• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619887)   Today's Articles (1520)   Subscriber (49404)
For: Tolmachev DA, Lukasheva NV. Interactions binding mineral and organic phases in nanocomposites based on bacterial cellulose and calcium phosphates. Langmuir 2012;28:13473-13484. [PMID: 22880938 DOI: 10.1021/la302418x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Number Cited by Other Article(s)
1
Smirnov MA, Tolmachev DA, Glova AD, Sokolova MP, Geydt PV, Lukasheva NV, Lyulin SV. Combined Use of Atomic Force Microscopy and Molecular Dynamics in the Study of Biopolymer Systems. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
2
Glova AD, Melnikova SD, Mercurieva AA, Larin SV, Nazarychev VM, Polotsky AA, Lyulin SV. Branched versus linear lactide chains for cellulose nanoparticle modification: an atomistic molecular dynamics study. Phys Chem Chem Phys 2021;23:457-469. [PMID: 33320128 DOI: 10.1039/d0cp04556j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
3
Binding of self-etching monomers to hydroxyapatite: A computational approach. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
4
Macroporous bacterial cellulose grafted by oligopeptides induces biomimetic mineralization via interfacial wettability. Colloids Surf B Biointerfaces 2019;183:110457. [PMID: 31476688 DOI: 10.1016/j.colsurfb.2019.110457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 11/20/2022]
5
Fragal EH, Cellet TS, Fragal VH, Witt MA, Companhoni MV, Ueda-Nakamura T, Silva R, Rubira AF. Biomimetic nanocomposite based on hydroxyapatite mineralization over chemically modified cellulose nanowhiskers: An active platform for osteoblast proliferation. Int J Biol Macromol 2019;125:133-142. [DOI: 10.1016/j.ijbiomac.2018.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 12/25/2022]
6
Kostritskii AY, Tolmachev DA, Lukasheva NV, Gurtovenko AA. Molecular-Level Insight into the Interaction of Phospholipid Bilayers with Cellulose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017;33:12793-12803. [PMID: 29040801 DOI: 10.1021/acs.langmuir.7b02297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
7
Glova AD, Larin SV, Falkovich SG, Nazarychev VM, Tolmachev DA, Lukasheva NV, Lyulin SV. Molecular dynamics simulations of oligoester brushes: the origin of unusual conformations. SOFT MATTER 2017;13:6627-6638. [PMID: 28926071 DOI: 10.1039/c7sm01419h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
8
Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization. INORGANICS 2016. [DOI: 10.3390/inorganics4040033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]  Open
9
Glova AD, Falkovich SG, Larin SV, Mezhenskaia DA, Lukasheva NV, Nazarychev VM, Tolmachev DA, Mercurieva AA, Kenny JM, Lyulin SV. Poly(lactic acid)-based nanocomposites filled with cellulose nanocrystals with modified surface: all-atom molecular dynamics simulations. POLYM INT 2016. [DOI: 10.1002/pi.5102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
10
Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 2016;464:175-82. [DOI: 10.1016/j.jcis.2015.11.033] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/26/2022]
11
Lukasheva NV, Tolmachev DA. Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016;32:125-134. [PMID: 26652774 DOI: 10.1021/acs.langmuir.5b03953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
12
Luo H, Xiong G, Zhang C, Li D, Zhu Y, Guo R, Wan Y. Surface controlled calcium phosphate formation on three-dimensional bacterial cellulose-based nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015;49:526-533. [PMID: 25686980 DOI: 10.1016/j.msec.2015.01.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 12/21/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
13
Lai C, Zhang SJ, Wang LQ, Sheng LY, Zhou QZ, Xi TF. The relationship between microstructure and in vivo degradation of modified bacterial cellulose sponges. J Mater Chem B 2015;3:9001-9010. [DOI: 10.1039/c5tb01640a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Tolmachev DA, Lukasheva NV. Study of the process of mineralization of nanofibrils of native bacterial cellulose in solutions of mineral ions: Modeling via the method of molecular dynamics. POLYMER SCIENCE SERIES A 2014. [DOI: 10.1134/s0965545x14040166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
15
Silvestre AJD, Freire CSR, Neto CP. Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 2014;11:1113-24. [PMID: 24847913 DOI: 10.1517/17425247.2014.920819] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
16
Khayrullin AR, Severin AV, Khripunov AK, Tkachenko AA, Pautov VD. Composites based on Gluconacetobacter xylinus bacterial cellulose and calcium phosphates and their dielectric properties. RUSS J APPL CHEM+ 2013. [DOI: 10.1134/s1070427213080247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA