1
|
Boniface D, Straube AV, Tierno P. Photocatalytic Magnetic Microgyroscopes with Activity-Tunable Precessional Dynamics. NANO LETTERS 2024. [PMID: 39526365 DOI: 10.1021/acs.nanolett.4c03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Magnetic nano/microrotors are passive elements spinning around an axis due to an external rotating field while remaining confined to a plane. They have been used to date in different applications related to fluid mixing, drug delivery, or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a photoactivated catalytic reaction and a rotating magnetic field. We investigate the uplift dynamics of this colloidal spinner when it precesses around its long axis while self-propelling due to the light induced decomposition of hydrogen peroxide in water. By combining experiments with theory, we show that activity emerging from the cooperative action of phoretic and osmotic forces effectively increases the gravitational torque, which counteracts the magnetic and viscous ones, and carefully measure its contribution. Finally, we demonstrate that by modulating the field amplitude, one can induce hysteresis loops in the uplift dynamics of the spinners.
Collapse
Affiliation(s)
- Dolachai Boniface
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Arthur V Straube
- Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Misra I, Kumaran V. Microfluidic mixing by magnetic particles: Progress and prospects. BIOMICROFLUIDICS 2024; 18:041501. [PMID: 39206143 PMCID: PMC11349378 DOI: 10.1063/5.0211204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Microfluidic systems have enormous potential for enabling point-of-care diagnostics due to a number of advantages, such as low sample volumes, small footprint, low energy requirements, uncomplicated setup, high surface-to-volume ratios, cost-effectiveness, etc. However, fluid mixing operations are constrained by molecular diffusion since the flow is usually in the laminar regime. The slow nature of molecular diffusion is a technological barrier to implementing fluid transformations in a reasonable time. In this context, magnetically actuated micro-mixers of different sizes, shapes, materials, and actuation techniques provide a way to enhance fluid mixing in microfluidic devices. In this paper, we review the currently existing micro-mixing technologies. From a fundamental perspective, the different magnetization models for permanent and induced dipoles are discussed. The single-particle dynamics in steady and oscillating magnetic fields is studied in order to determine the flow generated and the torque exerted on the fluid due to the magnetic particles. The effect of particle interactions, both magnetic and hydrodynamic, is examined.
Collapse
Affiliation(s)
- I. Misra
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| | - V. Kumaran
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Lee S, Jung I, Lee S, Shin J, Cho E, Jung S, Ih S, Kim YG, Hong S, Choi YL, Park S. Plasmonic-Magnetic Active Nanorheology for Intracellular Viscosity. NANO LETTERS 2023; 23:2031-2038. [PMID: 36695563 DOI: 10.1021/acs.nanolett.2c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We demonstrate active plasmonic systems where plasmonic signals are repeatedly modulated by changing the orientation of nanoprobes under an external magnetic field, which is a prerequisite for in situ active nanorheology in intracellular viscosity measurements. Au/Ni/Au nanorods act as "nanotransmitters", which transmit the mechanical motion of nanorods to an electromagnetic radiation signal as a periodic sine function. This fluctuating optical response is transduced to frequency peaks via Fourier transform surface plasmon resonance (FTSPR). As a driving frequency of the external magnetic field applied to the Au/Ni/Au nanorods increases and reaches above a critical threshold, there is a transition from the synchronous motion of nanorods to asynchronous responses, leading to the disappearance of the FTSPR peak, which allows us to measure the local viscosity of the complex fluids. Using this ensemble-based method with plasmonic functional nanomaterials, we measure the intracellular viscosity of cancer cells and normal cells in a reliable and reproducible manner.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Eunbyeol Cho
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sangbaek Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seongkeun Ih
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yang-Gyun Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Junot G, Calero C, García-Torres J, Pagonabarraga I, Tierno P. Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping. NANO LETTERS 2023; 23:850-857. [PMID: 36689916 DOI: 10.1021/acs.nanolett.2c03897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers undergo a dynamic transition from a rolling to a kayak-like motion due to the increase in viscous drag and acquire a finite inclination angle with respect to the plane perpendicular to the bottom surface. We explain these experimental observations with a theoretical model which considers the nanorod as a pair of ferromagnetic particles hydrodynamically interacting with a close stationary surface. Further, we quantify how efficiently microscopic cargoes can be trapped or expelled from the moving nanorod and use numerical simulations to unveil the generated hydrodynamic flow field. These propulsion regimes can be implemented in microfluidic devices to perform precise operations based on the selective sorting of microscopic cargoes.
Collapse
Affiliation(s)
- Gaspard Junot
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - José García-Torres
- Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politécnica de Catalunya (UPC), 08930Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne (EPFL), Batochime, Avenue Forel 2, 1015Lausanne, Switzerland
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain
| |
Collapse
|
5
|
Xiong Y, Huang X, Li L, Liu W, Zhang J, He M, Liu J, Lu L, Peng K. Destructing surfactant network in nanoemulsions by positively charged magnetic nanorods to enhance oil-water separation. J Environ Sci (China) 2022; 118:112-121. [PMID: 35305759 DOI: 10.1016/j.jes.2021.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/14/2023]
Abstract
The separation of ultrafine oil droplets from wasted nanoemulsions stabilized with high concentration of surfactants is precondition for oil reuse and the safe discharge of effluent. However, the double barriers of the interfacial film and network structures formed by surfactants in nanoemulsions significantly impede the oil-water separation. To destroy these surfactant protective layers, we proposed a newly-developed polyethyleneimine micelle template approach to achieve simultaneous surface charge manipulation and morphology transformation of magnetic nanospheres to magnetic nanorods. The results revealed that positively charged magnetic nanospheres exhibited limited separation performance of nanoemulsions, with a maximum chemical oxygen demand (COD) removal of 50%, whereas magnetic nanorods achieved more than 95% COD removal in less than 30 s. The magnetic nanorods were also applicable to wasted nanoemulsions from different sources and exhibited excellent resistance to wide pH changes. Owing to their unique one-dimensional structure, the interfacial dispersion of magnetic nanorods was significantly promoted, leading to the efficient capture of surfactants and widespread destruction of both the interfacial film and network structure, which facilitated droplet merging into the oil phase. The easy-to-prepare and easy-to-tune strategy in this study paves a feasible avenue to simultaneously tailor surface charge and morphology of magnetic nanoparticles, and reveals the huge potential of morphology manipulation for producing high-performance nanomaterials to be applied in complex interfacial interaction process. We believe that the newly-developed magnetic-nanorods significantly contribute to hazardous oily waste remediation and advances technology evolution toward problematic oil-pollution control.
Collapse
Affiliation(s)
- Yongjiao Xiong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Lexue Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wanqi Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jialu Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Mengfan He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Radiom M, Oikonomou EK, Grados A, Receveur M, Berret JF. Probing DNA-Amyloid Interaction and Gel Formation by Active Magnetic Wire Microrheology. Methods Mol Biol 2022; 2538:285-303. [PMID: 35951307 DOI: 10.1007/978-1-0716-2529-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that bacterial nucleoid-associated proteins (NAPs) can bind to DNA and result in altered structural organization and bridging interactions. Under spontaneous self-assembly, NAPs may also form anisotropic amyloid fibers, whose effects are still more significant on DNA dynamics. To test this hypothesis, microrheology experiments on dispersions of DNA associated with the amyloid terminal domain (CTR) of the bacterial protein Hfq were performed using magnetic rotational spectroscopy (MRS). In this chapter, we survey this microrheology technique based on the remote actuation of magnetic wires embedded in a sample. MRS is interesting as it is easy to implement and does not require complex procedures regarding data treatment. Pertaining to the interaction between DNA and amyloid fibers, it is found that DNA and Hfq-CTR protein dispersions behave like a gel, an outcome that suggests the formation of a network of amyloid fibers cross-linked with the DNA strands. In contrast, the pristine DNA and Hfq-CTR dispersions behave as purely viscous liquids. To broaden the scope of the MRS technique, we include theoretical predictions for the rotation of magnetic wires regarding the generic behaviors of basic rheological models from continuum mechanics, and we list the complex fluids studied by this technique over the past 10 years.
Collapse
Affiliation(s)
- Milad Radiom
- Université de Paris, CNRS, Paris, France
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Venugopalan PL, Ghosh A. Investigating the Dynamics of the Magnetic Micromotors in Human Blood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:289-296. [PMID: 33351633 DOI: 10.1021/acs.langmuir.0c02881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field of micromotors has been growing exponentially with increased emphasis on biomedical applications, with various in vivo demonstrations of targeted drug delivery, biosensing, and gene delivery, among others. In parallel, these micromotors have been recently used for probing the rheological properties of both intra- and extracellular environments. Here, we demonstrate the application of magnetic micromotors for investigation of rheological properties of human blood. While there are several techniques to sense mechanical properties of blood, such as deformability of the red blood cells, this is the first experimental observation of using micromotors for these biophysical investigations. We hope that this will lead to a better understanding of the nature of interactions of micromotors with biological systems and expand the scope of micromotors for probing other related systems, such as interstitial fluids and other complex biological fluids.
Collapse
Affiliation(s)
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
9
|
Schrittwieser S, Reichinger D, Schotter J. Applications, Surface Modification and Functionalization of Nickel Nanorods. MATERIALS (BASEL, SWITZERLAND) 2017; 11:E45. [PMID: 29283415 PMCID: PMC5793543 DOI: 10.3390/ma11010045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
The growing number of nanoparticle applications in science and industry is leading to increasingly complex nanostructures that fulfill certain tasks in a specific environment. Nickel nanorods already possess promising properties due to their magnetic behavior and their elongated shape. The relevance of this kind of nanorod in a complex measurement setting can be further improved by suitable surface modification and functionalization procedures, so that customized nanostructures for a specific application become available. In this review, we focus on nickel nanorods that are synthesized by electrodeposition into porous templates, as this is the most common type of nickel nanorod fabrication method. Moreover, it is a facile synthesis approach that can be easily established in a laboratory environment. Firstly, we will discuss possible applications of nickel nanorods ranging from data storage to catalysis, biosensing and cancer treatment. Secondly, we will focus on nickel nanorod surface modification strategies, which represent a crucial step for the successful application of nanorods in all medical and biological settings. Here, the immobilization of antibodies or peptides onto the nanorod surface adds another functionality in order to yield highly promising nanostructures.
Collapse
Affiliation(s)
- Stefan Schrittwieser
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Daniela Reichinger
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Joerg Schotter
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| |
Collapse
|
10
|
Loosli F, Najm M, Chan R, Oikonomou E, Grados A, Receveur M, Berret JF. Wire-Active Microrheology to Differentiate Viscoelastic Liquids from Soft Solids. Chemphyschem 2016; 17:4134-4143. [DOI: 10.1002/cphc.201601037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Frédéric Loosli
- Matière et Systèmes Complexes, UMR 7057 CNRS; Université Denis Diderot Paris-VII, Bâtiment Condorcet; 10 rue Alice Domon et Léonie Duquet 75205 Paris France
| | - Matthieu Najm
- Matière et Systèmes Complexes, UMR 7057 CNRS; Université Denis Diderot Paris-VII, Bâtiment Condorcet; 10 rue Alice Domon et Léonie Duquet 75205 Paris France
| | - Raymond Chan
- Matière et Systèmes Complexes, UMR 7057 CNRS; Université Denis Diderot Paris-VII, Bâtiment Condorcet; 10 rue Alice Domon et Léonie Duquet 75205 Paris France
| | - Evdokia Oikonomou
- Matière et Systèmes Complexes, UMR 7057 CNRS; Université Denis Diderot Paris-VII, Bâtiment Condorcet; 10 rue Alice Domon et Léonie Duquet 75205 Paris France
| | - Arnaud Grados
- Matière et Systèmes Complexes, UMR 7057 CNRS; Université Denis Diderot Paris-VII, Bâtiment Condorcet; 10 rue Alice Domon et Léonie Duquet 75205 Paris France
| | - Mathieu Receveur
- Matière et Systèmes Complexes, UMR 7057 CNRS; Université Denis Diderot Paris-VII, Bâtiment Condorcet; 10 rue Alice Domon et Léonie Duquet 75205 Paris France
| | - Jean-François Berret
- Matière et Systèmes Complexes, UMR 7057 CNRS; Université Denis Diderot Paris-VII, Bâtiment Condorcet; 10 rue Alice Domon et Léonie Duquet 75205 Paris France
| |
Collapse
|
11
|
Cheng R, Zhu L, Huang W, Mao L, Zhao Y. Dynamic scaling of ferromagnetic micro-rod clusters under a weak magnetic field. SOFT MATTER 2016; 12:8440-8447. [PMID: 27714351 DOI: 10.1039/c6sm01485b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A controlled configurational change of micro-clusters in suspensions is essential for many smart material applications. In this paper, the dynamic process of ferromagnetic microrod clusters (FMRCs) under an external magnetic field was studied as a function of the cluster size N and the applied field B. The FMRCs rearranged from a side-by-side raft-like structure to an end-to-end chain-like structure, originating from coupled motions through the field-driven alignment of both ferromagnetic microrods and FMRCs. A theoretical model based on an extension of a zig-zag chain was developed, and both the cluster length and orientation could be characterized by a retardation time constant τ, with a relationship τ ∼ N2/B, which agrees well with the experimental results, τ ∼ N2.2±0.2/B0.8±0.1. Such a model can be used to predict other cluster dynamics or the magneto-elastic behavior of other soft matters consisting of FMRCs.
Collapse
Affiliation(s)
- Rui Cheng
- College of Engineering, University of Georgia, Athens, Georgia 30602, USA.
| | - Lu Zhu
- College of Engineering, University of Georgia, Athens, Georgia 30602, USA.
| | - Weijie Huang
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| | - Leidong Mao
- College of Engineering, University of Georgia, Athens, Georgia 30602, USA.
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
12
|
Berret JF. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nat Commun 2016; 7:10134. [PMID: 26729062 PMCID: PMC4728338 DOI: 10.1038/ncomms10134] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 11/06/2015] [Indexed: 02/08/2023] Open
Abstract
When submitted to a magnetic field, micron-size wires with superparamagnetic properties behave as embedded rheometers and represent interesting sensors for microrheology. Here we use rotational magnetic spectroscopy to measure the shear viscosity of the cytoplasm of living cells. We address the question of whether the cytoplasm is a viscoelastic liquid or an elastic gel. The main result of the study is the observation of a rotational instability between a synchronous and an asynchronous regime of rotation, found for murine fibroblasts and human cancer cells. For wires of susceptibility 3.6, the transition occurs in the range 0.01–1 rad s−1. The determination of the shear viscosity (10–100 Pa s) and elastic modulus (5–20 Pa) confirms the viscoelastic character of the cytoplasm. In contrast to earlier studies, it is concluded that the interior of living cells can be described as a viscoelastic liquid, and not as an elastic gel. Cells are recognized as having viscoelastic properties, but whether the cytoplasm resembles a viscoelastic liquid or an elastic gel is still debated. Here the authors use micron-sized wires rotating at variable speeds to show that the cytoplasm has properties of a viscoelastic liquid.
Collapse
Affiliation(s)
- J-F Berret
- Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| |
Collapse
|
13
|
Gu Y, Chen Z, Borodinov N, Luzinov I, Peng F, Kornev KG. Kinetics of evaporation and gel formation in thin films of ceramic precursors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14638-14647. [PMID: 25397585 DOI: 10.1021/la5037986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Precursors derived from the hydrolysis of organic or inorganic salts have been widely used to produce ceramic coatings for a broad variety of applications. When applying the liquid precursors to the substrates, it is extremely challenging to control the film uniformity and homogeneity. The rate of solvent evaporation at different locations is different, causing the viscosity variation and flows in the film. There is very limited knowledge about the viscosity change in evaporating ceramic precursors. Therefore, it is crucial to understand the effect of evaporation on viscosity variation in thin films and droplets. We use magnetic rotational spectroscopy to study the time dependence of viscosity in mullite precursors. A correlation between the viscosity change and evaporation kinetics is revealed. This correlation was used to relate the change of viscosity to the concentration of mullite. A master curve relating viscosity to the mullite concentration was constructed and used to propose a possible scenario of the viscosity increase during solvent evaporation.
Collapse
Affiliation(s)
- Yu Gu
- Department of Materials Science and Engineering, Clemson University , 161 Sirrine Hall, Clemson, South Carolina 29634, United States
| | | | | | | | | | | |
Collapse
|
14
|
Gu Y, Burtovyy R, Custer J, Luzinov I, Kornev KG. A gradient field defeats the inherent repulsion between magnetic nanorods. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140271. [PMID: 26064550 PMCID: PMC4448895 DOI: 10.1098/rsos.140271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 05/29/2023]
Abstract
When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients.
Collapse
|
15
|
Pinheiro PC, Tavares DS, Daniel-da-Silva AL, Lopes CB, Pereira E, Araújo JP, Sousa CT, Trindade T. Ferromagnetic sorbents based on nickel nanowires for efficient uptake of mercury from water. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8274-8280. [PMID: 24797729 DOI: 10.1021/am5010865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work reports the preparation of ferro-magnetic nickel nanowires (NiNW) coated with dithiocarbamate-functionalized siliceous shells and its application for the uptake of aqueous Hg(II) ions by magnetic separation. NiNW with an average diameter and length of 35 nm and 5 μm, respectively, were firstly prepared by Ni electrodeposition in an anodic aluminum oxide template. The NiNW surfaces were then coated with siliceous shells containing dithiocarbamate groups via a one-step procedure consisting in the alkaline hydrolytic co-condensation of tetraethoxysilane (TEOS) and a siloxydithiocarbamate precursor (SiDTC). A small amount of these new nanoadsorbents (2.5 mg·L(-1)) removed 99.8% of mercury ions from aqueous solutions with concentration 50 μg·L(-1) and in less than 24 h of contact time. This outstanding removal ability is attributed to the high affinity of the sulfur donor ligands to Hg(II) species combined with the high surface area-to-volume ratio of the NiNW.
Collapse
Affiliation(s)
- Paula C Pinheiro
- Department of Chemistry, CICECO and CESAM, Aveiro Institute of Nanotechnology, University of Aveiro , 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lim J, Yeap SP, Leow CH, Toh PY, Low SC. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J Colloid Interface Sci 2014; 421:170-7. [DOI: 10.1016/j.jcis.2014.01.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
17
|
Tokarev A, Lee WK, Sevonkaev I, Goia D, Kornev KG. Sharpening the surface of magnetic paranematic droplets. SOFT MATTER 2014; 10:1917-23. [PMID: 24800272 DOI: 10.1039/c3sm52655k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In a non-uniform magnetic field, the droplets of colloids of nickel nanorods and nanobeads aggregate to form a cusp at the droplet surface not deforming the entire droplet shape. When the field is removed, nanorods diffuse away and the cusp disappears. Spherical particles can form cusps in a similar way, but they stay aggregated after the release of the field; finally, the aggregates settle down to the bottom of the drop. The X-ray phase contrast imaging reveals that nanorods in the cusps stay parallel to each other without visible spatial order of their centers of mass. The formation of cusps can be explained with a model that includes magnetostatic and surface tension forces. The discovered possibility of controlled assembly and quenching of nanorod orientation under the cusped liquid surface offers vast opportunities for alignment of carbon nanotubes, nanowires and nanoscrolls, prior to spinning them into superstrong and multifunctional fibers. Magnetostatic and electrostatic analogies suggest that a similar ideal alignment can be achieved with the rod-like dipoles subject to a strong electric field.
Collapse
|
18
|
Asynchronous Magnetic Bead Rotation (AMBR) Microviscometer for Label-Free DNA Analysis. BIOSENSORS-BASEL 2014; 4:76-89. [PMID: 25587411 PMCID: PMC4264372 DOI: 10.3390/bios4010076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/27/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022]
Abstract
We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR) microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.
Collapse
|
19
|
Chevry L, Sampathkumar NK, Cebers A, Berret JF. Magnetic wire-based sensors for the microrheology of complex fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062306. [PMID: 24483443 DOI: 10.1103/physreve.88.062306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 05/05/2023]
Abstract
We propose a simple microrheology technique to evaluate the viscoelastic properties of complex fluids. The method is based on the use of magnetic wires of a few microns in length submitted to a rotational magnetic field. In this work, the method is implemented on a surfactant wormlike micellar solution that behaves as an ideal Maxwell fluid. With increasing frequency, the wires undergo a transition between a steady and a hindered rotation regime. The study shows that the average rotational velocity and the amplitudes of the oscillations obey scaling laws with well-defined exponents. From a comparison between model predictions and experiments, the rheological parameters of the fluid are determined.
Collapse
Affiliation(s)
- L Chevry
- Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | - N K Sampathkumar
- Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | - A Cebers
- Department of Theoretical Physics, University of Latvia, Zellu 8, Riga LV-1002, Latvia
| | - J-F Berret
- Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| |
Collapse
|
20
|
Ghosh A, Mandal P, Karmakar S, Ghosh A. Analytical theory and stability analysis of an elongated nanoscale object under external torque. Phys Chem Chem Phys 2013; 15:10817-23. [DOI: 10.1039/c3cp50701g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Tokarev A, Aprelev A, Zakharov MN, Korneva G, Gogotsi Y, Kornev KG. Multifunctional magnetic rotator for micro and nanorheological studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:065110. [PMID: 22755665 PMCID: PMC3391305 DOI: 10.1063/1.4729795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/03/2012] [Indexed: 05/05/2023]
Abstract
We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects.
Collapse
Affiliation(s)
- Alexander Tokarev
- School of Materials Science & Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | |
Collapse
|