaudhry H, Wang Q, Shaw SK, Ding H. Design of Chemical Surface Treatment for Laser-Textured Metal Alloys to Achieve Extreme Wetting Behavior. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18032-18045. [PMID: 32208599 DOI: 10.1016/j.matdes.2020.108744] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extreme wetting activities of laser-textured metal alloys have received significant interest due to their superior performance in a wide range of commercial applications and fundamental research studies. Fundamentally, extreme wettability of structured metal alloys depends on both the surface structure and surface chemistry. However, compared with the generation of physical topology on the surface, the role of surface chemistry is less explored for the laser texturing processes of metal alloys to tune the wettability. This work introduces a systematic design approach to modify the surface chemistry of laser textured metal alloys to achieve various extreme wettabilities, including superhydrophobicity/superoleophobicity, superhydrophilicity/superoleophilicity, and coexistence of superoleophobicity and superhydrophilicity. Microscale trenches are first created on the aluminum alloy 6061 surfaces by nanosecond pulse laser surface texturing. Subsequently, the textured surface is immersion-treated in several chemical solutions to attach target functional groups on the surface to achieve the final extreme wettability. Anchoring fluorinated groups (-CF2- and -CF3) with very low dispersive and nondispersive surface energy leads to superoleophobicity and superhydrophobicity, resulting in repelling both water and diiodomethane. Attachment of the polar nitrile (-C≡N) group with very high nondispersive and high dispersive surface energy achieves superhydrophilicity and superoleophilicity by drawing water and diiodomethane molecules in the laser-textured capillaries. At last, anchoring fluorinated groups (-CF2- and -CF3) and polar sodium carboxylate (-COONa) together leads to very low dispersive and very high nondispersive surface energy components. It results in the coexistence of superoleophobicity and superhydrophilicity, where the treated surface attracts water but repels diiodomethane.
Collapse
Affiliation(s)
- Avik Samanta
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Wuji Huang
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hassan Chaudhry
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Qinghua Wang
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Scott K Shaw
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hongtao Ding
- Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
11
|
Eriksson M, Claesson PM, Järn M, Tuominen M, Wallqvist V, Schoelkopf J, Gane PAC, Swerin A. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13275-13285. [PMID: 31547659 DOI: 10.1021/acs.langmuir.9b02368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Superhydrophobic surfaces in the Cassie-Baxter wetting state retain an air layer at the surface which prevents liquid water from reaching into the porous surface structure. In this work we explore how addition of ethanol, which reduces the surface tension, influences the wetting properties of superhydrophobic and smooth hydrophobic surfaces. Wetting properties are measured by dynamic contact angles, and the air layer at the superhydrophobic surface is visualized by laser scanning confocal microscopy. Colloidal probe atomic force microscopy measurements between a hydrophobic microsphere and the macroscopic surfaces showed that the presence of ethanol strongly affects the interaction forces. When the macroscopic surface is superhydrophobic, attractive forces extending up to a few micrometers are observed on retraction in water and in 20 vol % ethanol, signifying the presence of a large and growing gas capillary. Submicrometer attractive forces are observed between the probe particle and a smooth hydrophobic surface, and in this case a smaller gas capillary is formed. Addition of ethanol results in markedly different effects between superhydrophobic and hydrophobic surfaces. In particular, we show that the receding contact angle on the superhydrophobic surface is of paramount importance for describing the interaction forces.
Collapse
Affiliation(s)
- Mimmi Eriksson
- RISE Research Institutes of Sweden , SE-11486 Stockholm , Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - Per Martin Claesson
- RISE Research Institutes of Sweden , SE-11486 Stockholm , Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - Mikael Järn
- RISE Research Institutes of Sweden , SE-11486 Stockholm , Sweden
| | - Mikko Tuominen
- RISE Research Institutes of Sweden , SE-11486 Stockholm , Sweden
| | - Viveca Wallqvist
- RISE Research Institutes of Sweden , SE-11486 Stockholm , Sweden
| | | | - Patrick A C Gane
- School of Chemical Engineering, Department of Bioproducts and Biosystems , Aalto University , FI-00076 Aalto , Finland
| | - Agne Swerin
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| |
Collapse
|
12
|
Eriksson M, Tuominen M, Järn M, Claesson PM, Wallqvist V, Butt HJ, Vollmer D, Kappl M, Schoelkopf J, Gane PAC, Teisala H, Swerin A. Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface. ACS NANO 2019; 13:2246-2252. [PMID: 30707561 DOI: 10.1021/acsnano.8b08922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The formation of a bridging gas meniscus via cavitation or nanobubbles is considered the most likely origin of the submicrometer long-range attractive forces measured between hydrophobic surfaces in aqueous solution. However, the dynamics of the formation and evolution of the gas meniscus is still under debate, in particular, in the presence of a thin air layer on a superhydrophobic surface. On superhydrophobic surfaces the range can even exceed 10 μm. Here, we report microscopic images of the formation and growth of a gas meniscus during force measurements between a superhydrophobic surface and a hydrophobic microsphere immersed in water. This is achieved by combining laser scanning confocal microscopy and colloidal probe atomic force microscopy. The configuration allows determination of the volume and shape of the meniscus, together with direct calculation of the Young-Laplace capillary pressure. The long-range attractive interactions acting on separation are due to meniscus formation and volume growth as air is transported from the surface layer.
Collapse
Affiliation(s)
- Mimmi Eriksson
- RISE Research Institutes of Sweden , Bioscience and Materials - Surface, Process and Formulation , SE-114 86 Stockholm , Sweden
| | - Mikko Tuominen
- RISE Research Institutes of Sweden , Bioscience and Materials - Surface, Process and Formulation , SE-114 86 Stockholm , Sweden
| | - Mikael Järn
- RISE Research Institutes of Sweden , Bioscience and Materials - Surface, Process and Formulation , SE-114 86 Stockholm , Sweden
| | - Per Martin Claesson
- RISE Research Institutes of Sweden , Bioscience and Materials - Surface, Process and Formulation , SE-114 86 Stockholm , Sweden
- KTH Royal Institute of Technology , School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , SE-100 44 Stockholm , Sweden
| | - Viveca Wallqvist
- RISE Research Institutes of Sweden , Bioscience and Materials - Surface, Process and Formulation , SE-114 86 Stockholm , Sweden
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research , Department of Physics at Interfaces , Ackermannweg 10 , DE-55128 Mainz , Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research , Department of Physics at Interfaces , Ackermannweg 10 , DE-55128 Mainz , Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research , Department of Physics at Interfaces , Ackermannweg 10 , DE-55128 Mainz , Germany
| | - Joachim Schoelkopf
- Omya International AG , Baslerstrasse 42 , CH-4665 Oftringen , Switzerland
| | - Patrick A C Gane
- Omya International AG , Baslerstrasse 42 , CH-4665 Oftringen , Switzerland
- Aalto University , School of Chemical Engineering, Department of Bioproducts and Biosystems , FI-00076 Aalto , Finland
| | - Hannu Teisala
- Max Planck Institute for Polymer Research , Department of Physics at Interfaces , Ackermannweg 10 , DE-55128 Mainz , Germany
| | - Agne Swerin
- RISE Research Institutes of Sweden , Bioscience and Materials - Surface, Process and Formulation , SE-114 86 Stockholm , Sweden
- KTH Royal Institute of Technology , School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , SE-100 44 Stockholm , Sweden
| |
Collapse
|
13
|
Liu X, Feilberg KL, Yan W, Stenby EH, Thormann E. Electrical Double-Layer and Ion Bridging Forces between Symmetric and Asymmetric Charged Surfaces in the Presence of Mono- and Divalent Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4426-4434. [PMID: 28430450 DOI: 10.1021/acs.langmuir.7b00450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An atomic force microscope, employing the colloidal probe technique, was used to study the interactions between six different combinations of silane-functionalized silica surfaces in NaCl and CaCl2 solutions. The surfaces consisted of monolayers of the apolar trimethoxy(octyl)silane, the positively charged (3-aminopropyl)trimethoxysilane, and the negatively charged (3-mercaptopropyl)trimethoxysilane. The interactions between the three symmetric systems, as well as between the three asymmetric combinations of surfaces, were measured and compared to calculated electrical double-layer forces. The results demonstrated that the long-range interactions between the surfaces in all cases were dominated by double-layer forces, while short-range interactions, including adhesion, were dominated by ion bridging forces in the cases where both interaction surfaces favored adsorption of calcium ions. The study thus also demonstrates how surface force studies in mono- and divalent salt solutions can be used as an analytical tool for probing specific functional groups on heterogeneous surfaces.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Chemistry and ‡Centre for Oil and Gas, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Karen L Feilberg
- Department of Chemistry and ‡Centre for Oil and Gas, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Wei Yan
- Department of Chemistry and ‡Centre for Oil and Gas, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Erling H Stenby
- Department of Chemistry and ‡Centre for Oil and Gas, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry and ‡Centre for Oil and Gas, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Schlesinger I, Sivan U. New Information on the Hydrophobic Interaction Revealed by Frequency Modulation AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2485-2496. [PMID: 28218853 DOI: 10.1021/acs.langmuir.6b03574] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using ultrahigh resolution atomic force microscopy (AFM) operated in frequency modulation mode, we extend existing measurements of the force acting between hydrophobic surfaces immersed in water in three essential ways. (1) The measurement range, which was previously limited to distances longer than 2-3 nm, is extended to cover all distances, down to contact. The measurements disclose that the long-range attraction observed also by conventional techniques, turns at distances shorter than 1-2 nm into pronounced repulsion. (2) Simultaneous measurements of the dissipative component of the tip-surface interaction reveal an anomalously large dissipation commencing abruptly at the point where attraction begins. The dissipation is more than 2 orders of magnitude larger than expected from bulk water viscosity or from similar measurements between hydrophilic surfaces. (3) The short-range repulsion is oscillatory, indicating molecular ordering of the medium as the hydrophobic surfaces approach each other. The oscillation period, ∼0.5 nm, is larger than the ∼0.3 nm period observed with hydrophilic surfaces. Their range, ∼1.5 nm, is longer as well. These observations are consistent with a conspicuous change in the properties of the surrounding medium, taking place simultaneously with the onset of attraction as the two surfaces approach each other.
Collapse
Affiliation(s)
- Itai Schlesinger
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology , Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology , Haifa 3200003, Israel
| |
Collapse
|
15
|
Thormann E. Surface forces between rough and topographically structured interfaces. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2016.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
|
17
|
Rahimi M, Afshari A, Thormann E. Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11147-11153. [PMID: 27045573 DOI: 10.1021/acsami.6b02321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we have investigated the freezing delay of a water droplet on precooled substrates of an aluminum alloy that is commonly used for heat-exchanger fins. The surfaces of the substrates were modified to obtain surfaces with different hydrophilicity/hydrophobicity and different surface chemistry but without significantly modifying the surface topography. The freezing delays and water contact angles were measured as a function of the substrate temperature and the results were compared to the predictions of the heterogeneous ice nucleation theory. Although the trends for each sample followed the trend in this theory, the differences in the extents of freezing delays were in apparent disagreement with the predictions. Concretely, a slightly hydrophilic substrate modified by (3-aminopropyl) triethoxysilane (APTES) showed longer freezing delays than both more hydrophilic and more hydrophobic substrates. We suggest that this is because this particular surface chemistry prevents ice formation at the interface of the substrate, prior to the deposition of the water droplet. On the basis of our results, we suggest that not only wettability and topography but also the concrete surface chemistry plays a significant role in the kinetics of the ice formation process when a water droplet is placed on a precooled substrate.
Collapse
Affiliation(s)
- Maral Rahimi
- Department of Energy and Environment, Danish Building Research Institute, Aalborg University , A.C. Meyers Vænge 15, 2450 København SV, Denmark
| | - Alireza Afshari
- Department of Energy and Environment, Danish Building Research Institute, Aalborg University , A.C. Meyers Vænge 15, 2450 København SV, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
18
|
Heng L, Liu J, Hu R, Han KY, Guo LL, Liu Y, Li MY, Nie Q. Wettability and permeation of ethanol/water mixture on porous mesh surface. RSC Adv 2016. [DOI: 10.1039/c6ra19737j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A serial of copper meshes with different chemical composition and roughness was prepared by modifying different mixed thiols, which showed different wetting behavior and permeation behavior for different ethanol/water mixed solution.
Collapse
Affiliation(s)
- Liping Heng
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
- School of Chemistry and Environment
| | - Jie Liu
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
| | - Ruixiang Hu
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
| | - Ke-Yu Han
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
- School of Chemistry and Environment
| | - Lian-Lian Guo
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
| | - Ye Liu
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
| | - Meng-Ying Li
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
| | - Qiao Nie
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha
- China
| |
Collapse
|
19
|
Wåhlander M, Hansson-Mille PM, Swerin A. Superhydrophobicity: Cavity growth and wetting transition. J Colloid Interface Sci 2015; 448:482-91. [DOI: 10.1016/j.jcis.2015.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/25/2022]
|
20
|
Hansson PM, Claesson PM, Swerin A, Briscoe WH, Schoelkopf J, Gane PAC, Thormann E. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces. Phys Chem Chem Phys 2014; 15:17893-902. [PMID: 24056733 DOI: 10.1039/c3cp52196f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All the particle coated surfaces exhibited similar friction coefficients, from which it may be concluded that the surface geometry, and not the roughness amplitude per se, influenced the measured friction. During measurements with hydrophobic surfaces, strong adhesive forces related to the formation of a bridging air cavity were evident from both normal force and friction force measurements. In contrast to the frictional forces between the hydrophilic surfaces, the friction coefficient for hydrophobic surfaces was found to depend on the surface structure and we believe that this dependence is related to the restricted movement of the three-phase line of the bridging air cavity. For measurements using a hydrophobic surface and a hydrophilic probe, the friction coefficient was significantly smaller compared to the two homogeneous systems. A layer of air or air bubbles on the hydrophobic surface working as a lubricating layer is a possible mechanism behind this observation.
Collapse
Affiliation(s)
- Petra M Hansson
- SP Technical Research Institute of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
Surface forces and friction between non-polar surfaces coated by temperature-responsive methylcellulose. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Tabor RF, Grieser F, Dagastine RR, Chan DYC. The hydrophobic force: measurements and methods. Phys Chem Chem Phys 2014; 16:18065-75. [DOI: 10.1039/c4cp01410c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hydrophobic force describes the attraction between water-hating molecules (and surfaces) that draws them together, causing aggregation, phase separation, protein folding and many other inherent physical phenomena.
Collapse
Affiliation(s)
- Rico F. Tabor
- School of Chemistry
- Monash University
- Clayton, Australia
| | - Franz Grieser
- Particulate Fluids Processing Centre
- The University of Melbourne
- Parkville 3010, Australia
- School of Chemistry
- The University of Melbourne
| | - Raymond R. Dagastine
- Particulate Fluids Processing Centre
- The University of Melbourne
- Parkville 3010, Australia
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
| | - Derek Y. C. Chan
- Particulate Fluids Processing Centre
- The University of Melbourne
- Parkville 3010, Australia
- Department of Mathematics and Statistics
- The University of Melbourne
| |
Collapse
|
23
|
Walczyk W, Schön PM, Schönherr H. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:184005. [PMID: 23598774 DOI: 10.1088/0953-8984/25/18/184005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Until now, TM AFM (tapping mode or intermittent contact mode atomic force microscopy) has been the most often applied direct imaging technique to analyze surface nanobubbles at the solid-aqueous interface. While the presence and number density of nanobubbles can be unequivocally detected and estimated, it remains unclear how much the a priori invasive nature of AFM affects the apparent shapes and dimensions of the nanobubbles. To be able to successfully address the unsolved questions in this field, the accurate knowledge of the nanobubbles' dimensions, radii of curvature etc is necessary. In this contribution we present a comparative study of surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water acquired with (i) TM AFM and (ii) the recently introduced PFT (PeakForce tapping) mode, in which the force exerted on the nanobubbles rather than the amplitude of the resonating cantilever is used as the AFM feedback parameter during imaging. In particular, we analyzed how the apparent size and shape of nanobubbles depend on the maximum applied force in PFT AFM. Even for forces as small as 73 pN, the nanobubbles appeared smaller than their true size, which was estimated from an extrapolation of the bubble height to zero applied force. In addition, the size underestimation was found to be more pronounced for larger bubbles. The extrapolated true nanoscopic contact angles for nanobubbles on HOPG, measured in PFT AFM, ranged from 145° to 175° and were only slightly underestimated by scanning with non-zero forces. This result was comparable to the nanoscopic contact angles of 160°-175° measured using TM AFM in the same set of experiments. Both values disagree, in accordance with the literature, with the macroscopic contact angle of water on HOPG, measured here to be 63° ± 2°.
Collapse
Affiliation(s)
- Wiktoria Walczyk
- Physical Chemistry I, University of Siegen, Adolf-Reichwein-Straße 2, D-57076 Siegen, Germany
| | | | | |
Collapse
|
24
|
Hansson PM, Hormozan Y, Brandner BD, Linnros J, Claesson PM, Swerin A, Schoelkopf J, Gane PA, Thormann E. Hydrophobic pore array surfaces: Wetting and interaction forces in water/ethanol mixtures. J Colloid Interface Sci 2013; 396:278-86. [DOI: 10.1016/j.jcis.2013.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/14/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|
25
|
Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Méndez S. Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 2013. [DOI: 10.1039/c3ra43499k] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
26
|
Batys P, Weroński P. Modeling of LbL multilayers with controlled thickness, roughness, and specific surface area. J Chem Phys 2012; 137:214706. [DOI: 10.1063/1.4769390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Hansson PM, Hormozan Y, Brandner BD, Linnros J, Claesson PM, Swerin A, Schoelkopf J, Gane PAC, Thormann E. Effect of surface depressions on wetting and interactions between hydrophobic pore array surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11121-11130. [PMID: 22769744 DOI: 10.1021/la302036d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The surface structure is known to significantly affect the long-range capillary forces between hydrophobic surfaces in aqueous solutions. It is, however, not clear how small depressions in the surface will affect the interaction. To clarify this, we have used the AFM colloidal probe technique to measure interactions between hydrophobic microstructured pore array surfaces and a hydrophobic colloidal probe. The pore array surfaces were designed to display two different pore spacings, 1.4 and 4.0 μm, each with four different pore depths ranging from 0.2 to 12.0 μm. Water contact angles measured on the pore array surfaces are lower than expected from the Cassie-Baxter and Wenzel models and not affected by the pore depth. This suggests that the position of the three-phase contact line, and not the interactions underneath the droplet, determines the contact angle. Confocal Raman microscopy was used to investigate whether water penetrates into the pores. This is of importance for capillary forces where both the movement of the three-phase contact line and the situation at the solid/liquid interface influence the stability of bridging cavities. By analyzing the shape of the force curves, we distinguish whether the cavity between the probe and the surfaces was formed on a flat part of the surface or in close proximity to a pore. The pore depth and pore spacing were both found to statistically influence the distance at which cavities form as surfaces approach each other and the distance at which cavities rupture during retraction.
Collapse
Affiliation(s)
- Petra M Hansson
- YKI, Ytkemiska Institutet AB/Institute for Surface Chemistry, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|