1
|
Ebrahimi R, Fathi M, Ghoddusi HB. Pickering emulsions stabilized by cellulose nanocrystals extracted from hazelnut shells: Production and stability under different harsh conditions. Int J Biol Macromol 2024; 258:128982. [PMID: 38154718 DOI: 10.1016/j.ijbiomac.2023.128982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Cellulose nanocrystals (CNCs) are biodegradable particles that have emerged as promising stabilizers for Pickering emulsions. This study investigated the effectiveness of CNCs in forming the Pickering emulsion from hazelnut shells (HS), an agricultural waste. Following the alkaline and bleaching treatments applied to HS, CNCs were obtained from treated hazelnut shell with acid hydrolysis. The physicochemical characteristics of CNCs were investigated using dynamic light scattering, XRD, FTIR, SEM, and TEM. A high crystalline (69.6 %) CNCs with a spherical shape were obtained. Contact angle and interfacial tension tests were conducted and showed that CNCs had amphiphilic nature. Pickering emulsions were investigated for their size, zeta potential, and stability under varying CNC concentrations. The results showed that when CNCs concentration increased from 0.5 to 2.0 wt%, droplet diameter decreased approximately 1.8 times and zeta potential increased. Creaming was not observed during 28 days of storage in a concentration of 2.0 wt% CNCs. The CNC stabilized emulsions exhibited high stability within a range of pH, temperatures, and salt concentrations. This study demonstrated that CNCs extracted from HS as environmentally friendly and cost-effective materials, could serve as a new stabilizer for Pickering emulsions especially for high temperature and low pH sensitive products such as mayonnaise.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hamid B Ghoddusi
- Microbiology Research Unit (MRU), School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
2
|
Diaz-Ramirez J, Basasoro S, González K, Eceiza A, Retegi A, Gabilondo N. Integral Valorization of Grape Pomace for Antioxidant Pickering Emulsions. Antioxidants (Basel) 2023; 12:antiox12051064. [PMID: 37237930 DOI: 10.3390/antiox12051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Full harnessing of grape pomace (GP) agricultural waste for the preparation of antioxidant Pickering emulsions is presented herein. Bacterial cellulose (BC) and polyphenolic extract (GPPE) were both prepared from GP. Rod-like BC nanocrystals up to 1.5 µm in length and 5-30 nm in width were obtained through enzymatic hydrolysis (EH). The GPPE obtained through ultrasound-assisted hydroalcoholic solvent extraction presented excellent antioxidant properties assessed using DPPH, ABTS and TPC assays. The BCNC-GPPE complex formation improved the colloidal stability of BCNC aqueous dispersions by decreasing the Z potential value up to -35 mV and prolonged the antioxidant half-life of GPPE up to 2.5 times. The antioxidant activity of the complex was demonstrated by the decrease in conjugate diene (CD) formation in olive oil-in-water emulsions, whereas the measured emulsification ratio (ER) and droplet mean size of hexadecane-in-water emulsions confirmed the physical stability improvement in all cases. The synergistic effect between nanocellulose and GPPE resulted in promising novel emulsions with prolonged physical and oxidative stability.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Senda Basasoro
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Kizkitza González
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Eceiza
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Aloña Retegi
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Nagore Gabilondo
- Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Cui W, Xia C, Xu S, Ye X, Wu Y, Cheng S, Zhang R, Zhang C, Miao Z. Water-in-water emulsions stabilized by self-assembled chitosan colloidal particles. Carbohydr Polym 2023; 303:120466. [PMID: 36657862 DOI: 10.1016/j.carbpol.2022.120466] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Dextran (Dex) and poly(ethylene glycol) (PEG)-based aqueous emulsions were stabilized using the self-assembled chitosan colloidal particles (CS CPs). Besides, the effects of pH, CS CPs concentration, polymer concentration, volume ratio of PEG solution to Dex solution, temperature, homogenizing speed and homogenizing time on the property of the W/W emulsions were investigated, respectively. In order to enhance the stability of the PEG-Dex emulsion, sodium tripolyphosphate was used to cross-link the CS CPs at the interface of emulsion droplets, which resulted in the stability duration for >1 year. Finally, the CS CPs were used as a support to immobilize urease and bovine serum albumin and a stabilizer to prepare W/W emulsion, which were then adopted as a catalysis system and as a spinning solution to fabricate drug-loaded nanofiber. This strategy potentially provides a new opportunity to encapsulate the active molecules at the water-water interface, and enrich the types of usable active molecules in the encapsulation in the W/W emulsions.
Collapse
Affiliation(s)
- Wanying Cui
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Sheng Xu
- Jushi Group Co., Ltd, No. 669, South Wenhua Road, Tongxiang 314500, China
| | - Xinke Ye
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yihao Wu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shukai Cheng
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Rongli Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Cuige Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Zongcheng Miao
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
4
|
Guo X, Song T, Chen D, Zhu J, Li Z, Xia Q, Wang L, Yang W. Multi Stimuli-Responsive Aggregation-Induced Emission Active Polymer Platform Based on Tetraphenylethylene-Appended Maleic Anhydride Terpolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3543-3557. [PMID: 36622779 DOI: 10.1021/acsami.2c21668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multi stimuli-responsive aggregation-induced emission (AIE) active polymers have great application prospects in high-tech innovations. Herein, three types of tetraphenylethylene (TPE)-containing monomers were synthesized and utilized in preparing TPE-appended maleic anhydride terpolymers. After hydrolysis, the produced TPE-appended maleic acid terpolymers have identical linear charge densities but different "primary" structures, which created widely varied microenvironments around the carboxylate and TPE groups. Benefiting from the synergistic interaction of the TPE moiety and the terpolymer conformation change, the TPE-appended maleic acid terpolymers exhibited fluorescence changes in response to multi stimuli, including pH, ionic strength, Ca2+, and bovine serum albumin. On both the "signaling" and the "stimuli acceptor" sides, the multi stimuli-responsive fluorescence behavior was influenced markedly by the terpolymer primary structure. The fundamental insights gained in the present work are important for developing an efficient and versatile stimuli-responsive AIE-active polymer platform for chemo-sensing, bioimaging, and so on.
Collapse
Affiliation(s)
- Xiaoning Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Tong Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jinchang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhenlin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qing Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
5
|
Zhao X, Yang S, He F, Liu H, Mai K, Huang J, Yu G, Feng Y, Li J. Light-dimerization telechelic alginate-based amphiphiles reinforced Pickering emulsion for 3D printing. Carbohydr Polym 2023; 299:120170. [PMID: 36876785 DOI: 10.1016/j.carbpol.2022.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Functional Pickering emulsions that depend on the interparticle interactions hold promise for building template materials. A novel coumarin-grafting alginate-based amphiphilic telechelic macromolecules (ATMs) undergoing photo-dimerization enhanced particle-particle interactions and changed the self-assembly behavior in solutions. The influence of self-organization of polymeric particles on the droplet size, microtopography, interfacial adsorption and viscoelasticity of Pickering emulsions were further determined by multi-scale methodology. Results showed that stronger attractive interparticle interactions of ATMs (post-UV) endowed Pickering emulsion with small droplet size (16.8 μm), low interfacial tension (9.31 mN/m), thick interfacial film, high interfacial viscoelasticity and adsorption mass, and well stability. The high yield stress, outstanding extrudability (n1 < 1), high structure maintainability, and well shape retention ability, makes them ideal inks for direct 3D printing without any additions. The ATMs provides an increased capacity to produce stable Pickering emulsions with tailoring their interfacial performances and, providing a platform for fabricating and developing alginate-based Pickering emulsion-templated materials.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Haifang Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Keyang Mai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
6
|
Xia C, Han L, Zhang C, Xu M, Liu Z, Chen Y, Zhu Y, Yu M, Wu W, Yin S, Huang J, Zheng Z, Zhang R. Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Liu Z, Chen X, Wen Y, Bao C, Liu C, Cao S, Yan H, Lin Q. Chemical modification of alginate with tosylmethyl isocyanide, propionaldehyde and octylamine via the Ugi reaction for hydrophobic drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Yan Y, Zhang G, Wu C, Ren Q, Liu X, Huang F, Cao Y, Ye W. Structural Exploration of Polycationic Nanoparticles for siRNA Delivery. ACS Biomater Sci Eng 2022; 8:1964-1974. [PMID: 35380797 DOI: 10.1021/acsbiomaterials.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) is a promising approach to the treatment of genetic diseases by the specific knockdown of target genes. Functional polymers are potential vehicles for the effective delivery of vulnerable small interfering RNA (siRNA), which is required for the broad application of RNAi-based therapeutics. The development of methods for the facile modulation of chemical structures of polymeric carriers and an elucidation of detailed delivery mechanisms remain important areas of research. In this paper, we synthesized a series of methacrylate-based polymers with controllable structures and narrow distributions by atom transfer radical polymerization using various combinations of cationic monomers (2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate, and 2-dibutylaminoethyl methacrylate) and hydrophobic monomers (2-butyl methacrylate (BMA), cyclohexyl methacrylate, and 2-ethylhexyl methacrylate). These polymers exhibited varying hydrophobicities, charge densities, and pKa values, enabling the discovery of effective carriers for siRNA by in vitro delivery assays. For the polymers with BMA segments, 50% of cationic segments were beneficial to the formation of siRNA nanoparticles (NPs) and the in vitro delivery of siRNA. The optimal ratio varied for different combinations of cationic and hydrophobic segments. In particular, 20k PMB 0.5, PME 0.5, and PEB 1.0 showed >75% luciferase knockdown. Efficacious delivery was dependent on high siRNA binding, the small size of NPs, and balanced hydrophobicity and charge density. Cellular uptake and endosomal escape experiments indicated that carboxybetaine modification of 20k PMB 0.5 did not remarkably affect the internalization of corresponding NPs after incubation for 6 h but significantly reduced the endosomal escape of NPs, which leads to the notable decrease in delivery efficacy of polymers. These results provide insights into the mechanism of polymer-based siRNA delivery and may inspire the development of novel polymeric carriers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangliang Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
9
|
Ye W, Zhang G, Liu X, Ren Q, Huang F, Yan Y. Fabrication of polysaccharide-stabilized zein nanoparticles by flash nanoprecipitation for doxorubicin sustained release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Self-aggregate performance of hexyl alginate ester derivative synthesized via SN2 reaction for controlled release of λ-cyhalothrin. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Hibino M, Tanaka K, Ouchi M, Terashima T. Amphiphilic Random-Block Copolymer Micelles in Water: Precise and Dynamic Self-Assembly Controlled by Random Copolymer Association. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masayuki Hibino
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Zhao X, He F, Yu G, Feng Y, Li J. High-viscosity Pickering emulsion stabilized by amphiphilic alginate/SiO 2 via multiscale methodology for crude oil-spill remediation. Carbohydr Polym 2021; 273:118492. [PMID: 34560936 DOI: 10.1016/j.carbpol.2021.118492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/04/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The separation of crude oil from oily water and collection of the emulsion constituents has attracted significant attention. We demonstrate that the relationships between inherent dynamic factors and the performance of a Pickering emulsion stabilized by SiO2 particles with adsorbed hydrophobically modified sodium alginate derivatives (HMSA), a natural pH-sensitive polysaccharide, can be clarified via a multi-scale methodology. Functionalization of the silica surface with HMSA controls particle dispersibility, as verified by turbidity and stability analyses, the zeta potential, and transmission electron microscopy measurements. The interaction mechanism between HMSA and SiO2 nanoparticles was elucidated by both experimental adsorption measurements and computer simulations, which showed qualitative consistency. The aggregation/disaggregation of HMSA/SiO2 particles achieved by tuning the pH of the solution facilitated reversible dispersibility/collectability behavior. Overall, a high-viscosity Pickering emulsion system based on particle-particle and droplet-droplet interactions, which can be filtered for the recovery of spilled crude oil, was demonstrated.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China.
| |
Collapse
|
13
|
Yang S, Qin W, He F, Zhao X, Zhou Q, Lin F, Gong H, Zhang S, Yu G, Feng Y, Li J. Tuning Supramolecular Polymers' Amphiphilicity via Host-Guest Interfacial Recognition for Stabilizing Multiple Pickering Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51661-51672. [PMID: 34696581 DOI: 10.1021/acsami.1c13715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular host-guest chemistry bridging the adjustable amphiphilicity and macromolecular self-assembly is well advanced in aqueous media. However, the interfacial self-assembled behaviors have not been further exploited. Herein, we designed a β-cyclodextrin-grafted alginate/azobenzene-functionalized dodecyl (Alg-β-CD/AzoC12) supra-amphiphilic system that possessed tunable amphiphilicity by host-guest interfacial self-assembly. Especially, supra-amphiphilic aggregates could be utilized as highly efficient soft colloidal emulsifiers for stabilizing water-in-oil-water (W/O/W) Pickering emulsions due to the excellent interfacial activity. Meanwhile, the assembled particle structures could be modulated by adjusting the oil-water ratio, resulting from the tunable aggregation behavior of supra-amphiphilic macromolecules. Additionally, the interfacial adsorption films could be partially destroyed/reconstructed upon ultraviolet/visible irradiation due to the stimuli-altering balance of amphiphilicity of Alg-β-CD/AzoC12 polymers, further constructing the stimulus-responsive Pickering emulsions. Therefore, the supramolecular interfacial self-assembly-mediated approach not only technologically advances the continued development of creative templates to construct multifunctional soft materials with anisotropic structures but also serves as a creative bridge between supramolecular host-guest chemistry, colloidal interface science, and soft material technology.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Feilin Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Siqi Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| |
Collapse
|
14
|
Ionic liquid-containing non-aqueous Pickering emulsions prepared with sterically-stabilized polymer nanoparticles: A highly efficient platform for Knoevenagel reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Chen X, Zhu Q, Liu C, Li D, Yan H, Lin Q. Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance. Polymers (Basel) 2021; 13:3351. [PMID: 34641167 PMCID: PMC8512272 DOI: 10.3390/polym13193351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (SN2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the SN2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and zeta potential at approximately -44.8~-34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qingmei Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chang Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dongze Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
16
|
Chen X, Zhu Q, Li Z, Yan H, Lin Q. The Molecular Structure and Self-Assembly Behavior of Reductive Amination of Oxidized Alginate Derivative for Hydrophobic Drug Delivery. Molecules 2021; 26:5821. [PMID: 34641365 PMCID: PMC8510318 DOI: 10.3390/molecules26195821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
On account of the rigid structure of alginate chains, the oxidation-reductive amination reaction was performed to synthesize the reductive amination of oxidized alginate derivative (RAOA) that was systematically characterized for the development of pharmaceutical formulations. The molecular structure and self-assembly behavior of the resultant RAOA was evaluated by an FT-IR spectrometer, a 1H NMR spectrometer, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), a fluorescence spectrophotometer, rheology, a transmission electron microscope (TEM) and dynamic light scattering (DLS). In addition, the loading and in vitro release of ibuprofen for the RAOA microcapsules prepared by the high-speed shearing method, and the cytotoxicity of the RAOA microcapsules against the murine macrophage RAW264.7 cell were also studied. The experimental results indicated that the hydrophobic octylamine was successfully grafted onto the alginate backbone through the oxidation-reductive amination reaction, which destroyed the intramolecular hydrogen bond of the raw sodium alginate (SA), thereby enhancing its molecular flexibility to achieve the self-assembly performance of RAOA. Consequently, the synthesized RAOA displayed good amphiphilic properties with a critical aggregation concentration (CAC) of 0.43 g/L in NaCl solution, which was significantly lower than that of SA, and formed regular self-assembled micelles with an average hydrodynamic diameter of 277 nm (PDI = 0.19) and a zeta potential of about -69.8 mV. Meanwhile, the drug-loaded RAOA microcapsules had a relatively high encapsulation efficiency (EE) of 87.6 % and good sustained-release properties in comparison to the drug-loaded SA aggregates, indicating the good affinity of RAOA to hydrophobic ibuprofen. The swelling and degradation of RAOA microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Moreover, it also displayed low cytotoxicity against the RAW264.7 cell, similar to the SA aggregates. In view of the excellent advantages of RAOA, it is expected to become the ideal candidate for hydrophobic drug delivery in the biomedical field.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qingmei Zhu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zhengyue Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
17
|
Yang S, Qin W, Zhao X, He F, Gong H, Liu Y, Feng Y, Zhou Y, Yu G, Li J. Interfacial self-assembled behavior of pH/light-responsive host-guest alginate-based supra-amphiphiles for controlling emulsifying property. Carbohydr Polym 2021; 266:118121. [PMID: 34044937 DOI: 10.1016/j.carbpol.2021.118121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Soft emulsifiers with relatively suitable structural controllability are necessarily required for the preparation of multifunctional Pickering emulsions. Herein, a β-cyclodextrin-grafted alginate/azobenzene-functionalized dodecyl (Alg-β-CD/AzoC. 12) polymeric supra-amphiphile was designed based on the host-guest interfacial self-assembly. As compared with Alg-β-CD amphiphilic polymers, the interfacial tension of Alg-β-CD/AzoC12 supra-amphiphilic assemblies reduced from 29.57 mN/m to 0.18 mN/m, indicating the great amphiphilicity derived from Alg-β-CD/AzoC12 supra-amphiphilic assemblies. With the increase of pH, the interfacial microstructures transformed from flocculated structures, spherical structures into deformed structures. Especially, the spherical microstructures with the highest interfacial viscoelasticity and thickness demonstrated the highest emulsifying efficiency due to the steric hindrance mechanism. Moreover, the interfacial elastic modulus of adsorbed layers exhibited ~4 times of that upon the ultraviolet illumination. These results disclosed that the interfacial microstructures could be readily regulated by the tunable amphiphilicity of Alg-β-CD/AzoC12 assemblies, which would be useful for the applications of Pickering emulsions in numerous fields.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
18
|
Tu K, Liu C, He E, Cheng J, Zhang L, Cheng Z. Reduction-Induced Crystallization-Driven Self-Assembly of Main-Chain-Type Alternating Copolymers: Transformation from 1D Lines to 2D Platelets. ACS Macro Lett 2021; 10:564-569. [PMID: 35570758 DOI: 10.1021/acsmacrolett.1c00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, crystalline-driven self-assembly (CDSA) has received enormous attention, but almost only for block copolymers (BCPs). Herein, we introduced perfluorocarbon chains into main-chain-type liquid crystalline alternating copolymers (ACPs) to obtain perfluoroalkane-containing ACPs with periodic C-I bonds in polymer backbones via step transfer-addition and radical-termination (START) polymerization, followed by an iodine reduction reaction of C-I bonds to induce CDSA of ACPs and put forward a novel concept of "reduction-induced crystallization-driven self-assembly" (RI-CDSA) of main-chain-type ACPs for the first time. Finally, we proposed the folded-chain model and mechanism to explain the novel RI-CDSA behavior, and its rationality has been proved by the corresponding experimental results.
Collapse
Affiliation(s)
- Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 21513, China
| | - Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Bao C, Chen X, Liu C, Liao Y, Huang Y, Hao L, Yan H, Lin Q. Extraction of cellulose nanocrystals from microcrystalline cellulose for the stabilization of cetyltrimethylammonium bromide-enhanced Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Gedarawatte ST, Ravensdale JT, Al-Salami H, Dykes GA, Coorey R. Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydr Polym 2021; 251:117096. [DOI: 10.1016/j.carbpol.2020.117096] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
21
|
Zhao X, Fang X, Yang S, Zhang S, Yu G, Liu Y, Zhou Y, Feng Y, Li J. Light-tuning amphiphility of host-guest Alginate-based supramolecular assemblies for photo-responsive Pickering emulsions. Carbohydr Polym 2021; 251:117072. [DOI: 10.1016/j.carbpol.2020.117072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
|
22
|
Zhang C, Zhang R, Zhu Y, Xu S, Liu X. Influence of ionic strength on gel-like Pickering emulsions stabilized by self-assembled colloidal nanoparticles containing lysozyme. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04700-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Fang X, Zhao X, Yu G, Zhang L, Feng Y, Zhou Y, Liu Y, Li J. Effect of molecular weight and pH on the self-assembly microstructural and emulsification of amphiphilic sodium alginate colloid particles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105593] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Xu S, Liu Y, Zhao W, Wu Q, Chen Y, Huang X, Sun Z, Zhu Y, Liu X. Hierarchical 0D-2D bio-composite film based on enzyme-loaded polymeric nanoparticles decorating graphene nanosheets as a high-performance bio-sensing platform. Biosens Bioelectron 2020; 156:112134. [PMID: 32275578 DOI: 10.1016/j.bios.2020.112134] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022]
Abstract
Herein, we developed a hierarchical bio-composite sensing film by facile one-step electro-deposition of 0D enzyme-polymer nanoparticles (NPs) with 2D graphene oxide nanosheets as conductive supports and nanofillers, based on which an effective and robust enzymatic biosensor platform was constructed. Horseradish peroxidase (HRP) as a model enzyme was co-assembled with a photo-cross-linkable polypeptide of 2-hydroxyethyl methacrylate modified poly(γ-glutamic acid) (γ-PGA-HEMA), generating hybrid HRP@γ-PGA-HEMA nanoparticles (HRP@PGH NPs). Then HRP@PGH NPs and graphene oxide nanosheets (GO NSs) were simultaneously electrodeposited onto the electrode surface, obtaining a hierarchical 0D-2D bio-composite film. After subsequent electrochemical reduction of GO NSs into graphene nanosheets (GNSs) and following photo-cross-linking, the resultant nanostructured HRP@PGH/GNSs sensing film was successfully applied to construct an enzymatic biosensor for hydrogen peroxide (H2O2). The biosensor exerted high sensitivity, fast response, and good stability for H2O2 sensing. Satisfactory results were also demonstrated for its practical application in human serum samples, suggesting a promising application potential in biomedical diagnostics. The one-step generated 0D-2D bio-composite sensing film demonstrates synergetic effects from both the soft nanoparticles and hard conductive nanosheets, which would enlighten the innovative construction of composite nanomaterials and nanoarchitectonics for bio-sensing systems.
Collapse
Affiliation(s)
- Sheng Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Yayuan Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Wei Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Qian Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Yanru Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Xuewen Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Zhijian Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Ye Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China.
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China.
| |
Collapse
|
25
|
Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release. Int J Biol Macromol 2020; 146:171-178. [DOI: 10.1016/j.ijbiomac.2019.12.269] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
|
26
|
Zhang R, Hao H, Zhang C, Yang R, Sun M, Wong CP, Xu Y. Bioadhesive hydrocaffeic acid modified chitosan colloidal particles using as particulate emulsifiers. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1484755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rongli Zhang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hui Hao
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
| | - Cuige Zhang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
| | - Renchun Yang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
| | - Mingyue Sun
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ying Xu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- College Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
27
|
Peng F, Ke Y, Lu S, Zhao Y, Hu X, Deng Q. Anion amphiphilic random copolymers and their performance as stabilizers for O/W nanoemulsions. RSC Adv 2019; 9:14692-14700. [PMID: 35516327 PMCID: PMC9064215 DOI: 10.1039/c9ra01383k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
A series of anionic amphiphilic random copolymers with sodium p-styrene sulfonate and dodecyl methacrylate side chains were synthesized via free radical polymerization and their properties in the formation and stabilization of nano-emulsions were investigated. Using poly(sodium p-styrene sulfonate)-ran-poly(dodecyl methacrylate) and Brij 30 as a stabilizer to prepare nanoemulsions, we obtained small droplet size and unimodal distribution nanoemulsions by a low-energy phase inversion composition (PIC) method. The p(SSS)-ran-p(LMA)-Brij 30 co-stabilized nanoemulsions show extraordinary long-term stability and heat resistance, there were almost no variations of droplet size after storing for 35 days and no phase inversion occurred when heating the temperature up to 90 °C. The influence of salinity on the properties of the nanoemulsions was also discussed.
Collapse
Affiliation(s)
- Fangfang Peng
- College of Science, China University of Petroleum Beijing 102249 China
| | - Yangchuan Ke
- College of Science, China University of Petroleum Beijing 102249 China
| | - Shichao Lu
- College of Science, China University of Petroleum Beijing 102249 China
| | - Yi Zhao
- College of Science, China University of Petroleum Beijing 102249 China
| | - Xu Hu
- College of Science, China University of Petroleum Beijing 102249 China
| | - Qingchun Deng
- College of Science, China University of Petroleum Beijing 102249 China
| |
Collapse
|
28
|
Zhou J, Zha X. Synthesis and Pickering emulsifier performance of Ag/poly((2-dimethylamino)ethyl methacrylate)-co-poly(hexafluorobutyl acrylate) amphiphilic random copolymer hybrid micelles. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Nanocarrier-mediated Delivery of CORM-2 Enhances Anti-allodynic and Anti-hyperalgesic Effects of CORM-2. Mol Neurobiol 2019; 56:5539-5554. [PMID: 30637664 DOI: 10.1007/s12035-019-1468-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
Neuropathic pain is a devastating chronic condition and effective treatments are still lacking. Carbon monoxide-releasing molecule-2 (CORM-2) as a carbon monoxide (CO) carrier, exerts potent anti-neuropathic pain effects; however, its poor water solubility and short half-life hinder its clinical utility. Therefore, the aim of this study was to investigate whether CORM-2-loaded solid lipid nanoparticles (CORM-2-SLNs) enhance the anti-allodynic and anti-hyperalgesic effects of CORM-2 in a rat chronic constriction injury (CCI) model. CORM-2-SLNs were prepared using a nanotemplate engineering technique with slight modifications. The physiochemical properties of CORM-2-SLNs were characterized and CO release from CORM-2-SLNs was assessed using a myoglobin assay. CO was slowly released from CORM-2-SLNs, was observed, and the half-life of CO release was 50 times longer than that of CORM-2. In vivo results demonstrate that intraperitoneal administration of CORM-2-SLNs (5 and 10 mg/kg/day, ip) once daily for seven consecutive days significantly reduced the mechanical allodynia and mechanical hyperalgesia compared with CORM-2 (10 mg/kg/day, ip). RT-PCR and Western blot analyses on days 7 and 14, revealed that treatment with CORM-2-SLNs resulted in greater reductions in the CCI-elevated levels of heme-oxygenase-2 (HO-2); inducible nitric oxide synthase (iNOS); neuronal NOS (nNOS); and inflammatory mediators (TNF-α, IBA-1, and GFAP) in the spinal cord and dorsal root ganglions compared with treatment with CORM-2. In contrast, HO-1 and IL-10 were significantly increased in the CORM-2-SLN-treated group compared with the group treated with CORM-2. These data indicate that CORM-2-SLNs are superior to CORM-2-S in alleviating mechanical allodynia and mechanical hyperalgesia.
Collapse
|
30
|
Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9360-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Feng M, Gu C, Bao C, Chen X, Yan H, Shi Z, Liu X, Lin Q. Synthesis of a benzyl-grafted alginate derivative and its effect on the colloidal stability of nanosized titanium dioxide aqueous suspensions for Pickering emulsions. RSC Adv 2018; 8:34397-34407. [PMID: 35548610 PMCID: PMC9086954 DOI: 10.1039/c8ra04300k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
TiO2 nanoparticles (nano-TiO2) as one of the most extensively used nanoscale materials easily undergo spontaneous aggregation and gravity sedimentation ascribed to their high adsorption energy, which significantly restricts their actual applications. For this reason, a benzyl-grafted alginate derivative (BAD) with good colloidal interface activity, prepared by a bimolecular nucleophilic substitution (SN2) reaction, was used as the dispersant to stabilize nano-TiO2. The structure and colloidal properties of BAD was evaluated by FT-IR spectroscopy, 1H NMR spectroscopy, thermal gravimetric analysis (TGA) and dynamic light scattering (DLS). The effects of pH and ionic strength on the dispersion stability of BAD/nano-TiO2 suspensions were also examined by DLS. To further probe its feasibility as a drug delivery system, the BAD/nano-TiO2 complex was applied as particulate emulsifiers to fabricate drug-loaded Pickering emulsions. Meanwhile, the morphology properties and the sustained release performance of the drug-loaded Pickering emulsions were also investigated. Experimental results showed that the adsorption of BAD on nano-TiO2 was achieved by an intermolecular hydrogen bond between the carboxylic functional groups of BAD and the Ti-OH of TiO2. The adsorption of BAD enhanced the electrostatic repulsion and steric hindrance between nano-TiO2 improving the dispersion stability of nano-TiO2 at different pH and ionic strength. Additionally, the obtained Pickering emulsions displayed good drug-loading capacity and sustained release performance with the release mechanism of non-Fickian transport, which exhibited great potential in the pharmaceutical field.
Collapse
Affiliation(s)
- Meixi Feng
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Chuanhai Gu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Chaoling Bao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China
| | - Zaifeng Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Xiaohong Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China +86 898 66187313 +86 898 66275138
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 Hainan P. R. China
| |
Collapse
|
32
|
Bai S, Wang X, Vapaavuori J, He X. Fast formation of a supramolecular ion gel/solvoplastic elastomer with excellent stretchability. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180271. [PMID: 30110403 PMCID: PMC6030259 DOI: 10.1098/rsos.180271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
This study describes a simple yet efficient approach for the preparation of an ionic gel that is also elastomeric in its solid-state bulk form. A series of poly(2-(diethylamino)ethyl methacrylate-co-lauryl methacrylate) P(DMAEMA-co-LMA) copolymers were synthesized first by radical polymerization. Quaternization of the PDMAEMA component in tetrahydrofuran enables the formation of supramolecular network, giving rise to an ion gel. An elastomer with an elongation at break of over 600% was obtained from the gel. The elastomer, connected by supramolecular ionic cross-links, is solvoplastic in certain solvents. The simple yet efficient approach of the formation of ion-gel and the dried elastomer allows fast preparation of both gel-like and solid-state elastic materials for various applications where recyclability is required.
Collapse
Affiliation(s)
- Shishun Bai
- School of Materials Science and Engineering, Energy Polymer Research Center, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, China
| | - Xin Wang
- School of Materials Science and Engineering, Energy Polymer Research Center, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, China
| | - Jaana Vapaavuori
- Département de chimie, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Xianru He
- School of Materials Science and Engineering, Energy Polymer Research Center, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, China
| |
Collapse
|
33
|
Alginate-based colloid particles from direct chemical self-assembly using as particulate emulsifiers. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Pickering emulsions stabilized by self-assembled polymeric micelles of coumarin-containing cross-linkable amphiphilic terpolymer. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-017-4259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Self-assembling behavior and stimuli-responsive emulsifying performance of coumarin-containing amphiphilic terpolymer. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Yan H, Chen X, Song H, Li J, Feng Y, Shi Z, Wang X, Lin Q. Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.044] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Huang J, Turner SR. Recent advances in alternating copolymers: The synthesis, modification, and applications of precision polymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Liu K, Jiang J, Cui Z, Binks BP. pH-Responsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with a Conventional Zwitterionic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2296-2305. [PMID: 28191963 DOI: 10.1021/acs.langmuir.6b04459] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
pH-responsive oil-in-water Pickering emulsions were prepared simply by using negatively charged silica nanoparticles in combination with a trace amount of a zwitterionic carboxyl betaine surfactant as stabilizer. Emulsions are stable to coalescence at pH ≤ 5 but phase separate completely at pH > 8.5. In acidic solution, the carboxyl betaine molecules become cationic, allowing them to adsorb on silica nanoparticles via electrostatic interactions, thus hydrophobizing and flocculating them and enhancing their surface activity. Upon increasing the pH, surfactant molecules are converted to zwitterionic form and significantly desorb from particles' surfaces, triggering dehydrophobization and coalescence of oil droplets within the emulsion. The pH-responsive emulsion can be cycled between stable and unstable many times upon alternating the pH of the aqueous phase. The average droplet size in restabilized emulsions at low pH, however, increases gradually after four cycles due to the accumulation of NaCl. Experimental evidence including adsorption isotherms, zeta potentials, microscopy, and three-phase contact angles is given to support the postulated mechanisms.
Collapse
Affiliation(s)
- Kaihong Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Jianzhong Jiang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Zhenggang Cui
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, U.K
| |
Collapse
|
39
|
Zhu Y, Hu Q, Wei W, Yi C, Liu X. Core cross-linked and pH-responsive particulate emulsifiers from direct chemical preparation of divinylbenzene with P(AA- r -St) macro-CTA. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Al-Hadi AM, Periasamy VS, Athinarayanan J, Alshatwi AA. The presence of carbon nanostructures in bakery products induces metabolic stress in human mesenchymal stem cells through CYP1A and p53 gene expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:103-112. [PMID: 26669907 DOI: 10.1016/j.etap.2015.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/18/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
Ingredients commonly present in processed foods are excellent substrates for chemical reactions during modern thermal cooking or processing, which could possibly result in deteriorative carbonization changes mediated by a variety of thermal reactions. Spontaneous self-assembling complexation or polymerization of partially combusted lipids, proteins, and other food macromolecules with synthetic food additives during high temperature food processing or baking (200-250 °C) would result in the formation of carbon nanostructures (CNs). These unknown nanostructures may produce adverse physiological effects or potential health risks. The present work aimed to identify and characterize the nanostructures from the crusts of bread. Furthermore, a toxicological risk assessment of these nanostructures was conducted using human mesenchymal stem cells (hMSCs) as a model for cellular uptake and metabolic oxidative stress, with special reference to induced adipogenesis. CNs isolated from bread crusts were characterized using transmission electron microscopy. The in vitro risk assessment of the CNs was carried out in hMSCs using an MTT assay, cell morphological assessment, a reactive oxygen species assay, a mitochondrial trans-membrane potential assay, cell cycle progression assessment and gene expression analysis. Our results revealed that bread crusts contain CNs, which may form during the bread-making process. The in vitro results indicate that carbon nanostructures have moderately toxic effects in the hMSCs at a high dose (400 μg/mL). The mitochondrial trans-membrane potentials and intracellular ROS levels of the hMSCs were altered at this dose. The levels of the mRNA transcripts of metabolic stress-responsive genes such as CAT, GSR, GSTA4, CYP1A and p53 were significantly altered in response to CNs.
Collapse
Affiliation(s)
- Ahmed M Al-Hadi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
41
|
Yan H, Chen X, Feng Y, Xiang F, Li J, Shi Z, Wang X, Lin Q. Modification of montmorillonite by ball-milling method for immobilization and delivery of acetamiprid based on alginate/exfoliated montmorillonite nanocomposite. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1542-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Zhu Y, Wang J, Li X, Zhao D, Sun J, Liu X. Self-assembly and emulsification of dopamine-modified hyaluronan. Carbohydr Polym 2015; 123:72-9. [DOI: 10.1016/j.carbpol.2015.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 10/24/2022]
|
43
|
Tang J, Quinlan PJ, Tam KC. Stimuli-responsive Pickering emulsions: recent advances and potential applications. SOFT MATTER 2015; 11:3512-29. [PMID: 25864383 DOI: 10.1039/c5sm00247h] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pickering emulsions possess many advantages over traditional surfactant stabilized emulsions. For example, Pickering emulsions impart better stability against coalescence and, in many cases, are biologically compatible and environmentally friendly. These characteristics open the door for their use in a variety of industries spanning petroleum, food, biomedicine, pharmaceuticals, and cosmetics. Depending on the application, rapid, but controlled stabilization and destabilization of an emulsion may be necessary. As a result, Pickering emulsions with stimuli-responsive properties have, in recent years, received a considerable amounts of attention. This paper provides a concise and comprehensive review of Pickering emulsion systems that possess the ability to respond to an array of external triggers, including pH, temperature, CO2 concentration, light intensity, ionic strength, and magnetic field. Potential applications for which stimuli-responsive Pickering emulsion systems would be of particular value, such as emulsion polymerization, enhanced oil recovery, catalyst recovery, and cosmetics, are discussed.
Collapse
Affiliation(s)
- Juntao Tang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
44
|
Zhang R, Lin L, Xu S, Zhang C, Liu X, Luo J. Liquid–liquid interfacial behavior of dopamine modified poly(γ-glutamic acid) polymer. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Sun J, Wei W, Zhao D, Hu Q, Liu X. Liquid marbles prepared from pH-responsive self-assembled micelles. SOFT MATTER 2015; 11:1954-1961. [PMID: 25621854 DOI: 10.1039/c4sm02832e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we report the assembly of amphiphilic polymeric micelles at the liquid/air interface to prepare liquid marbles for the first time. The polymeric micelles were synthesized from the self-assembly of a fluoropolymer, poly(styrene-co-acrylic acid-co-2,2,3,4,4,4-hexafluorobutyl methacrylate), in a selective solvent. The particle size, morphology and chemical composition of the micelles were determined by dynamic light scattering (DLS), transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. DLS and aqueous electrophoresis revealed the pH-responsiveness of the micelles in aqueous dispersion. Liquid marbles with water volumes varying from 10 μL to 1 mL were formed by rolling water droplets on the micelle powder bed. The increase in water volume led to the shape transition of the liquid marbles from quasi-spherical to a puddle-like shape because of gravity. Fluorescence microscopy was used to observe the morphology of the formed liquid marbles, which confirmed that the micelles were adsorbed at the interface of water and air. The effective surface tension of the liquid marbles decreased with the increasing concentration of NaOH, which was added to the interior water phase. This agreed with the results of droplet roller experiments: the mechanical integrity of the liquid marbles prepared from alkaline solution (pH 10) was relatively poorer than those prepared from acidic solution (pH 2). Moreover, these liquid marbles coated with micelles showed pH-responsiveness when transferred onto the surfaces of aqueous solutions with different pH values. The liquid marbles were relatively stable on the acidic solution, whereas they burst immediately on the alkaline solution with a pH of 10. In addition, apart from water, Gellan gum solution and glycerol could be also successfully encapsulated by the fluorinated micelles to form stable liquid marbles.
Collapse
Affiliation(s)
- Jianhua Sun
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | |
Collapse
|
46
|
Fang Z, Yang D, Gao Y, Li H. pH-responsible Pickering emulsion and its catalytic application for reaction at water–oil interface. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3533-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Chen J, Yu C, Shi Z, Yu S, Lu Z, Jiang W, Zhang M, He W, Zhou Y, Yan D. Ultrathin Alternating Copolymer Nanotubes with Readily Tunable Surface Functionalities. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Chen J, Yu C, Shi Z, Yu S, Lu Z, Jiang W, Zhang M, He W, Zhou Y, Yan D. Ultrathin Alternating Copolymer Nanotubes with Readily Tunable Surface Functionalities. Angew Chem Int Ed Engl 2015; 54:3621-5. [DOI: 10.1002/anie.201408290] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/31/2014] [Indexed: 11/07/2022]
|
49
|
Zhao D, Wei W, Zhu Y, Sun J, Hu Q, Liu X. Stable Emulsions Prepared by Self-assembly of Hyaluronic Acid and Chitosan for Papain Loading. Macromol Biosci 2015; 15:558-67. [DOI: 10.1002/mabi.201400486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/07/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Donghua Zhao
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi Jiangsu 214122 People's Republic of China
| | - Wei Wei
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi Jiangsu 214122 People's Republic of China
| | - Ye Zhu
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi Jiangsu 214122 People's Republic of China
| | - Jianhua Sun
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi Jiangsu 214122 People's Republic of China
| | - Qiong Hu
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi Jiangsu 214122 People's Republic of China
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
50
|
Wei W, Wang T, Yi C, Liu J, Liu X. Self-assembled micelles based on branched poly(styrene-alt-maleic anhydride) as particulate emulsifiers. RSC Adv 2015. [DOI: 10.1039/c4ra12100g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembled micelles of branched poly(styrene-alt-maleic anhydride) (BPSMA) are prepared and exhibit much superior emulsifying performance over the corresponding linear copolymer micelles as particulate emulsifiers.
Collapse
Affiliation(s)
- Wei Wei
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Ting Wang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Chenglin Yi
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jingcheng Liu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|